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Classical satisfiability (SAT) and quantum satisfiability (QSAT) are complete problems for the
complexity classes NP and QMA, respectively, and are believed to be intractable for both classical
and quantum computers. Statistical ensembles of instances of these problems have been studied
previously in an attempt to elucidate their typical, as opposed to worst-case, behavior. In this
paper, we introduce a new statistical ensemble that interpolates between classical and quantum.
For the simplest 2-SAT–2-QSAT ensemble, we find the exact boundary that separates SAT and
UNSAT instances. We do so by establishing coincident lower and upper bounds, in the limit of
large instances, on the extent of the UNSAT and SAT regions, respectively.

PACS numbers: 03.67.Ac, 75.10.Nr, 89.70.Hj

The potential power of quantum computers drives the
immense effort to build and understand them. There
are two primary theoretical approaches to characteriz-
ing the precise extent of this potential. Complexity the-
ory [1] proceeds by identifying so-called ‘complete’ prob-
lems which are the hardest problems in a given class,
such as NP. Classically, under the widely believed con-
jecture that P 6= NP, all algorithmic approaches to NP-
complete problems such as satisfiability (SAT) must fail
on at least some subset of worst-case instances. Over the
last decade, these venerable considerations have been ex-
tended to the quantum case, where QMA-complete prob-
lems are now believed to be intractable and to capture
the intrinsic differences between quantum and classical
computing [2]. The natural quantum generalization of
SAT, so-called quantum satisfiability (QSAT) [3, 4], is
conveniently such a QMA1-complete problem [5].

In the second approach, the introduction of an appro-
priate measure on the instances of a problem generates
a question in statistical Physics. Instead of worrying
about worst-case complexity, we attempt to understand
the structure of problems that are typical with respect to
the measure. For example, phase transitions, which arise
as functions of parameters controlling the measure, often
signal the regimes where the most complicated problems
may be found [6]. This approach builds on the semi-
nal insight of Fu and Anderson [7] that the intractability
of NP-complete problems is a form, indeed an extreme
one, of (spin) glassiness. Ensembles of both classical SAT
[8, 9] and, more recently, QSAT [10–12] have been stud-
ied in this fashion.

In this paper we build on the second approach and
introduce new ensembles that interpolate between the
SAT and QSAT ones. The mixture provides a convenient
framework for characterizing the crossover from classical
to quantum search complexity. For example, the classical
PCP theorem [13] shows that it is computationally hard

to approximately determine the ground state of the SAT
problem, while it is still an open question whether an
analogous hardness result applies in the quantum case.
The interpolation allows the study of the crossover in
entanglement properties of low-energy states, which may
bear on this question. Similarly, in statistical physics,
the mixed ensemble can shed light on entanglement phase
transitions in spin-glass models with quenched disorder:
the classical problem has no entangled solutions, whereas
the mixed one exhibits entangled states in the UNSAT
regime.

Specifically for the 2-SAT–2-QSAT interpolation, we
show that there is a sharp phase boundary (Fig. 1) that
we determine rigorously by deriving coincident lower and
upper bounds on the extent of the UNSAT and SAT
regions, respectively. The interest in this interpolation
flows considerably from a “geometrization” theorem that
applies to the QSAT limit [10]. As this result is not
widely known, we begin with a quick review of the rel-
evant background, which will also enable a proper def-
inition of the problem studied herein. We then present
our central technical results on the phase boundary, and
we close with some remarks on the lessons learned and
future directions.

SAT, QSAT, and the mixed ensemble: An instance
of k-QSAT is defined by a positive-semidefinite Hamil-
tonian on N qubits given by the sum of M k-body
interactions, H =

∑M
m=1 Πm. Here, each interaction

Πm = |φ〉 〈φ|m projects onto a particular state in the lo-
cal Hilbert space of the k qubits associated with interac-
tion m. The computational problem is to decide whether
H has a ground state of energy zero. If so, the problem is
SAT, and if not it is UNSAT [14]. If the states |φ〉m are
computational basis states, we recover classical k-SAT
as a special case. We can now summarize the statistical
ensembles used in previous work. These involve the uni-
form Erdős-Rényi measure [15–17], parametrized by the

ar
X

iv
:1

50
2.

