Gene regulation via alternative splicing and nonsense-mediated mRNA decay

by

Richard Edward Green

B.S. (University of Georgia) 1997

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Molecular and Cell Biology

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Associate Professor Steven Brenner, Chair
Professor Jasper Rine
Professor Thomas Cline
Assistant Professor Kimmen Sjölander

Spring 2005
The dissertation of Richard Edward Green is approved:

______________________________ _________________________
Steven Brenner, Chair Date

______________________________ _________________________
Jasper Rine Date

______________________________ _________________________
Thomas Cline Date

______________________________ _________________________
Kimmen Sjölander Date

University of California, Berkeley

Spring 2005
Gene regulation via alternative splicing and nonsense-mediated mRNA decay

Copyright (2005)
All rights reserved

by

Richard Edward Green
Abstract

Gene regulation via alternative splicing and nonsense-mediated mRNA decay

by

Richard Edward Green

Doctor of Philosophy in Molecular and Cell Biology

University of California, Berkeley

Professor Steven Brenner, Chair
Alternative splicing is an important mechanism used by eukaryotes to expand their proteome and to regulate gene expression. To better understand the role of alternative splicing, we conducted a large-scale analysis of reliable alternative isoforms of known human genes, classifying each according to its splice pattern and supporting evidence. Surprisingly, one third of the alternative transcripts examined contain premature termination codons, and most persist even after rigorous filtering by multiple methods. These transcripts are apparent targets of nonsense-mediated decay (NMD), a surveillance mechanism that selectively degrades nonsense mRNAs. Several of these transcripts are from genes for which alternative splicing is known to regulate protein expression by generating alternate isoforms that are differentially subjected to NMD. I propose that regulated unproductive splicing and translation (RUST), through the coupling of alternative splicing and NMD, may be a pervasive, underappreciated means of regulating protein expression. Perhaps because the mechanism for NMD was discovered prior to the characterization of many genes, I also found that there is much overlooked evidence of RUST even for well-characterized genes.

I have also investigated alternative splicing regulation in Drosophila melanogaster. Using a splice junction DNA array, I characterized the splicing changes following RNAi knockdown of four key splicing regulators: dASF/SF2, B52/SRp55, PSI, and hrp48. I found that there is significant overlap in the splicing events affected by the two SR proteins, dASF/SF2 and B52/SRp55, indicating some functional overlap. I also found evidence that hrp48 is an
obligate partner for PSI. Finally, I found enrichment of previously defined cis
binding sites for the SR proteins near the splice sites flanking splicing events that
require dASF/SF2 or B52/SRp55.

Database search methods are of central importance in computational
molecular biology. I have enhanced the standard method for evaluating database
search methods by adding normalization and bootstrapping. These
enhancements help neutralize a known defect in the evaluation scheme and
allow statistical testing of results. Finally, a collaborator and I implemented a
database search method that considers sequence context when generating and
scoring alignments. Using the evaluation scheme mentioned above, we found
that this extra information does not improve remote homolog detection.
TABLE OF CONTENTS

Abstract
Preface

Chapter 1: Introduction to alternative splicing and nonsense-mediated mRNA decay
Alternative splicing
Nonsense-mediated mRNA decay

Chapter 2: Alternative splicing often generates isoforms with premature termination codons
Background
Results and Discussion
Materials and Methods

Chapter 3: Even curated databases contain protein isoform sequences derived from mRNAs likely degraded by NMD
Background
Results and Discussion
Conclusions
Materials and Methods

Chapter 4: Discussion of regulated unproductive splicing and translation and future directions
RUST implications on alternative splicing
RUST implications on NMD
Future directions

Chapter 5: A microarray platform for investigating alternative splicing regulation in *Drosophila melanogaster*

Background

Results

Discussion

Materials and Methods

Chapter 6: Bootstrapping, Bayesian bootstrapping, and normalization for enhanced pairwise sequence evaluation

Introduction

Methodology

Results

Discussion

Chapter 7: Pairwise alignment incorporating dipeptide covariation

Introduction

Results

Discussion

Materials and Methods

Chapter 8: Discussion and future directions of development and evaluation of remote homology detection methods

Appendix A – Human swiss-prot isoforms derived from PTC+ mRNAs
Appendix B – Correlation between swiss-prot structural domains and alternatively spliced regions

References
LIST OF FIGURES

Figure 1.1 Recognition of premature termination codons

Figure 2.1 Analysis of human EST-inferred exon deletion and insertion alternative splicing

Figure 2.2 Alternative splice detection and classification

Figure 3.1 Many human alternative isoforms in SWISS-PROT derive from PTC+ mRNAs

Figure 3.2 SWISS-PROT entries with multiple isoforms amenable to analysis generate more PTC+ isoforms

Figure 3.3 Published expression levels of calpain-10 are consistent with NMD prediction

Figure 3.4 Splicing to generate a premature termination codon is evolutionarily conserved in CLKs

Figure 3.5 Cycloheximide increases abundance of CLK1 PTC+ isoforms

Figure 3.6 LATD/TNFRSF12/DR3/Apo3 expression correlates with PTC+ status

Figure 4.1 Correlation between identifiable structural domains and annotated spliced regions of SWISS-PROT isoforms

Figure 5.1 Experimental design and clustering results

Figure 5.2 Experimental filters for intra-array consistency and target specific knockdown

iv
Figure 5.3 Global microarray analysis at 2.0 standard deviations

Figure 5.4 Pairwise scatter plots of microarray results

Figure 5.5 Global microarray analysis at 1.5 standard deviations

Figure 5.6 RT-PCR validation of selected targets

Figure 5.7 RT-PCR validation of selected targets

Figure 5.8 B52/SRp55 binding motifs near B52/SRp55 uniquely affected splice junctions

Figure 5.9 ASF binding sites near ASF uniquely affected splice junctions

Figure 6.1 Inferences from sequence similarity

Figure 6.2 SCOP hierarchy sample

Figure 6.3 Training and test databases

Figure 6.4 Generating coverage versus errors per query (CVE) plots

Figure 6.5 Normalization schemes

Figure 6.6 Standard and Bayesian bootstrap procedures

Figure 6.7 Demonstration of difference between standard and Bayesian bootstrap

Figure 6.8 Coverage versus errors per query (CVE) plots results

Figure 6.9 Superfamily size distribution in test database

Figure 6.10 Observed error rate versus statistical score

Figure 6.11 Growth of SCOP/ASTRAL databases

Figure 7.1 BLOSUM65 singlet and selected elements of doublet substitution matrix

v
Figure 7.2 Inter-sequence mutual information of homologs encoded in inter-site correlations at increasing separation 142

Figure 7.3 CVE plot of doublet versus Smith-Waterman 145

Figure 7.4 Comparison of Smith-Waterman and doublet sequence alignment 155
Table 5.1 – Previously identified target genes of PSI and B52 are re-identified in this microarray analysis 80

Table 6.1 – Pairwise methods evaluated 124

Table 6.2 – Substitution matrix and gap parameter space explored and optimums 126
LIST OF ABBREVIATIONS

DSE: Downstream sequence element
CVE: Coverage versus errors per query
PTC: Premature termination codon
RUST: Regulated unproductive splicing and translation
AS: Alternative splicing
NMD: Nonsense-mediated mRNA decay
CVE: Coverage versus errors per query
PREFACE

This thesis is divided into two somewhat disconnected themes. The first, major theme (Chapters 1 through 5) is alternative splicing, its impact on proteome diversity and gene regulation, and especially nonsense-mediated mRNA decay of alternative mRNA isoforms. Chapter 1 is a general introduction to alternative splicing and nonsense-mediated mRNA decay. Subsequent chapters detail the contributions I made in understanding alternative splicing as a mode of gene regulation. As my main subject, these chapters are followed by a chapter of discussion. This section ends with a chapter describing a microarray project for investigating alternative splicing regulation in fly.

The second major theme (Chapters 6 through 8) is development and evaluation of database search methods. While this material is conceptually far removed from the first 4 chapters, I have chosen not to banish it to appendices. An introduction to this section is provided in Chapter 6.

Finally, the appendices provide data and documentation that are of interest only to some readers.

While there are other reasonable ways to organize disconnected themes in a single thesis, I chose this way because it allows me the most room to explore and explain all my work. The two main sections each have their own introduction and discussion. Despite some effort, I was unable to find a useful conceptual connection between the two themes.
CHAPTER 1

Introduction to Alternative Splicing and Nonsense-Mediated mRNA Decay
Alternative splicing

As recently as the mid-1990s, prevailing wisdom held that alternative splicing was a rare, but interesting phenomenon. Perhaps because it was first experimentally explored in the transcripts of mobile genetic elements like P-element transposon and adenovirus, alternative splicing was believed to affect only “…a few percent” (166) of genes in general. Following the sequencing of the human genome, however, it became clear that alternative splicing was much more prevalent. EST-based analyses have shown that half or more of all human transcripts are subject to alternative splicing (137, 197). Furthermore, widespread alternative splicing is not unique to humans (154). Analysis of several eukaryotes, including mouse, fly, and worm, showed levels of alternative splicing in these organisms comparable to that in humans (41). The theme that emerges from these recent studies is that where there is splicing, there will be alternative splicing.

Since its discovery, alternative splicing research has focused on answering several fundamental questions. What are the biological roles of alternative splicing and of alternative isoforms? How is alternative splicing regulation carried out? How do genes evolve to become alternatively spliced? As awareness of the prevalence of alternative splicing has increased, finding answers to these questions has taken on new importance.

Concerning the biological role of alternative splicing, two general classes of result emerged early on. First, alternative splicing was recognized as an
on/off switch for gene expression (27, 282). Exemplified by P-element and Sxl in
Drosophila melanogaster, alternative splicing can be used to generate both
functional and non-functional protein isoforms, thereby regulating the effective
amount of gene product expressed in a cell. Second, alternative splicing is often
used to generate a functionally diverse set of protein isoforms from a single
genetic locus (20, 21, 96, 145, 201, 238). These isoforms may differ subtly or
dramatically in function. In this way, alternative splicing acts as a multiplier on
the gene content within a genome, generating a larger number of gene products
from a limited number of genes. There are now many well-characterized
examples in both categories. It is firmly established that evolution has
repeatedly harnessed alternative splicing for multiple roles.

One of the most active areas of alternative splicing research involves
understanding the biochemical processes that control alternative splicing.
Because many alternative splicing factors can also function as general splicing
factors, understanding alternative splicing also requires an understanding of
splicing in general, which is largely a problem of understanding the
interactions between the _cis_ elements within pre-mRNAs and the _trans_ factors
that associate with them.

The size and complexity of splicing regulation has been gauged in several
ways. One observation is the physical size of the cellular apparatus that carries
it out. The spliceosome is massive, approximately 40 x 60 nm (225, 291). Within
this large complex are at least 145 distinct protein and ribonucleoprotein
factors, as recently shown via a mass-spec analysis of purified human spliceosomes, making the spliceosome the most complex cellular machine characterized to date (290). Genome wide analyses have revealed that more than 3% of the protein-coding genetic endowment of humans is devoted to RNA metabolism (15). A recent RNAi screen in flies showed that 47 of the 250 RNA-binding proteins that were tested can function as splicing regulators (215). This ratio is almost certainly an underestimate as the screen was set up to detect splicing changes in only two genes. Therefore, given the sheer number of factors involved, it is reasonable to expect that the complexity underlying splicing regulation is considerable.

Splicing regulators can function by attracting, diverting, or repelling the spliceosome from specific splice sites. One way this is achieved is through binding *cis* elements present within pre-mRNAs. These elements can be found in both exons and introns and can activate or inhibit nearby splice sites. Discovery of the identities and activities of *cis* splicing elements has been the focus of much investigation. Traditional SELEX (56), functional SELEX (70, 172), genomic SELEX (142), mutagenic screens, and computational sequence analysis have all been used to discover binding sites for splicing regulators. However, in many cases knowledge of the binding site for a given splicing regulator is insufficient to predict splicing effects. Deciphering the inputs and outputs of splicing regulation has turned out to be similar to deciphering transcriptional regulation: the mere presence of a single transcription factor binding site or
splicing factor binding site is often not predictive of an in vivo role for the factor in question. In fact, the signals important for splicing regulation of RNA may be even more difficult to decode than the signals responsible for DNA transcription due to the increased capacity of RNA to form secondary structure relative to DNA. Deciphering the cis regulatory splicing code, therefore, remains a major challenge.

How genes have evolved to become alternatively spliced remains an interesting and open question. Comparative genomics analyses have identified several genes whose patterns of alternative splicing have been conserved through millions of years of evolution (52, 191, 221). For example, the CLK family of protein kinases show a pattern of alternative splicing that is conserved from human, to mouse, to the sea-squirt, C. intestinalis (122). Presumably, splicing regulation of the CLKs evolved hundreds of millions of years ago in the common ancestor of chordates and has persisted to the present. However, recent large-scale surveys have shown that most human alternative splice events are not observed even in mouse (196, 212, 280). These observations indicate that, at least in humans, most observed alternative splicing events are more recently evolved. In the background of mostly non-conserved alternative splicing, instances of conserved alternative splicing are likely to be functional. Furthermore, this observation calls into question the assumption that all observed alternative mRNA isoforms are functional. Perhaps some represent
biochemical noise of the splicing apparatus which is only occasionally
harnessed to generate functional, regulated alternative splicing (147, 148).

Nonsense-mediated mRNA decay (NMD)

It has been known for nearly a quarter-century that nonsense mutations and
frameshift mutations that induce premature termination codons can destabilize
mRNA transcripts (75, 146, 161). First investigated in yeast and humans, NMD
was subsequently observed in a wide range of eukaryotes and is now thought to
occur in all eukaryotes (98). Although there is a common core of trans-effectors
of NMD—Upf1, Upf2, and Upf3—there are important and dramatic differences
in several aspects of NMD amongst eukaryotes. For example, the Upf1-null
(NMD-null) has non-lethal phenotypes in several species such as a respiratory
defect in yeast (161) and male-specific morphological defects in worm (123).
However, NMD appears vital in mammals: NMD-null mouse embryos resorb
shortly after implantation. Furthermore, NMD-null blastocysts isolated 3.5 days
post-coitum undergo apoptosis in culture after a brief growth period (186). Also,
the mechanism cells use to distinguish premature termination codons from
normal termination codons differs from yeast to flies to mammals. The
mechanisms outside human and mouse are not well established, and it is not
clear which mechanism was ancestral or when over evolutionary history it has
changed. These mechanisms have been the subject of intense investigation.
Mammalian NMD model

Important details have emerged that establish the following framework for NMD in mammals (reviewed in (186)). During pre-mRNA processing, the spliceosome removes intron sequences. As this occurs, a protein complex called the exon-junction complex is deposited 20-24 nucleotides upstream of the sites of intron removal (156-158, 178, 226). The growing list of identified components of this complex includes REF1/Aly, RNPS1, SRm160, Y14, DEK, UAP56, magoh, and eIF4a3 (59, 94, 156, 211, 242, 266). The exon-junction complex acts as a mark to label the gene structure, after splicing. After or co-incident with (or possibly before! (43)) export to the cytoplasm, the mature mRNA undergoes a first pioneering round of translation (63, 130, 164). According to the current model, as the ribosome traverses the mRNA, it displaces all the exon-junction complexes in its path (181). For normal mRNAs, when the ribosome reaches the termination codon it will have displaced all exon-junction complexes. If any exon-junction complexes remain, a series of interactions ensues that leads to the decapping and degradation of the mRNA (Figure 1.1a). These interactions involve the well-conserved Upf proteins, the translation release factors eRF1 and eRF3 (266) and a decapping complex (176). Thus, a normal termination codon is distinguished from a premature termination codon by whether it is positioned so as to allow the ribosome to displace all exon-junction complexes. This cell-biological model provides the mechanistic basis for the “50 nucleotide rule” for NMD in mammals (Figure 1.1b): If the translational termination
codon lies greater that about 50 nucleotides upstream of the final exon-exon boundary, the transcript is recognized and degraded by NMD (181, 204).

This translation and splicing dependent model of NMD is supported by several lines of evidence (reviewed in (183)), including the following. At and before the pioneering round of translation, the mRNPs are distinguishable by their association with the nuclear cap binding protein complex CBP80/20 and not the cytoplasmic eIF4E (130, 164). Intronless transcripts are generally immune to NMD (42, 184, 288). Tethering of any of several of the components of the exon-junction complex or Upf proteins to the 3' end of a normal mRNA is sufficient to elicit NMD (177, 178). A central component of the exon-junction complex is eIF4AIII (59, 94, 211, 242), which was previously identified as a translation factor (77). Chemical inhibitors of translation and cis-element inhibitors of translation are potent inhibitors of NMD (23, 54). And, finally, there appears to be strong selective pressure on eukaryotic genes to keep the termination codon sufficiently far downstream to avoid NMD (167, 204).

The initial genetic studies in yeast identified three genes, \textit{UPF1}, \textit{UPF2}, and \textit{UPF3}, that are required for NMD (161, 162). Subsequent studies in \textit{C. elegans} found NMD to require the worm orthologs of \textit{UPF1-3}, called \textit{smg2}, \textit{smg3}, and \textit{smg4} in worms, plus the products of four additional genes, \textit{smg1} and \textit{smg-5-smg-7} (49, 223). Human orthologs for all of these have been identified and characterized (26, 64, 81, 188, 210, 240, 254). In humans, both isoforms of UPF3 associate with spliced RNA through interactions with components of the EJC.
UPF2 interacts with both UPF1 and UPF3 and localizes around the nucleus. In yeast, translation termination factors eRF1 and eRF3 interact with UPF1 (76). The additional factors that are required in worm and are present in humans are responsible for phosphorylating and dephosphorylating UPF1. It is likely that these extra factors carry out NMD regulation, but little is known of the inputs or outputs of this regulation.
Figure 1.1. Recognition of premature termination codons in humans is splicing dependent. (a) During pre-mRNA processing, introns are removed and a set of proteins called the exon-junction complex is deposited. According to the current model for mammalian NMD, these complexes serve to facilitate transport from the nucleus and to remember the gene structure. During the first, pioneering round of translation, the ribosome will displace all exon-junction complexes in its path until it reaches a stop codon. If the termination codon is on or near the final exon, as is the case for most genes, the ribosome will have displaced all exon-junction complexes. The mRNA will then undergo multiple rounds of translation. (b) If the termination codon is sufficiently far upstream of the final intron position, exon-junction complexes will remain. Interactions ensue that result in the degradation of the mRNA by NMD.
Variations in NMD recognition of Premature termination codons (PTCs)

The mechanism for distinguishing premature from normal termination codons differs from yeast to flies to mammals (182). The yeast and mammal systems have been characterized by the presence of a mark which targets the transcript for NMD, if found downstream of the stop codon. In yeast, this mark has been reported to be a cis-element called the downstream sequence element (DSE) bound by Hrp1p (107, 289), though this model is not universally accepted (19, 121, 182). Hrp1p bound to the DSE is reported to be analogous to the mammalian mark, the exon-junction complex. One key difference is that in the mammalian NMD system, the mark is splicing dependent, while it is not necessarily so in yeast. Recent data from the Izaurralde lab has shown that NMD in flies is different than in yeast and in mammals, and it appears to be splicing independent for at least some genes (101). This important result suggests that the mechanism of PTC recognition may vary more widely than was previously thought. How PTCs are differentiated from normal termination codons in flies and in other organisms is now an interesting, important, and open question.

Besides these differences among NMD in yeast, flies, and humans, there is evidence that the core model for NMD in mammals may have several wrinkles. For example, there is indirect evidence from human disease-associated mutations that NMD efficiency may vary among individuals, explaining variable phenotypes from identical dystrophin mutations (141); and among
tissues, as appears to be the case in Schmid metaphyseal chondrodysplasia (22). Furthermore, PTCs in different positions in the Factor VIII gene may lead to varying degrees of NMD degradation, as reflected in immunotolerance to exogenous Factor VIII in patients with Hemophilia A (78). There are also a handful of exceptions to the 50nt rule. There is evidence that there are sequence elements in humans that are functionally equivalent to a splicing event by serving as a binding platform for an EJC-like complex (144, 224, 260). There are also instances of apparent NMD evasion by PTC+ mRNAs (16, 206, 231). Interestingly, some transcripts that would otherwise be targeted for NMD have been shown to interact with specific factors that protect them from NMD in a regulated manner (62, 160).