04
70

0v
2 

 [
qu

an
t-

ph
] 

 2
 O

ct
 2

01
5



2

FIG. 1. The phase boundary in the α−β plane that separates
the SAT and the UNSAT regimes for the mixed classical-
quantum problem. The dashed line indicates the emergence
of a giant component in the ER graph (the percolation phase
transition). β = 0 corresponds to the 2-SAT problem and
β = 1 corresponds to the 2-QSAT problem.

‘clause density’ α = M/N , over the set of k-hypergraphs
representing the interactions in H. The interaction as-
sociated with each hyperedge is likewise uniformly cho-
sen from the 2k projectors in classical SAT or from the
Haar measure over the rays in the 2k-dimensional Hilbert
space for QSAT. We observe that the latter makes clas-
sical SAT instances highly non-generic within the QSAT
ensemble, and so these two can be expected to behave
very differently, and indeed they do [8, 9].

The classical ensemble has been studied intensively.
The broad picture that has emerged is that for all k ≥ 2
there is a sharp SAT-UNSAT transition in the N → ∞
limit as a function of α. For k ≥ 3, there are additional
transitions in the SAT regime wherein the structure of
the solution space changes. For the quantum ensemble,
it is known that there is a SAT-UNSAT transition for
k ≥ 2 [10, 11, 18, 19] and that there is at least one
sharp transition involving the growth of entanglement
in the satisfying states for k ≥ 12 [11, 20]. A remark-
able result to come out of the quantum generalization is
a “geometrization theorem” [10] wherein uniformly cho-
sen quantum projectors on any graph exhibit the same
dimension of the satisfying manifold with probability 1.
This reduces the generic QSAT decision problem to a
purely graph-theoretic question! The identification of
this implicit graph-theoretic property for k ≥ 3 and un-
derstanding its computational difficulty is an outstanding
problem.

As advertised above, we initiate a new approach by
introducing ensembles that interpolate between the fully
classical and quantum regimes. We do this by constrain-
ing each realization to include a fraction β of uniformly
chosen quantum projectors and 1 − β uniformly chosen
classical ones. As β varies between 0 and 1, we pass
from the classical ensemble to the quantum one. As the
classical ensemble does not exhibit geometrization and
typically has larger satisfying manifolds, the interpola-
tion has the potential to shed light on the emergence of

geometrization in the quantum limit and thence on pre-
cisely where in the ensemble one might look for genuinely
difficult quantum cases.

As a first step in this program, we study the case of
2-SAT/QSAT. We generate the underlying 2-graphs by
drawing edges between any two sites with probability
αN/

(
N
2

)
. In the thermodynamic limit N →∞, this gen-

erates an Erdős-Rényi (ER) random graph with M = αN
expected edges. For each edge m = 1...M we label it
‘quantum’ with probability β and ‘classical’ with proba-
bility 1 − β: we write em ∈ {Q,C} if the edge between
sites (m,m+ 1) is quantum or classical. The purely clas-
sical and quantum limits are very well understood. At
β = 0 [21–23] there is a sharp SAT-UNSAT transition at
αc = 1, while for β = 1 there is a SAT-UNSAT transition
at αq = 1/2 [10]. The quantum transition coincides with
the emergence of a giant component in the underlying
random graph [16].
The snip-core: The primary tool in our analysis is snip-
ping qubits out of an interaction graph G. Classically, a
node i such that G = G′ ∪ {i} is snippable if all of the
bonds connected to it agree about the bit arrangement
they locally disfavor. All clauses attached to such a snip-
pable node i can then be trivially satisfied by assigning
the appropriate value to qubit i without reference to the
state on G’. Thus, these bonds can be snipped from the
graph G to produce a smaller graph G′, which is SAT if
and only if the original G is.

This definition extends naturally to the mixed
classical-quantum problem (β 6= 0): a degree-1 site i with
a quantum projector attaching it to site j of G′ is snip-
pable. From Bravyi’s construction [3], we know that the
satisfying state for G′ can be written as a product state
|ψj〉 ⊗

∣∣ΨG′\{j}
〉
. If the quantum edge attaching site i

disfavors the state |φj,i〉, then we can use the transfer

matrix Tφ = εφ†j,i (ε is the 2 × 2 Levi-Civita symbol)
to find |ξi〉 = Tφ |ψj〉 such that 〈φj,i| |ψj〉 ⊗ |ξi〉 = 0.
Therefore, |ξi〉 ⊗ |ψj〉 ⊗

∣∣ΨG′\{j}
〉

is a satisfying state for
G = G′ ∪ {i}, which shows that a degree-1 site with a
quantum projector attached is snippable.