The central observation of my thesis, that alternative splicing often generates mRNA isoforms that are degraded by NMD, was made possible by a key result in the NMD field and the availability of a few key data sources. Establishing the mechanistic framework for NMD in mammals put the 50nt rule on solid footing and allowed it to be used as a predictive tool. The availability of the complete human genome sequence and public EST libraries allowed the large-scale EST mapping necessary for alternative splicing inference. Prior to publication of the human genome sequence, predictions of the number of protein-coding human genes were consistently and dramatically higher than those afterward. The reduction came largely from reassigning many distinct EST clusters to alternative isoforms instead of discrete gene loci. Armed with a large
set of inferred alternative isoforms and a basis for classifying mRNA isoforms as PTC⁺, we set about answering the question: how often does alternative splicing divert gene expression into the NMD degradation pathway?
CHAPTER 2

Alternative splicing often generates isoforms with premature termination codons

Note: Much of the material presented in this chapter was included in the publication:

This chapter also includes indication of my contribution and some previously unpublished results that motivated the subsequent analyses.
Background

Alternative splicing plays a major role in modulating gene function by expanding the diversity of expressed mRNA transcripts (40, 108, 115, 195). An extreme example in *Drosophila* is the alternative splicing of the Dscam gene, which may generate over 38,000 distinct mRNA isoforms (237)—more than twice the number of predicted genes in the entire genome (3)—to mediate formation of neuronal cell-cell contacts. Moreover, alternative splicing of genes with just a few isoforms may nonetheless yield profound regulatory effects. This is exemplified by human bcl-x, whose products include two isoforms with markedly different activities: Bcl-x(L) is an anti-apoptotic factor, whereas Bcl-x(S) can induce apoptosis (34). Seeking to understand alternative splicing and the protein repertoire encoded by the human genome, many groups have undertaken studies to infer and enumerate alternative mRNA isoforms (40, 45, 120, 127, 136, 192).

Standard analyses, however, may not provide a full appreciation of how alternative splicing modulates gene function. Due to the limitations of the ESTs from which alternative splicing information is commonly derived (259), researchers sometimes cautiously restrict their analyses to exon skipping and mutually exclusive exon usage (40, 120). Similarly, researchers commonly dismiss alternative transcripts that code for apparent early translational termination, since those mRNAs are deemed incapable of generating a
functional product. A more complete understanding of alternative splicing requires an unbiased consideration of all reliable alternative mRNA isoforms.

Ben Lewis and I undertook such an analysis using the publicly available EST sequences within the dbEST database and the recently published human genome sequence. We aligned RefSeq genes to the genome sequence to infer their gene structures. Then, we aligned EST sequences to the RefSeq loci and inferred patterns of alternative splicing from these alignments. We interpreted these patterns of alternative splicing with respect to changes in the gene structure and with respect to NMD.

My contributions to this project were as follows. First, I performed an analysis of human alternative splicing data compiled by Brett and co-workers (40). This analysis showed that alternative splicing often generates isoforms that induce changes in reading frame or directly insert premature termination codons (Figure 2.1). Furthermore, it is difficult to interpret the functional implication of these alternative splicing events with respect to protein coding potential as the slight bias against alternative splicing interrupting structural domains is removed when one only considers those alternative splicing events that change the reading frame or insert a termination codon. These data strongly suggested that a larger-scale, direct investigation into the link between alternative splicing and NMD was warranted. Second, I devised an outline of the experimental protocol for the direct investigation and helped refine it during
Figure 2.1 Analysis of human EST-inferred exon deletion and insertion alternative splicing (AS) events from Brett et al (40). (a) Mapping the AS events relative to coding sequence revealed that most affected the protein coding open reading frame (ORF). (b) Of the AS events that affected the ORF, but not the start codon directly, most either inserted a stop codon or changed the reading frame. (c) Exon deletions (DEL) were more likely than exon insertions (INS) to leave the reading frame intact. (d) The previously reported slight bias against AS events interrupting structural domains was only present for AS events that left the reading frame intact.
implementation. Finally, Ben Lewis and I collaborated to analyze the data and prepare the final published manuscript.

Results and Discussion

We mapped all ESTs from dbEST onto the gene loci sequences of all RefSeq genes and found that 3127 canonical RefSeq mRNAs were found to have 6884 alternative splice pairs and 5693 alternative mRNA isoforms. We categorized the alternative mRNAs according to exon and splice site usage (Figure 2.2b, d). Each canonical and alternative isoform is described in a table published as supporting material for the PNAS publication.

We found that many alternative mRNA isoforms have premature termination codons that render them apparent targets for nonsense-mediated decay (NMD). Recent work has elucidated the following model for mammalian NMD (53, 143, 178, 193). During mRNA processing, exon-exon splice junctions are marked with exon junction complexes that serve the dual purpose of facilitating export to the cytoplasm and remembering gene structure (157). As translation occurs, the ribosome displaces all exon junction complexes in its path. If a complex remains after a pioneering round of translation (130), a series of reactions ensue, leading to transcript degradation. Thus, transcripts that contain premature termination codons—that is, termination codons more than 50 nucleotides 5’ of the final exon (121, 130, 143, 157, 177, 178, 204, 266)—are candidates for NMD. As Wagner and Lykke-Anderson report, “NMD is a
critical process in normal cellular development” (266). NMD has been shown to occur in all eukaryotes tested and, though it has variable efficiency (112), eukaryotic mRNAs containing premature termination codons are almost always degraded rapidly (204). Further supporting this idea, we observed that only 4.3% of mRNAs from the reviewed category of Refseq are NMD candidates, with stop codons located more than 50 nucleotides upstream of the final exon. In contrast, we discovered that in 34% of these sequences, the start codon occurred downstream of the first exon.

35% of the EST-suggested alternative isoforms in our study contain premature termination codons (Figure 2.2f). For a subset comprising 74% of these NMD-candidate mRNA isoforms, EST alignments cover a premature termination codon and a splice junction more than 50 nucleotides downstream. In these cases, there is no possibility that additional, undetected splicing events might remove 3’ exons, thereby preventing termination from being premature. Furthermore, within this subset of NMD-candidates, 83% have premature termination codons occur in all three reading frames, thus precluding the possibility that an upstream splicing event changed the reading frame from that of the canonical form to prevent incorporation of a premature termination codon. Finally, we found that the distribution of predicted polyadenylation signals in NMD candidate splices is biased against regions just downstream of premature termination codons, undermining the likelihood that alternative polyadenylation stabilizes many of the NMD-candidate transcripts.
a Splice inference

- Genomic sequence
- RefSeq sequence
- Canonical (RefSeq) spliced EST
- Alternately spliced EST
- NMD-candidate alternatively spliced EST
- SC35-like UTR spliced EST (not considered)
- Intron retention (not considered)

Alignment to genomic sequence:
- EST exon, alternate
- EST exon, canonical
- RefSeq exon, not observed in EST
- >50 nt

Noncoding regions are in lighter tones.

b Splice mode classification

<table>
<thead>
<tr>
<th>Splice site introduced</th>
<th>Splice site lost</th>
<th>Coding region change</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-exon splice</td>
<td>2</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Imperfect exon skip</td>
<td>1 or 2</td>
<td>+ & -</td>
<td>22%</td>
</tr>
<tr>
<td>2 alternate sites</td>
<td>2</td>
<td>+ & -</td>
<td>11%</td>
</tr>
<tr>
<td>Exon inclusion</td>
<td>2</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1 alternate site</td>
<td>1</td>
<td>+ or -</td>
<td>0%</td>
</tr>
<tr>
<td>Perfect exon skip</td>
<td>0</td>
<td>2</td>
<td>0%</td>
</tr>
</tbody>
</table>

c Alternative isoform inference from splice pairs

- Start
- Stop
- RefSeq
- ESTs indicating splice pairs
- Exon inclusion inferred isoform
- Splice pair junctions & coverage

d Alternative splice pairs, by mode and coverage

- EST Coverage
- TOTAL

e Alternative splice pairs generating NMD candidates, by mode and coverage

- Percent of alternative splices at coverage 2 and 1 generating NMD candidates

f Isoforms of alternatively-spliced RefSeq-coding genes

- NMD candidates: 1989 (35% of 5693)
- All isoforms: 5693
- Alternative isoforms: 8820
Figure 2.2. Alternative splice detection and classification. a, Splice inference. Coding regions of RefSeq mRNAs were aligned to genomic sequence to determine canonical splicing patterns. EST alignments to genomic sequence confirmed the canonical splices and indicated alternative splices. Canonical (RefSeq) splices are indicated above the exons, while alternative splices are indicated below the exons. When an alternative splice introduced a stop codon more than 50 nucleotides upstream of the final exon-exon splice junction of an inferred mRNA isoform, the stop codon was classified as a premature termination codon and the corresponding mRNA isoform was labeled a NMD candidate. In the example shown, an exon skip caused a frameshift, resulting in the introduction of a premature termination codon. Restricting the analysis to coding regions assured high alignment quality, but this excluded alternative splicing in non-coding regions, such as occurs with splicing factor SC35. Intron retentions were also excluded, since ESTs indicating intron retention are indistinguishable from incompletely-processed transcripts, a common dbEST contaminant. b, Splice mode classification. Alternative splices were categorized according to splice site usage and effects on the coding sequence. Splice sites introduced shows the number of splice donor/acceptor sites that were observed in the alternative splice, but were not included in the canonical splice. Splice sites lost shows the number of splice donor/acceptor sites that were included in the canonical splice and absent in the alternative splice. Coding region change indicates whether an alternative splice added (red) or subtracted (green) coding sequence to the alternative isoform relative to the canonical isoform. By our method, mutually-exclusive exon usage appears as exon inclusion. Our analysis excluded intron retentions, which would be classified as: 0 splice sites introduced, 2 sites lost, and addition of coding sequence. c, Alternative isoform inference from splice pairs. Splice pairs are splice donor/acceptor sites (▲) inferred from the alignments. Alternative splice pairs are those indicated by ESTs, but not by a RefSeq mRNA. The exon composition of an isoform was determined from EST-demonstrated splice pairs, which may be covered by multiple ESTs. Coverage of splice pairs is indicated in each ▲. Coverage for a complete isoform is not meaningful because of variability in coverage of its splice pairs. d, Alternative splice pairs by mode and coverage. The total number of alternative splice pairs associated with each splicing mode is shown at various levels of EST coverage. The distance from the y-axis to the right edge of each box corresponds to the total number of splice pairs with coverage greater than or equal to the number indicated. Note that each exon inclusion event involves two splice pairs. e, Alternative splice pairs generating NMD candidates, by mode and coverage. The subset of alternative splice pairs producing premature termination codons is involved in generating NMD-candidate mRNA isoforms. Numbers of splice pairs are displayed as in d. Also shown are the NMD-candidate splice pairs at coverage ≥1 and ≥2 as a percentage of all alternative splice pairs for each splicing mode. f, Isoforms of alternatively-spliced RefSeq-coding genes. Shown are the total numbers of isoforms of the RefSeq-coding genes for which alternative isoforms were found. These are subdivided into the following categories: all isoforms including canonical; alternative isoforms (i.e., all isoforms excluding canonical); and NMD candidates.
Our analysis identified 1106 genes that undergo alternative splicing to generate 1989 alternative mRNA isoforms that are apparent targets for NMD. Such widespread coupling of alternative splicing and NMD may indicate that the cell possesses a large number of irrelevant mRNA isoforms that must be eliminated. A more compelling alternative, which has been investigated in analyses of smg mutations in C. elegans, is that the deliberate coupling of alternative splicing and NMD plays a functional role in regulating protein expression levels (108, 194, 199). Supporting this view, our analysis turned up several genes known to be regulated by generating isoforms targeted for NMD, including GA (151), and FGFR2 (133). We also found alternatively spliced NMD candidates for six other splicing factors. Besides these, the splicing factor SC35 has been shown to auto-regulate its expression through RUST by generating NMD-targeted isoforms (255), though it is excluded from our analysis because its alternative splicing does not affect its coding sequence (Figure 2.2a).

Additionally, we found that the human genes for 5 translation factors and 11 ribosomal proteins generate NMD-candidate isoforms. Intriguingly, C. elegans homologs of three of these ribosomal genes—RP3, RP10a, and RP12—generate splice forms that are cleared by NMD (194), suggesting that this mode of regulating ribosomal protein expression is evolutionarily conserved. Experimental work will be necessary to further characterize the role of coupled alternative splicing and NMD in the expression of the genes we have identified.
Since EST libraries are naturally biased against less stable transcripts, mRNAs subjected to NMD should have lower coverage than stable alternative splice forms of the same gene. Therefore, it is striking that many NMD candidates are indicated by multiple ESTs (Figure 2.2e). Within non-normalized, non-diseased-cell libraries, the fraction of splices that generate NMD candidates with coverage one is slightly reduced, and this fraction drops precipitously at higher coverage, rendering the quantitation of these data uninterpretable. In light of transcript biases in dbEST and the fact that splicing in the RefSeq 3’ UTR (e.g., in SC35) is excluded from our analysis, we suspect that alternative splicing of NMD-targeted transcripts might be more prevalent than our data suggest.

The coupling of alternative splicing and NMD is easily incorporated into existing models of gene regulation. It allows use of the intrinsic alternative splicing machinery to regulate protein expression in a developmental stage- and cell-specific manner. Moreover, the transcription of genes that will yield unproductive mRNAs is no more wasteful than the transcription of introns, and particularly for genes that require a long time to be transcribed (e.g., dystrophin, which takes 16 hours (258)), post-transcriptional regulation of this sort could provide temporal control unattainable by transcription factors. In light of our findings, we reason that the contribution of alternative splicing to proteome diversity may be balanced by an as-yet unappreciated regulatory role in gene expression.
Materials and Methods

Alternative Isoform Inference

We examined the alternative mRNAs suggested by EST alignments, using a protocol designed to comprehensively identify maximally-reliable sequences that are alternatively spliced (Figure 2.2a). To exclude errors from genome sequencing and assembly, and to simplify the task of determining reading frame for each transcript, our analysis employed 16163 well-characterized human mRNAs from RefSeq and LocusLink (222). This set excludes the computational genome annotation Refseq category, as well as 617 mRNAs containing premature termination codons (see below, Analysis of premature termination codons in RefSeq mRNAs). First, we mapped the mRNAs to the human genome, requiring that an mRNA align to genomic sequence over the full length of the coding sequence, without gaps in the exons. We further required 98% identity between the coding sequences, favoring RefSeq sequence in cases of nucleotide mismatch. When multiple RefSeq mRNAs aligned to the same region of genomic sequence, we used only the mRNA containing the largest number of exons. To detect alternative isoforms, we aligned 4.6 million EST sequences from dbEST (33) to the genomic sequence and used TAP (136) to infer alternative mRNA splice forms from these alignments (Figure 2.2c). Since we used known genes, the reading frame of each canonical mRNA isoform (i.e., the RefSeq mRNA) was known. So that the reading frame could be determined for all EST-suggested alternative isoforms, we excluded ESTs whose 5' end aligned
to regions of the genomic sequence that did not correspond to coding exons of
the RefSeq mRNA. We also excluded cases of intron retention, as these are
indistinguishable from incompletely processed transcripts, a common dbEST
contaminant. After applying these filters for reliability, this protocol identified
3127 RefSeq mRNAs whose genes undergo alternative splicing to generate 8820
distinct mRNAs. Within this set, we have higher confidence in splicing events
with coverage by multiple ESTs, as these are less likely to result from
experimental artifacts in dbEST. The overall process involved the following
steps:

Mapping RefSeq mRNAs to the Human Genome

Annotations from the August 2002 version of LocusLink (222) were used to
associate 16163 human mRNAs from the August 2002 version of RefSeq (222)
with contig sequences from the NCBI human genome build 30 (153). The
coding regions of the RefSeq mRNAs were aligned against the corresponding
contig sequences with the mRNA alignment tool SPIDEY (272) (Figure 2.2a).
Because the untranslated regions of the RefSeq mRNAs often aligned poorly to
the genomic sequence, we constructed alignments for only the coding portions
of the RefSeq mRNAs. Cases where alternative splicing affects the untranslated
regions of RefSeq-coding genes (e.g., in SC35 (255)) were thus excluded (Figure
2.2a).

Aligning EST sequences to genomic sequences.

Repetitive elements in the genomic template sequences were masked with
RepeatMasker (246). Using \textsc{wu-\textsc{blast} 2.0mp-washu} [07-Jun-2002] (104), we searched the 4.6 million EST sequences from dbEST (33) version 280802 for matches to the coding exons of the RefSeq mRNA as well as the intervening intron sequences in the human genome. The EST sequences with p-value < 10^{-30} were aligned to the genomic sequences using \textsc{sim4} 1.4 (97). Only EST alignments with >92% identity were used.

\textbf{Alternative isoform inference.}

We used \textsc{tap} (136) to infer alternative mRNA splice forms from the EST alignments.

\textbf{Alternative Isoform Analysis}

Alternative isoforms were inferred, analyzed, and further filtered as follows:

\textbf{Analysis of canonical and alternative splice pairs}

Alternative splice pairs are defined as EST-inferred splice junction donor and acceptor sites that differ from those in the canonical RefSeq mRNAs (Figure 2.2a). To avoid erroneous alternative splice pair predictions resulting from ambiguity in the alignments surrounding splice junctions, we rejected putative alternative splice pairs found less than 7 bp from a canonical splice pair. Each aligned EST may indicate multiple alternative and canonical splice pairs. Alternative splice pairs within the same mRNA isoform may have varying levels of EST coverage (Figure 2.2c). Whenever a splice in an alternative isoform was not covered by ESTs, it was assumed to be canonical.

\textbf{Classification of alternative splice pairs}
Each EST-inferred alternative splice pair was classified according to EST coverage (Figure 2.2c), effect on the coding region of the underlying genomic sequence, and exon and splice site usage (Figure 2.2d). By this method, mutually exclusive exon usage appeared as exon inclusion. Note that two alternative splice pairs are associated with a single exon inclusion event. Also, exon inclusion may be viewed as exon skipping from the perspective of the alternative isoform.

Classification of alternative splicing modes

Alternative splices were categorized according to splice site usage and effects on the coding sequence (Figure 2.2b), as described in the legend to Figure 2.2.

Identification of premature termination codons

Premature termination codons are stop codons that occur more than 50 nucleotides upstream of the final splice junction (121, 130, 143, 157, 177, 178, 204, 266). When an inferred mRNA isoform was found to contain a premature termination codon, that isoform was labeled as an NMD candidate. The tendency for alternative splicing to introduce premature termination codons may be viewed at the level of alternative splice pairs (Figure 2.2e) or alternative mRNA isoforms (Figure 2.2f).

Analysis of polyadenylation signals

POLYADQ (256) was used to search the alternative mRNAs for polyadenylation sites. On average, a predicted polyadenylation signal occurred once every 2646 nucleotides in the coding exons of the RefSeq mRNAs and the intervening
introns. Regions spanning from a premature termination codon to the first splice junction more than 50 nucleotides downstream contained predicted polyadenylation signals once every 3187 nucleotides.

Analysis of premature termination codons in RefSeq mRNAs

To determine whether premature termination codons exist in experimentally-identified mRNA transcripts, we examined the occurrence of premature termination codons in the set of reviewed RefSeq mRNAs from the August 2002 version of RefSeq (222). All Refseq mRNAs that are identified as reviewed Refseq records have been individually examined by NCBI staff. Thus, these sequences represent the most reliable segment of Refseq. The position of the termination codon in each reviewed RefSeq mRNA was taken from the RefSeq annotation. The position of the final splice junction was determined using spidey (272) to align the mRNA to a NCBI human genome build 30 contig sequence that had been associated using LocusLink (222). If the stop codon of the RefSeq mRNA was found more than 50 nucleotides upstream of the final splice junction, then the stop codon was identified as a premature termination codon.

Selection of non-normalized, non-diseased-cell EST libraries

We used UniLib library annotations to construct a restricted set of EST libraries (129). The keyword “protocol”, type “non-normalized” was used to search the classification hierarchy for non-normalized libraries. The keyword “histology”, type “normal” was used to identify libraries constructed by sequencing non-
diseased tissue. We took ESTs in the intersection of these two subsets as being from non-normalized, non-diseased-cell libraries.
CHAPTER 3

Even curated databases contain protein isoform sequences derived from mRNAs likely degraded by NMD

Note: Much of the material presented in this chapter was included in the publication:

Background

Alternative pre-mRNA splicing endows genes with the potential to produce a menagerie of protein products. After pre-mRNA is transcribed, a complex system of regulation determines which one of several possible versions of mature mRNA will be produced (reviewed in 29). Alternative splicing is particularly important in human gene expression, as it affects half or more of human genes (137, 195). The diversity-generating capacity of alternative splicing can be staggering: one notable example, the dscam gene of Drosophila melanogaster, is hypothetically capable of producing 38,016 unique alternative isoforms (58). However, functional roles for most alternative isoforms remain undiscovered.

It has been known for more than a decade that nonsense and frameshift mutations that induce premature termination codons can destabilize mRNA transcripts in vivo (146, 161). First investigated in yeast and humans, NMD was subsequently observed in a wide range of eukaryotes and is now thought to occur in all eukaryotes (98). How cells manage to distinguish a premature termination codon from a normal termination codon has been the subject of intense investigation. Important details have emerged that establish the following mechanistic framework model for NMD in mammals.