However, if a generic quantum edge attaches to a site i
of degree greater than 1, it cannot be locally satisfied by
the state on i without reference to the rest of the graph
(with probability 1). Thus, any site of degree at least 2
with a quantum edge attached is unsnippable.

For a random instance G of the mixed problem, we can
iteratively remove snippable sites and the incident edges
in a similar fashion to the “leaf removal” algorithm [24].
When there are no snippable qubits left, this algorithm
stops and we end up with a unique maximal snip-core.
Clearly, G is SAT iff its snip-core is SAT. Moreover, if the
snip-core is empty, then G is SAT. Behind our consider-
ations lies the result that when G is SAT, we can always
find a satisfying product state [3]. We will now analyze
the structure and probability of non-empty snip-cores in
order to determine the SAT-UNSAT boundary.
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Upper bound on SAT region: The basic idea in this
part is to identify an UNSAT motif that must be present
on all snip-cores for α > αc(β), thus establishing an up-
per bound on the extent of the SAT region. Toward that
end, we first note that the simplest motif that is unsnip-
pable is the unsnippable loop. A loop with classical and
quantum edges is said to be unsnippable if all of its sites
are unsnippable [see Fig. 2(a)]. We can find a simple ex-
ample in the fully classical problem: a loop that dislikes
01 on each edge. While this loop is unsnippable, it is
SAT: it has exactly two satisfying states comprised of all
sites 0 or all sites 1. The same is true of the other 2L such
classical unsnippable loops of length L that are equiva-
lent under “gauge” transformations. It can be shown
that the fully quantum loop also has two SAT states
[3, 10]. Moreover, based on the Geometrization Theo-
rem, we can conclude that the dimension of the kernel
of the fully quantum problem is a lower bound for the
mixed problem, whereas the fully classical one is an up-
per bound: we start from the classical unsnippable loop
and slowly turn classical projectors into generic quantum
ones; this can only decrease the degeneracy of satisfy-
ing states. But since both kernels have dimension 2, we
conclude that the mixed classical-quantum unsnippable
loop always has exactly two linearly independent SAT
states. Finally, an unsnippable but UNSAT motif can
be constructed by decorating the unsnippable loop with
two unsnippable cross-links—strings joining two different
points on the loop whose interior sites are unsnippable
[Fig. 2(b)] that penalize the two SAT states.

We now turn to the probability of finding UNSAT un-
snippable loops with cross-links. Quite generally, the ex-
pected number of subgraphs A in the ER ensemble on N
nodes is

E(# of A) =
N !

(N − |A|)!Aut(A)
pe(A), (1)

where |A| and e(A) represent the number of vertices and
edges of A, respectively; Aut(A) is the number of auto-
morphisms of A and p = αN/

(
N
2

)
. For a loop of length L

we have |L| = e(L) = L and Aut(L) = 2L. Introducing
the probability that a given loop is unsnippable, we find
the expected number of unsnippable loops #uns(L) is

#uns(L) =

(
N

L

)
L!

2L

(
2α

N − 1

)L
p(L is unsnippable).

(2)
For any fixed length L and as N →∞, #uns(L) scales as
O(N0). More generally, the number of subgraphs with
m = e(A)−|A| cross-links vanishes in the thermodynamic
limit as O(N−m). This result holds irrespective of the
form of p(A is unsnippable) since this probability has no
explicit dependence on N . It follows that in order to
get a non-vanishing number of UNSAT motifs we must
consider giant loops whose size scales with N as L = lN
(0 < l ≤ 1).

To calculate the number of unsnippable giant loops we
need the last factor in Eq. (2). For a collection {ei} of
M edges, the probability that site i is unsnippable is 1−
δei,Cδei+1,C/2. In words, if it is connected to a quantum
edge then it is unsnippable with probability 1; otherwise
it is unsnippable with probability 1/2. Also, from the
definition of the random ensemble we have p(ei = Q) = β
and p(ei = C) = 1− β. Hence, for a loop of length L

p(L is unsnippable) =
∑
{ei}

L∏
i=1

p(ei)

(
1−

δei,Cδei+1,C

2

)
.