During pre-mRNA processing, the spliceosome removes intron sequences. As this occurs, a set of proteins called the exon-junction complex is deposited 20-24 nucleotides upstream of the sites of intron removal (157, 158,
The components of this complex serve the dual roles of facilitating export of the mature mRNA to the cytoplasm and remembering the gene structure (156). According to the current model, as a ribosome traverses the mRNA in its first pioneering round of translation, it displaces all exon-junction complexes in its path (43, 84, 130, 181). For normal mRNAs, whose termination codons are on or near the final exon, the ribosome will have displaced all exon-junction complexes. If any exon-junction complexes remain, a series of interactions ensues that leads to the decapping and degradation of the mRNA. This model explains the basis of the “50 nucleotide rule” for mammalian NMD: if a termination codon is more than about 50 nucleotides upstream of the final exon, it is a PTC and the mRNA that harbors it will be degraded (204). The mechanisms for NMD differ amongst yeast (107), flies (101), and mammals—and may be different still in other eukaryotes.

Degradation of PTC+ mRNAs is generally thought to occur as a quality-surveillance system—preempting translation of potentially dominant-negative, C-terminal truncated proteins (48). PTC+ transcripts are aberrantly produced in several ways. The somatic recombination that underlies immune system diversity frequently generates recombined genes whose transcripts contain a PTC (169). Inefficient or faulty splicing will often generate a frameshift in the resulting mRNA, inducing a PTC to come into frame. Also, high processivity of RNA polymerase yields a relatively high error rate, 1 in 10,000 bases (4, 35), commonly introducing premature stops. DNA mutations are a source of
potentially heritable PTCs. It is estimated that 30% of inherited disorders in humans are caused by a PTC (266). The numerous diseases whose pathogeneses have been linked to NMD-inducing PTC mutations include aniridia from the PAX6 gene (265), Duchenne Muscular Dystrophy from the Dystrophin gene (141), and Marfan syndrome from the FBN1 gene (128).

In addition to its quality-control role in degrading aberrantly produced PTC+ mRNAs, NMD has also been experimentally shown to act on a handful of wild-type PTC+ mRNAs (152, 155, 165, 194, 199, 255, 274). In *C. elegans*, for example, expression of the ribosomal proteins L3, L7a, L10a, and L12 and the SR proteins SRp20 and SRp30b are regulated post-transcriptionally via the coupling of alternative splicing and NMD (194, 199). In each case productive isoforms were shown to be produced in vivo, as well as unproductive isoforms with a PTC. Regulated splicing to generate the unproductive isoforms is used as a means to down-regulate protein expression, as these mRNA isoforms are degraded by NMD rather than translated to make protein. This system, which we have termed regulated unproductive splicing and translation (RUST) is also used in humans (152, 255, 274). For example, the SR-protein SC35 has been shown to auto-regulate its own expression using RUST (255). When levels of SC35 protein are elevated, SC35 binds its own pre-mRNA, inducing the production of PTC+ SC35 mRNA. The PTC+ SC35 mRNA is destabilized by NMD, resulting in lower levels of SC35 protein. A similar auto-regulatory rust system was also recently discovered to control production of PTB (275).
In a previous study, we found that 35% of reliable EST-inferred human mRNA alternative isoforms are PTC+, rendering them apparent targets of NMD (110, 168). Therefore, many wild-type alternative mRNA isoforms may not be translated into functional protein, but instead are targeted for degradation by NMD. The vast majority of PTC+ isoforms identified in that study represent previously unrecognized potential targets of NMD. However, EST databases contain expressed sequence for many isoforms that are otherwise uncharacterized. Therefore, it was not obvious how many of the isoforms identified in that study as PTC+ were functionally relevant or even previously known. It was also not obvious to what extent those PTC+ isoforms represented instances of rust regulation or simply errors in pre-mRNA processing. Regardless, it is clear that NMD has a vital role in regulating mammalian gene expression, since inhibition of NMD is embryonic lethal for mouse (186).

To understand the biological significance of PTC+ isoforms and the prevalence of NMD on wild-type transcripts, it is necessary to expand beyond existing isolated rust examples, while retaining a focus on functionally characterized genes. For this reason, we analyzed the human alternative isoforms described in the SWISS-PROT database. Common routes for gene isoform sequences to be determined and entered into databases include the cloning of intronless mini-genes and the sequencing of unexpected PCR bands. By either method, gene structure can not be directly observed, and therefore PTCs may be overlooked. Further computational and experimental analyses
will also often be oblivious to these features. Because the cloning and characterization of many isoforms predates our current understanding of NMD action, we hypothesized that unrecognized potential targets of NMD may be present even in curated databases like SWISS-PROT. We found that many of these alternative protein isoforms derive from PTC+ mRNAs. This is particularly surprising as SWISS-PROT is a heavily curated database of expressed protein sequences. According to the current NMD model, these PTC+ mRNAs should be degraded and therefore the protein isoforms should not be expressed at high abundance. To resolve this apparent conflict, we examined existing experimental evidence and found that, in several cases, results described in the scientific literature are readily explained by NMD action.

This project grew out of a desire to identify high interest targets for experimental verification. Tyler Hillman and I initially began by manually perusing SWISS-PROT for experimentally described isoforms that were likely targets of NMD that were also of scientific or medical interest. Tyler and I jointly conceived of the protocol outlined in Figure 3.1 and jointly implemented it. I performed the cross-species analysis of CLKs and we jointly authored the manuscript.

Results and Discussion

We examined the human alternative isoforms described in the SWISS-PROT database (32) to determine if any derive from PTC+ mRNA (see Materials and Methods). For each alternative human protein isoform sequence in SWISS-PROT,
Assemble alternative human isoforms from protein sequences SWISS-Prot v.41. Assembled 4,556 isoforms, representing 1,636 SWISS-Prot genes.

Match SWISS-Prot isoforms to conceptually translated protein sequences in RefSeq or GenPept database (≥99% identity and no gaps). Mapped 2,742 isoforms, representing 1,463 genes, to mRNAs and coding sequences.

2,483 isoforms, representing 1,363 genes, produced high-confidence SPIDEY alignments.

144 isoforms (5.8% of 2,483), spread across 107 unique SWISS-Prot entries (7.9% of 1,363), contain premature termination codons (PTCs).
Figure 3.1 Many human alternative isoforms in SWISS-PROT derive from PTC+ mRNAs. (a) We analyzed each of the human SWISS-PROT entries containing a VARSPLIC line in its feature table, using this information to assemble protein isoform sequences. Ambiguous VARSPLIC entries led us to discard five entries from our analysis at this point. (b) We next identified cDNA/mRNA sequences corresponding to each protein isoform assembled from SWISS-PROT. BLAST was used to align each protein isoform sequence to translated cDNA/mRNA sequences in GenBank and RefSeq, filtering to ensure only high confidence matches. To obtain the coding sequence of each mRNA/cDNA sequence, we used LocusLink to map each to the correct human genomic contig sequence from the NCBI human genome build 30. We referred to the CDS feature of each GenBank or RefSeq cDNA/mRNA record to identify stop codon locations. (c) We used the SPIDEY mRNA-to-genomic DNA alignment program to determine the gene structure of each mRNA/cDNA isoform sequence. After generating these gene structures, we could determine the PTC+ status on the basis of stop codon location relative to exon-exon junctions. If the termination codon was found to be more than 50 nucleotides upstream of the final intron, the transcript was deemed PTC+ and designated a candidate target of NMD according to the model of mammalian PTC recognition. (d) Each putative PTC+ isoform was manually inspected for errors in gene structure prediction. These errors include false exon predictions due to poly(A) tails and cDNA/mRNA sequence not seen in the corresponding genomic sequence.
we attempted to identify a corresponding cDNA/mRNA sequence in GenBank (25) or RefSeq (222). As shown in Figure 3.1, 2742 isoform sequences from 1463 SWISS-PROT entries could be reliably mapped to a cDNA/mRNA sequence. Next, we aligned each cDNA/mRNA sequence to the corresponding region of genome sequence using the SPIDEY program (272). The SPIDEY output was analyzed to identify the position of introns in each gene. To determine which cDNA/mRNA sequences have PTCs according to the 50 nucleotide rule for NMD, the position of the termination codon as reported in each GenBank or RefSeq file was compared to the position of the introns. Of 2483 alternative isoforms from 1363 SWISS-PROT entries that passed quality filters, 144 isoforms (5.7% of 2483) from 107 entries (7.9% of 1363) were found to have PTCs, making them candidate targets of NMD. We also found that SWISS-PROT entries that contain multiple alternative isoforms amenable to our analysis were more likely to contain at least one PTC+ isoform (Figure 3.2). The complete list of PTC+ alternative isoforms we identified in this analysis, along with their SWISS-PROT accession numbers and cDNA/mRNA identifiers, are shown in Appendix A. In the supplementary information to the Genome Biology manuscript, we have provided the spidey alignment for each of the isoforms we identified as PTC+.

Next, we examined existing reports for experimental evidence that would refute or support action of NMD on these PTC+ isoforms. We found that published descriptions of these PTC+ isoforms sometimes do describe the isoforms as containing premature termination codons. However, these articles
Figure 3.2 SWISS-PROT entries with multiple isoforms amenable to analysis generate more PTC+ isoforms. We categorized SWISS-PROT entries by the number of isoforms that are amenable to our analysis and then determined how many contained at PTC. Each bar shows the number of PTC+ isoforms generated for all SWISS-PROT entries that had the indicated number of isoforms amenable to analysis. Bar components indicate how many entries had a given number of PTC+ isoforms. For example, the bar labeled ‘3’ contains data for the 113 SWISS-PROT entries that had 3 isoforms amenable to analysis. 86% of these had no PTC+ isoforms, 10% had one PTC+ isoform, and 4% had 2 PTC+ isoforms. The bar components outlined in green were SWISS-PROT entries for which all amenable isoforms had a PTC. Entries with multiple isoforms amenable to analysis were more likely to produce at least one PTC+ isoform. This study only considered entries with at least two isoforms in the SWISS-PROT database. For many entries only a single isoforms is amenable to analysis, however.
almost universally lack any mention of NMD, even as they often describe data that is suggestive of NMD action. Amongst the many well-characterized proteins found in our study to have at least one PTC\(^+\) splice variant, three examples demonstrate how previously published experimental results may be interpreted in light of NMD degradation of alternative mRNA isoforms.

Calpain-10

Calpain-10 is an ubiquitously expressed protease that is alternatively spliced to produce eight mRNA isoforms (125), found in SWISS-PROT as Q9HC93. Calpain-10 is an intensely studied gene because a polymorphism in its third intron, UCSNP-43, has been linked to Type-II diabetes in several populations. Because this polymorphism lies in intronic sequence it does not directly affect the coding potential of any isoform of Calpain-10. It was shown that homozygosity of UCSNP-43 leads to reduced levels of total Calpain-10 transcript and is co-incident with insulin resistance in skeletal muscle (17). Previous investigations into how this polymorphism affects transcript abundance have centered on transcriptional regulation (125, 279). In an expression study, Horikawa et al. found four of the eight isoforms to be “less abundant.” It is these same four mRNA isoforms that we found in our survey of swiss-prot to be PTC\(^+\), suggesting that NMD may be responsible for this experimental observation (Figure 3.3). This introduces the possibility that UCSNP-43 may affect the regulation of Calpain-10 alternative splicing, favoring production of one or more of the PTC\(^+\) isoforms.
Figure 3.3 Published expression levels of calpain-10 isoforms are consistent with NMD prediction. (a) A report from Horikawa and co-workers found eight alternative isoforms of calpain-10, of which four are expressed in low abundance. Our analysis found this exact set of four low abundance isoforms to contain PTCs. (b) Gene structures of alternative mRNA isoforms of calpain-10 show the patterns of alternative splicing and indicate locations of PTCs. Also shown is the position of UCSNP-43, an intronic polymorphism that has been statistically linked to type II diabetes susceptibility in a variety of populations.
CDC-like Kinases CLK1, CLK2, and CLK3

CLK1, CLK2, and CLK3—three members of the CDC-like kinase family (also known as LAMMER kinases and STY kinases; SWISS-PROT entries P49759, P49760, P49761)—were found to have at least one PTC + splice variant. CLKs are thought to be high-level regulators of alternative splicing, as CLK1 has been shown to activate a set of SR-proteins by phosphorylating them (86, 87, 190). The pattern of alternative splicing of each CLK paralog was found to be the same: a full-length isoform, and an isoform that skips exon 4 (113). We found that in each case, skipping exon 4 induces a frameshift that creates a PTC (Figure 3.4a). The conceptual translations of these PTC + isoforms, described as “truncated,” lack most of the coding region including the kinase domain.

Having observed conservation amongst the human paralogs, we examined the gene structures of the mouse orthologs of each CLK (Figure 3.4b) to determine if the pattern was shared across species. We identified mouse orthologs via existing RefSeq database annotation. EST evidence of alternative splicing showed that all three mouse CLK orthologs showed the same pattern of alternative splicing, skipping exon 4 to induce a PTC, as seen in the human CLKs. The significance of this evolutionary conservation is underscored by the recent finding that alternative exons are “mostly not conserved” between human and mouse (196). For the CLK genes, the alternative exons and the introns flanking them are amongst the most highly similar regions of these genes (Figure 3.4).
(a) Conservation across three human paralogs

Conserved skipping of exon 4 introduces premature termination codon

(b) Conservation across orthologs in human, mouse and sea-squirt

Gene-structure key

Full-length isoform splice pattern

‘Truncated’ isoform splice pattern

Identifier for full-length isoform

Identifier for PTC isoform
Figure 3.4 Splicing to generate a premature termination codon is evolutionarily conserved in CLKs. The CDC-like kinases (CLKs) are splicing regulators that affect splicing decisions through the phosphorylation of SR proteins. (a) Our screen of SWISS-PROT revealed that human CLK1, CLK2 and CLK3 paralogs all generate PTC+ alternative isoforms. The splicing pattern that generates these isoforms, skipping exon 4, is conserved in each. This splicing pattern causes a frameshift and a PTC. The percent identities from global alignments between corresponding exons and introns are shown in purple. (b) CLKs were identified in mouse through existing annotation and in the predicted genes of the sea squirt *C. intestinalis* using an HMM constructed with annotated CLKs from a variety of organisms. An EST analysis revealed that the alternative splicing pattern that generates PTC+ alternative isoforms was conserved in all three sets of orthologs in human and mouse. The same splicing pattern was also found in the only *C. intestinalis* homolog. A relatively high degree of sequence similarity was found to be present in the introns flanking the alternative exon.
We next searched for evidence of more distant conservation of CLK alternative splicing. We identified the single sea squirt CLK homolog by using a hidden Markov model of CLks to search the *C. intestinalis* genome (see Materials and Methods). EST evidence clearly indicated that the same alternative splicing pattern seen in human and mouse is also conserved in *C. intestinalis*. We were not able to observe a set of similar splicing patterns in *Drosophila melanogaster* (data not shown).

Menegay and co-workers “tested whether expression of CLK1 splice products was subject to regulation by cellular stressors” (190). They found that “UV exposure or high salt conditions had no effect on the ratio of full-length to truncated splice forms of CLK1. Cycloheximide however had a large effect, changing the ratio dramatically in favor of the truncated kinase-less form of mRNA” (Figure 3.5). Cycloheximide, a chemical inhibitor of translation, is known to inhibit NMD (54), because NMD is a translation-dependent process. Indeed, cycloheximide is now a commonly used reagent for NMD-inhibition experiments (e.g., 152, 163, 207). Combined with our finding that the “truncated” mRNA isoform possesses a PTC, the results of Menegay et al. can be readily explained: the increased abundance of the “truncated,” PTC+ isoform following cycloheximide treatment is likely the result of inhibiting NMD, which normally degrades it.

CLK1 has been shown to indirectly affect its own splicing (86): the presence of high levels of CLK1 protein favors generation of the “truncated,”
Figure 3.5 Cycloheximide increases abundance of CLK1 PTC+ isoform. (a) Gene structures of CLK1 full-length and PTC+ isoforms as determined by our analysis. (b) Menegay et al. (190) performed the RT-PCR analysis of CLK1 isoforms; Figure 8 of that analysis [48] is reproduced here with permission (© Company of Biologists Ltd.). The 560 bp fragment corresponds to the full-length CLK1 isoform; the 453 bp fragment corresponds to the PTC+ CLK1 isoform. The analysis shows that cycloheximide, but not UV irradiation or high salt (data not shown), increased the relative abundance of the CLK1 isoform containing a premature termination codon. As cycloheximide is a potent inhibitor of NMD (see, for example, [28,51-53]), this result suggests that the CLK1 PTC+ isoform is degraded by NMD. Menegay et al. [48] describe their figure as follows: "Shift in PCR products of splice forms with cycloheximide. Control or PC12 cells treated with 10 μg/ml cycloheximide for 60 minutes were harvested, RNA was extracted, and RT-PCR was performed. [...] PCR products of the 560 bp full-length form or the 453 kinase-less form of CLK1 message shown. [...] PCR of GAPDH controls from each sample to control for RNA loading."
PTC+ splice variant. However, instead of coding for an inactive, truncated protein isoform, we propose that this PTC+ mRNA isoform may be simply degraded by NMD. Auto regulation of this type would be analogous to that seen for the splicing factors SC35 (255) and PTB (275). Both SC35 and PTB proteins promote the alternative splicing of PTC+ isoforms of their own mRNAs that are then degraded by NMD.

LARD/TNFRSF12/DR3/Apo3

Death domain-containing receptors like LARD (also known as TNFRSF12, DR3, and Apo3; swiss-prot entry Q99831) are known to regulate the balance between lymphocyte proliferation and apoptosis (261). The term “death domain” refers to a conserved intracellular region found in receptors like Fas and TNFR-1 that is capable of inducing apoptosis while in the presence of a particular ligand (in these cases, FasL and TNF1 respectively). The regulation of functional death receptor expression is important in maintaining the balance between lymphocyte proliferation and apoptosis in vivo.

LARD is alternatively spliced to produce 12 isoforms (239). There is one full-length isoform that encodes a death-domain and its expression is pro-apoptotic. Many of the 11 other isoforms, whose functions are unclear, do not encode the death domain. In a study of differential expression of LARD in unstimulated and activated lymphocytes, Screaton and co-workers found that “…there is no change in overall LARD expression in different lymphocyte
subsets” (239). Although total expression levels were unchanged, the pattern of alternative splicing changed dramatically (Figure 3.6). Unstimulated lymphocytes expressed five “truncated” isoforms, but very little of the full-length isoform. They found that, “After lymphocyte activation, there is a complete switch in splicing that will expose PHA-blasted [activated] cells to the risk of apoptosis triggered through LARD…. The splicing pattern reverses after PHA blasting when isoforms encoding the truncated molecules are much reduced and LARD-1 predominates.”

We found that the five “truncated” LARD mRNA isoforms expressed in unstimulated lymphocytes all have PTCs (isoforms 2, 3, 4, 5, and 6). [Note: SWISS-PROT uses a different numbering scheme in which isoforms 2-6 are known as 12, 3, 5, 6, and 7, respectively.] Only the full-length apoptosis-promoting isoform 1, expressed in activated lymphocytes, is free of a PTC. Though there is presently no evidence of transcript degradation, this precise correlation between PTC-containing isoform expression and lymphocyte activation suggests that alternative splicing’s role in regulating lymphocyte apoptosis may be mediated by NMD.

Conclusions

We found that 144 of the human alternative isoforms described in SWISS-PROT derive from mRNAs that contain PTCs. These mRNAs are apparent targets for NMD, and we expect that most are degraded by this system. In many cases, existing experimental evidence is consistent with this expectation. Because our
Figure 3.6 LARD/TNRRSF12/DR3/Apo3 expression correlates with PTC+ status. LARD is an alternatively spliced death-domain-containing member of the tumor necrosis factor receptor family (TNFR). However, only the major splice variant (isoform 1) contains the death domain and is capable of inducing apoptosis. The splicing distribution of LARD isoforms has been shown to change on lymphocyte activation, suggesting that alternative splicing may be a control point regulating lymphocyte proliferation. (a) Screaton et al. showed that, before lymphocyte activation, only LARD isoforms 2, 3, 4, 5 and 6 are expressed. Primary blood lymphocytes treated with an activating agent were found instead to express the major, apoptosis-promoting splice variant (isoform 1) almost exclusively. This panel is reproduced with permission from Figure 6a of (239) (© National Academy of Sciences). Screaton et al. (239) describe their figure as follows: "Southern blots of reverse transcriptase-PCR of LARD cDNA with primers F LARD Kpn and R LARD Xba probed with 32P-labeled primer F LARD Xba. Lanes: 1, CD4+ cells; 2, CD8+ cells; 3, B cells; 4 PHA-blasted PBL; 5, negative control." (b) LARD isoforms 2, 3, 4, 5 and 6 were found in our analysis of SWISS-PROT to have PTCs, rendering them potential targets of NMD. The precise correlation between LARD isoform expression and PTC+ status hints that there may be a role for alternative-splicing-induced NMD. Here, the gene structures of these five isoforms are shown alongside that of the full-length LARD isoform (isoform 1). In each case, the location of the stop codon has been labeled and, where appropriate, isoforms have been denoted as PTC+.
analysis was restricted to only human entries and many SWISS-PROT records could not be reliably analyzed, it is likely that there remain more unidentified putative NMD targets. We are beginning a collaborative project with SWISS-PROT to identify and suitably annotate these entries. The relevance of this effort is highlighted by the many instances in which existing experimental data can be explained in light of NMD action.