(3)
Using a standard transfer matrix technique and focusing
solely on the dominant eigenvalue λ+ which controls the
result for large loops, we find that

p(L is unsnippable) ≈

(
1 + β +

√
−7β2 + 10β + 1

4

)L
.

(4)
With this in hand, we return to Eq. (2) and use Stir-

ling’s approximation to find the extensive part of the en-
tropy,

Suns(l) = N [l (log(2αλ+)− 1)− (1− l) log(1− l)] . (5)

Giant unsnippable loops proliferate exponentially in N if
the entropy function is positive for some 1 ≥ l > 0. Since
Suns(0) = 0 and S

′

uns(l) = N [log(2αλ+) + log(1− l)] ≤
N log(2αλ+), we see that Suns(l) is a negative and de-
creasing function on 0 < l ≤ 1 for 2αλ+ < 1. However,
for 2αλ+ > 1, the entropy goes positive for small l and
large numbers of giant unsnippable loops emerge. As we
find eO(N) loops on just N sites, the loops must inter-
sect and overlap repeatedly. It follows that any given
giant loop is covered by a finite density of cross-links and
therefore the probability of finding an UNSAT unsnip-
pable loop with cross-links approaches 1 as N → ∞ for
α greater than

αc(β) =
2

1 + β +
√
−7β2 + 10β + 1

. (6)

Hence, we conclude that that αc(β) is an upper bound
on the extent of the SAT region at any fixed β.
Lower bound on UNSAT region: We will now show
that for α < αc(β) the snip-core is always SAT so that
αc(β) is also a lower bound on the extent of the UNSAT
region. We do this by showing that the snip-core must
contain one of a finite list of motifs [25] and that all of
these except SAT unsnippable loops are not present as
N →∞ for α < αc(β).

To show that there is a finite list of necessary motifs,
we start from an arbitrary site in the snip-core which
we label 1 and walk along any edge which we label e1
that connects it to a site 2 [see Fig. 2(c)]. At step 2, we
walk along an edge e2 to site 3 such that 2 is unsnippable
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with respect to edges e1 and e2. Thus, e2 can either be
quantum or, if it is classical, it has to disagree with e1
on site 2. From this point onward, we take further steps
as follows:

• At step k: we move along an edge ek that connects
it to k + 1 such that site k is unsnippable.

• Iterate until we pass through a site i twice.

Since the size of the snip-core is finite at any given N,
then each such path must be self-intersecting. Therefore,
the algorithm stops in either of the following scenarios:

1. The path returns to the starting point (i = 1) and
we end up with a loop. There are two subcases:

(a) If all sites on the loop have degree 2 then the
loop must be unsnippable [Fig. 2(a)].

(b) If there exists a site on the loop that has a
degree of at least 3 then we walk one step away
from the loop starting at that site as before
and get a “lasso motif” [Fig. 2(c)].

2. The path crosses itself at a site i 6= 1 and we en-
counter the same lasso motif.

At this point, we continue from the open end of the lasso
and generate unsnippable sites as before. Again, our
path necessarily returns and touches the lasso. When
this happens, we end up with one of three motifs: an
unsnippable loop with one cross-link [Fig. 2(d)], a “fig-
ure eight” [Fig. 2(e)] or a “dumbbell” [Fig. 2(f)]. To-
gether with the unsnippable loop [Fig. 2(a)], these con-
stitute the set of structures of which at least one must be
present on each non-empty disconnected component of a
snip-core. Strictly speaking, we should classify somewhat
more finely by specifying the unsnippability of each loop
passing through the degree 3 and 4 sites in these motifs.
But that only changes our estimates below by constant
factors as N → ∞, so we refrain from exhibiting these
details here.