Materials and Methods

SWISS-PROT isoform extraction and assembly

We analyzed each of the 1641 SWISS-PROT v.41 human entries containing a VARSPLIC line in its feature table (32). Information contained in each VARSPLIC line was used to assemble protein isoform sequences for 4556 isoforms from 1636 unique SWISS-PROT entries. 5 entries could not be analyzed due to ambiguous VARSPLIC annotation.

Identification of corresponding cDNA/mRNA sequences

Although SWISS-PROT contains cross-references to cDNA/mRNA sequences for major protein isoforms, cross references do not exist for many alternative isoforms. To find the cDNA/mRNA sequence corresponding to each SWISS-PROT protein isoform, we used BLAST version 2.2.4 (12) to align each protein isoform sequence to translated cDNA/mRNA sequences from all GenBank (25) and RefSeq cDNA/mRNA sequences in these databases as of 22 March 2003 (222). In these alignments, we required $\geq 99\%$ identity over the full length of the
SWISS-PROT isoform. In cases of multiple matches, we selected 100% identical matches over 99% identical matches and RefSeq matches over GenBank matches. For SWISS-PROT isoforms matching multiple entries from the same database at the same percent identity, the match associated with the longest cDNA/mRNA sequence was chosen. These rules associated 2871 alternatively spliced human SWISS-PROT protein isoforms from 1496 SWISS-PROT entries with a corresponding cDNA/mRNA sequence from either RefSeq or Genbank.

Retrieving coding sequences and genomic loci

We used LocusLink (222) to map each cDNA/mRNA sequence to the correct human genomic contig sequence from the NCBI human genome build 30 (153). The CDS feature of each GenBank or RefSeq record was used to identify the location of the termination codon. Of the 2871 alternatively spliced human SWISS-PROT protein isoforms we associated with corresponding cDNA/mRNA sequences, 2742 had GenBank or RefSeq records that were not polycistronic, allowing us to unambiguously extrapolate termination codon location for these records. These 2742 alternative isoforms represented 1463 unique SWISS-PROT entries.

Assessing NMD candidacy

The SPIDEY mRNA to genomic alignment program (272) was used to determine the location of introns in each cDNA/mRNA alternative isoform sequence. SPIDEY takes as input a cDNA/mRNA sequence and the corresponding genomic sequence, and it generates an alignment that establishes the gene structure. Of
the 2742 alternatively spliced human swiss-prot protein isoforms for which both a cDNA/mRNA sequence and stop codon location could be identified, 2483 resulted in high-confidence SPIDEY alignments, leading us to discard 259 from our analysis. These 2483 isoform sequences represented 1363 unique SWISS-PROT entries. We compared the intron positions to the position of the termination codon for each remaining cDNA/mRNA alternative isoform sequence. If the termination codon was found to be more than 50 nucleotides upstream of the final intron, we deemed the transcript to be PTC+ and a candidate target for NMD according to the model of mammalian PTC recognition (181). 177 alternatively spliced human isoforms from 130 SWISS-PROT entries were identified as possible PTC+ splice variants using these criteria. These predictions required further screening, however, to confirm the veracity of the SPIDEY alignments upon which they were based.

We manually reviewed all 177 putatively PTC+ alignments and discarded 33 because of demonstrable errors in the SPIDEY alignments. These errors included a variety of malformed intron predictions and polyA tails mistakenly annotated as 3’ exons. Isoforms that remained following the application of these manual filters were deemed high confidence PTC+ mRNAs. This was the case for 5.7% of the isoforms (144 of 2483) from 7.9% of the unique SWISS-PROT entries studied (107 of 1363). The SPIDEY alignment for each of these is included as supporting information.
CLK analysis

Human CLK1, CLK2, and CLK3 (swiss-prot IDs P49759, P49760, and P49761) were among those SWISS-PROT entries we selected for further examination. They were mapped to RefSeq and GenBank entries, as shown in Figure 3.1. LocusLink was used to associate each CLK gene sequence to its corresponding genomic contig. For each gene, SPIDEY version 1.35 was run twice, using the vertebrate splice-site setting, to align it with its contig sequence and determine its gene structure. This first SPIDEY alignment was used to define the extent of each gene’s locus: the region containing all the coding sequence, introns, and 1000 nucleotides of flanking sequence on each side. The second SPIDEY alignment was made using just this locus. Custom scripts (available from the authors on request), GFF2PS (1), and manual editing were used to generate the graphical representations of the gene structures shown in Figure 3.4. Intron and exon sequences were then extracted using the SPIDEY results to delineate exon and intron boundaries. Corresponding exons and introns were globally aligned using ALIGN version 2.0u (203) with default parameters.

Mouse CLKs were identified using RefSeq annotation (NM_009905—which skipped exon 4 and had a PTC, NM_007712, and NM_007713). Genomic loci sequences were generated and gene structures determined for each mouse CLK gene using SPIDEY, as above. The loci sequences were then used to search the mouse ESTs from dbEST (1 May 2003) (33) using WU-BLAST 2.0mp [23-May-2003] (103) with default parameters. Hits with E-values of 10^{-30} or better were
aligned to the locus sequence using SPIDEY. These alignments were examined for evidence of PTC-inducing alternative splicing. The GI numbers for ESTs that demonstrated the alternative splicing pattern shown in Figure 3.4 for each of the mouse CLKs are: CLK1 (full-length): 25118521, 21852543, 12560958, and others; CLK2 (exon 4 skipping): 22822098; CLK3 (exon 4 skipping): 26079129. The *C. intestinalis* CLK homolog was identified from the database of predicted peptides (ftp://ftp.jgi-psf.org/pub/JGI_data/Ciona/v1.0/ciona.prot.fasta.gz) (80) by searching (HMMSEARCH v2.2g) (89) with a HMMER model of known CLKs. This model was generated using HMMBUILD (default parameters) and calibrated using HMMCALIBRATE from a CLUSTALW v1.83 (262) alignment of the following CLK sequences: NP_004062, NP_003984, NP_003983, NP_031738, BAB33079, NP_031740, NP_065717, AAH43963, NP_599167, NP_031739, NP_477275, EAA12103, NP_741928, BAB67874, and NP_850695. The most significant hit (E-value: 4.4e-243) from *C. intestinalis* was ci0100143784. Visual inspection of other, less significant hits revealed that they align with only the kinase domain of the CLK model and none contains the LAMMER motif characteristic of CLKs. A maximum-likelihood tree was generated using PROTML v2.3b3 (2) using ci0100143784 and the three full-length human CLKs. This tree revealed that the *C. intestinalis* CLK is orthologous to human CLK2. The corresponding cDNA transcript sequence, ci0100143784, was retrieved from the database of predicted transcripts:
As above, the locus for this gene was extracted from the genomic contig sequence, Scaffold18, and used to search the database of *C. intestinalis* ESTs. The following ESTs showed the full-length pattern with no PTC: 24144377, 24820603, 24627564, 24627468, 24866887, and 2482449. The following ESTs showed the alternatively-spliced pattern that generates a PTC: 24888181, 24606693, 24823992, and 24893089.

The *C. intestinalis* CLK gene was found to have only 11 exons while human and mouse CLK2 have 13. To determine which exons were homologous, we generated a CLUSTALW multiple-sequence alignment of the known CLK protein sequences listed above and *C. intestinalis* CLK and we used this alignment to identify corresponding regions of DNA sequence. This unambiguously indicated the exon to exon alignment shown in Figure 3.4.
CHAPTER 4

Discussion of regulated unproductive splicing and translation
and future directions
In the time since we published evidence describing the widespread coupling of alternative splicing and NMD, the implications of these results in the fields of alternative splicing and NMD have begun to be explored. In this chapter, I will summarize some of this work and describe some promising areas for future exploration.

For alternative splicing, one major ramification is that all observed mRNA isoforms can no longer be safely assumed to code for significant levels of protein, as they often were previously. Regarding NMD, our result supports the view that NMD is not always simply a quality control mechanism on pre-mRNA processing. Rather, proper regulation of many genes requires NMD and this may explain the lethal UPF1-null phenotype in mammals. Finally, awareness of RUST has impacted theories of the evolution of alternative splicing and the evolve-ability of spliced genes. A new view has emerged in which NMD provides a backstop against which alterations in pre-mRNA processing can be safely explored by evolution with muted negative fitness effects.

RUST implications on alternative splicing

Many scientific advances do not answer existing questions, but rather cause us to ask different questions. The realization that scores of alternative mRNA isoforms are shunted into the mRNA degradation pathway is one such case. It is now reasonable to ask, for any given mRNA isoform, whether its role is to code for protein or not. More generally, given the amount of splicing that appears to be futile in the sense that it generates unproductive mRNA isoforms, it now
seems reasonable to ask which and how many specific mRNA isoforms represent functional forms, either as protein-coding mRNA or as unproductive isoforms, and which are simply the product of the biochemical noise inherent in splicing. These questions are beginning to be addressed now and should continue to be the foci of future work.

Assessing the functional impact of alternative splicing

Several large-scale studies have been carried out, both before and after the publication of our RUST model, to assess the impact of alternative splicing at the protein-coding level. One major goal of these surveys is to discover any large-scale trends in genes that are alternatively spliced. Specifically, does alternative splicing occur more or less often in any specific classes of genes? Or, are there any recognizable trends in the effects of alternative splicing in domain architecture?