Now for the frequency of occurrence of these motifs.
In the limit N →∞ for any fixed number of sites L, the
expected number of loops is O(N0), while the expected
numbers of the other three are O(1/N) and hence vanish.
As before, we are led to examine giant versions of these
graphs. The most optimistic case assumes that all the
individual legs of the motifs are large and diverge with
N . In this case, the expected numbers take the form

E(# motifs) = c

(
N

L− 1

)
(L− 1)!

a

(
2α

N − 1

)L
λL+, (7)

where a is the number of automorphisms (a = 4 for the
figure eight and the dumbbell and a = 2 for the loop
with a single cross-link) and c is an O(1) number (de-
pendent on β) associated with the precise unsnippability
of vertices that have degree at least 3 alluded to above.

For α < αc(β) these expected numbers vanish also
for large motifs of size L = lNγ as N → ∞ for any
l and 0 < γ ≤ 1. Using Stirling’s approximation, the
O(Nγ) part of the entropy S(l) = log(E(# motifs)) is
approximately

S(l) = lNγ log(2αλ+)−lNγ−N(1−lNγ−1) log(1−lNγ−1).
(8)

Once again, S(0) = 0 and the derivative S′(l) =
Nγ

[
log(2αλ+) + log(1− lNγ−1)

]
≤ Nγ log(2αλ+) for

any l. We see that for α < αc(β), S(l) is a negative
and decreasing function so the expected number of mo-
tifs vanishes in the thermodynamic limit as e−O(Nγ).

Hence, the loop with cross-link, figure eight, and
dumbbell are entirely absent for α < αc(β) and the snip-
core is either empty or composed entirely of unsnippable
loops. Such snip-cores are SAT so we can conclude that
our starting graphs are SAT for α < αc(β) with proba-
bility 1 and thus αc(β) is a lower bound on the extent of
the UNSAT region at fixed β. Putting together the up-
per and the lower bounds, we conclude that αc(β) from
Eq. (6) represents the exact location of the phase bound-
ary between SAT and UNSAT in the α − β plane, as
shown in Fig. 1.

Concluding remarks: In the preceding, we introduced
a new family of mixed classical-quantum ensembles for
the k-SAT/QSAT problems, and we established the ex-
act phase diagram for the simplest member of this family
with k = 2. We note that the shape of the phase bound-
ary is consistent with what is known about the limits.
The quantum limit is insensitive to the choice of pro-
jectors, and we find that the restriction of a dilute con-
centration of projectors to classical values barely shifts
the phase boundary. The classical limit is sensitive to
the choice of projectors, and the phase boundary near it
is maximally sensitive to the inclusion of a dilute set of
quantum projectors. A problem that we leave open is
the nature of scaling near the phase boundary. One ba-
sic question concerns the scaling of the probability PSAT

that a random instance is SAT. Work on the classical
problem by Bollobás et al. [23] showed that this has the
scaling form PSAT(N,α) = f((α − αc)/N1/3). Work on
the ER ensemble by Bollobás [26] and  Luczak [27] im-
plies that the same scaling holds for the purely quantum
problem. Qualitatively, our work makes sense of this ap-
parent coincidence and implies that this scaling will hold
everywhere along the phase boundary—that everywhere
there exists a single transition involving the proliferation
of unsnippable loops with the mix of projectors along
such loops changing continuously with β. However, more
work is required to show this rigorously and to try and
extract more detailed information on the scaling func-
tions near the transition. Finally, we intend to examine
similar ensembles for k = 3. The current work suggests
that perturbing about the classical limit by introducing
a dilute set of quantum projectors into the Hamiltonian
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FIG. 2.
(a) An unsnippable loop that contains both classical and
quantum edges.
(b) A loop with two cross-links. If all the strings are un-
snippable and the cross-links penalize the loop’s two linearly
independent satisfying states, this motif becomes UNSAT.
(c) The “lasso” motif. We start from a random site 1 and
move along an unsnippable path until we pass through the
same site i twice. The loop can either be unsnippable (x = 1)
or snippable at site i (x = 0).
(d) The loop with a single cross-link. We encounter this motif
if we traverse the dangling branch of the lasso and end up at
a site located on the initial loop.
(e) The “figure eight.” We encounter this motif if we traverse
the dangling branch of the lasso and end up at the same start-
ing point i.
(f) The “dumbbell.” We encounter this motif if we traverse
the dangling branch of the lasso and pass through the same
point twice (located outside of the initial loop).

could be informative in quantum mechanical perturba-
tion theory.
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