We performed an analysis of this type of alternative isoforms described in the SWISS-PROT database. After mapping regions of alternative splicing and structural domains onto alternative isoforms, we assessed whether there was overlap in these regions beyond what one would expect by chance (see Appendix B). Interestingly, we found that alternative splicing is biased against interrupting structural domains (Figure 4.1) as alternatively spliced regions overlap structural domains less often than would be expected if the two were arranged independently. This result was subsequently corroborated and published (149). Although the effect does not appear to be strong, it is consistent
Figure 4.1 Correlation between identifiable structural domains and annotated alternatively spliced regions of SWISS-PROT isoforms. (a) The ASTRAL database of structural domain sequences was aligned to all alternative isoform sequences in SWISS-PROT. Alignments of E-value of 1×10^{-4} or less were used to define regions of the SWISS-PROT isoforms that are structural domains. Regions that do not map to a structural domain may be structural domains for which no similar ASTRAL sequence is present or may be linker or unordered sequence. The SWISS-PROT annotation of alternative regions was compared to the structural domains to classify each structural domain as non-overlapping, contained within, containing, or overlapping alternative regions. There is a slight bias for alternative splicing to avoid affecting structural domains compared to the random model. The random model values were generated by placing structural domains randomly along each isoform sequence. (b) The bias is also present when structural domains are identified using a more sensitive method: HMMER searches with the SUPERFAMILY database of structurally defined Profile Hidden Markov Models.
with the presumption that alternative splicing often generates functionally distinct protein products by altering the domain constituents present within isoforms. In light of our PTC analysis of human SWISS-PROT isoforms, it will be interesting to see if the correlation between structural domains and alternatively spliced regions is changed when only productive isoforms are considered. Perhaps many unproductive mRNA isoforms, whose only function is to be degraded by NMD or that have no function, are introducing noise into this analysis. These isoforms should be under no constraint with respect to the alternately spliced regions/domain boundaries correlation.

Large scale analyses of the impact of alternative splicing on the functionality of isoforms have also been carried out. In several cases conclusions were made that should be reconsidered in light of the RUST model. The RIKEN analysis of 60,770 mouse cDNAs is one such example (208). The RIKEN team of curators found that many cases of alternative splicing generated truncated isoforms (286, 287). They reckoned the role of these mRNAs was to code for either inactive or dominant negative protein products. They also observed significant amounts of alternative splicing within 3' UTR regions, which were not explored further. These isoforms may be PTC+ and the expression of these genes may be under RUST regulation. The current set of 103,000 mouse cDNAs has been analyzed for PTC+ forms and many were found to be PTC+ (data not shown).
A large scale study of which domains are affected by alternative splicing was recently carried out by Liu and Altman (173). Using gene ontology (GO) annotations they found that several classes of domain were more likely to be impacted by alternative splicing. Among these were protein kinase, caspase, and tyrosine phosphatase domains. Interestingly, they found that in 28% of the instances they analyzed, these domains were removed by alternative splicing events that induce a frameshift and truncate the open reading frame. Obviously, many of these would also contain a PTC. For the PTC+ isoforms, interpreting biological function based on the protein coding potential may lead to false conclusions.

Thankfully, recent studies have largely been mindful of our new understanding of the role of NMD in alternative splicing. In addition to our own work, analyses of alternative splicing effect on transmembrane regions (278), domain composition (228) and domain composition of brain-expressed genes (124) have been published that take account of the potential for RUST regulation. Additionally, we were asked to participate in the most recent RIKEN mouse cDNA analysis: FANTOM III. Using the gene structure models determined upstream in the analysis, we checked the PTC status of all cDNAs amenable to analysis. We found the level of PTC incorporation in this set to be comparable to mouse GenBank isoforms in general.
Assessing alternative splicing for functionality

Because many mRNA isoforms are likely targets for degradation by NMD, the possibility exists that many of these may be irrelevant, non-functional forms. To determine if a feature of a gene or its expression is functional, it is often instructive to use inter-species comparative analysis with the simple rationale that conserved features are more likely to be functional than those that are not. This approach has been brought to bear in the field of alternative splicing with several surprising results.

Kan and co-workers analyzed EST-inferred alternative splice events in human and found that less than 30% were conserved in mouse (137). The least conserved alternative splicing events were intron retentions. This is not surprising for two reasons. First, intron retention alternative splicing is indistinguishable from incomplete pre-mRNA processing, a common EST database contaminant. Therefore, many of these may not be genuine spliced mRNAs but rather forms caught somewhere in the splicing pathway. Also, the resultant isoforms of mRNAs with retained introns are the most likely to contain a PTC and to be degraded by NMD. Therefore, any selective pressure against expression of these isoforms should be mitigated. In other words, NMD may make these forms invisible to purifying selection, allowing them to drift into and out of existence randomly through evolutionary time.

Several subsequent analyses reiterated the observation that many human alternative splicing events are not observed in mice (196, 212, 280). These
subsequent studies also showed that conserved alternative splicing is distinguishable from non-conserved alternative splicing by several features. Conserved events are more likely to affect the protein coding sequence, more likely to preserve the reading frame, and more likely to use the same stop codon (250). They involve exons that are more similar between species and that contain specific intronic and exonic elements implicated in splicing (280). Out of these efforts, several useful criteria for discriminating functional from non-functional alternative splicing were generated.

The picture that emerges is one in which many observed alternative isoforms may be non-functional and perhaps neutrally evolving. Since these isoforms derive from functional sequence, they are left to explore new combinations of coding sequence that have already proved to be useful. So long as the original isoform is still encoded at the required levels and these isoforms do not produce deleterious gain of function protein, evolution can freely explore this potentially advantageous isoform space. Further, as prematurely terminating isoforms may be more likely to encode dominant negative, truncated versions of the original protein, NMD can be used to close off this dangerous isoform space. Consistent with this picture, it was recently shown that both diploidy and alternative splicing are associated with increased occurrence of PTC+ isoforms (278).
RUST implications on NMD

One of the most important implications of the RUST model in the field of NMD is that it provides a potential explanation for the severe UPF1-null phenotype in mammals (186). If the only role for NMD is quality control of occasionally aberrant gene expression, then it would be hard to imagine why mice need UPF1 function early in development and, further, why cultured mouse cells require UPF1 function. However, the mouse-knockout phenotype must be interpreted in light of recent evidence that UPF1 may also function in other cellular processes (144, 187, 273).

Recent microarray analyses in yeast and human cultured cells underscore the importance of NMD in regulating gene expression. In yeast, roughly 10% of genes whose expression was assayed showed increased abundance in the absence of UPF1, UPF2, or UPF3 (165) gene product. A human expression array found several hundred genes influenced by NMD (189). Interestingly, the yeast microarray analysis found largely overlapping sets of transcripts controlled by any of the three NMD effectors. In the human experiments, however, this was not the case. Although many genes were similarly increased or reduced in abundance following RNAi knockdown of each human UPF gene, the level of non-overlap was much increased compared with that seen in the human study. This result indicates that each human UPF protein may have evolved new function(s) in metazoan evolution.
Future directions

The intersection of alternative splicing and NMD is a busy one. Among the key open questions are those involving the regulation of both processes. It is known that the NMD pathway in human cells requires a cycle of phosphorylation and dephosphorylation of the key NMD effector, UPF1. The extra NMD effectors in metazoans (the smg genes) relative to S. Cerevisiae encode products responsible for this cycle, including a PI3K-related kinase, smg1 that phosphorylates UPF1. However, little is known about how, when, or where these effectors work. Is NMD, itself, regulated through phosphorylation of UPF1 or is UPF1 phosphorylation/dephosphorylation necessary simply for some mundane biochemical aspect of PTC recognition or mRNA degradation? If NMD is regulated in this way, under what developmental or physiological conditions does this occur and why? Are the PTC+ isoforms we observe in EST libraries derived from tissue in which NMD is deactivated?

Another open question is the fate of the protein product of the pioneer round of translation. Some very recent evidence indicates that this product may be present and stable (85), for at least some PTC+ mRNAs. If this is generally the case, RUST may be used to turn down, but not turn off gene expression.

The consequences of NMD on alternative splicing and vice versa raise interesting questions about the evolutionary histories of both processes. For example, if NMD first evolved as a quality control mechanism for aberrant gene expression before alternative splicing, then what we know as alternative
splicing may have existed for a long time before any functional isoforms existed. This scenario would also be more likely to have generated regulated alternative splicing that resulted in RUST. However, if alternative splicing was first established, it could have been the case that it provided an increased need for the quality control functions of NMD. Sorting out these issues should keep us busy for some time.

The initial EST-analysis we performed was limited in several ways by the data available to us at the time. Because we were using an early draft of the human genome sequence, we restricted our inference of alternative isoforms to coding regions only. The refinement of the human genome sequence and the associated RefSeq annotation of human genes should allow future analyses to include entire gene sequences, including untranslated regions. Additionally, the mouse, rat, chicken, and sea-squirt genomes can be used in subsequent analyses to determine the level of conservation of NMD-inducing alternative splicing. This should help partition such cases by whether they are likely to be instances of RUST or quality control.

Finally, new array technology (55, 132, 267), some of which is described in the next chapter, has been developing that enables global monitoring of splicing and alternative splicing. One exciting avenue of future investigation will be to follow changes in splicing after NMD inhibition.
CHAPTER 5

A microarray platform for probing alternative splicing regulation in *Drosophila melanogaster*

Note: Much of the material presented in this chapter was included in the publication:

Background

Higher eukaryotes exploit alternative pre-mRNA splicing to diversify their proteome, and to regulate gene expression with developmental stage-and tissue-specificity (180). Therefore, a comprehensive understanding of an organism’s gene expression program must include an understanding of alternative splicing (28). Toward this end, a well-conserved core of pre-mRNA splicing regulatory factors has been identified in all metazoan organisms (135, 198). However, the majority of the interactions between these regulators and their target pre-mRNAs remain unknown.

Historically, it has been challenging to identify genes specifically regulated by individual splicing factors. Despite tremendous effort, several years separated the initial identification of the hnRNP proteins PSI and hrp48 as regulators of the P-transposase pre-mRNA (245) and the identification of a single additional targeted cellular gene (46, 150). Recent advances in microarray technology now permit monitoring of various aspect of RNA processing and maturation (159). In particular, high density microarrays have been successfully used to monitor pre-mRNA processing events in yeast (44, 66), to identify new instances of alternative splicing in human and *Drosophila* (126, 132, 253, 267) and to monitor alternative splicing levels of cassette exons in different mouse and human tissues (213, 227). Here we describe the development of a new *Drosophila* microarray platform and its use to monitor all the annotated pre-mRNA splicing junctions specifically controlled by four canonical splicing regulators, the
hnRNPs PSI and hrp48 as well as the SR proteins dASF/SF2 and dSRp55/B52. This study identified tens to hundreds of distinct splice events modulated by each of these splicing factors and reveals the amount of co-regulation and antagonism between each.

This project was a collaboration between Marco Blanchette and me. Marco did the experimental work (RNAi knockdown of the splicing factors, RNA extraction, labeling, and hybridization, and RT-PCR confirmation of array results) while I designed the microarrays, did the array data analysis, and the binding motif analysis.

Results

A microarray for monitoring alternative splicing in Drosophila melanogaster

In order to rapidly and efficiently identify target genes and specific splicing events regulated by specific splicing factors, we have developed a microarray for monitoring changes of all the known alternatively spliced transcripts in Drosophila melanogaster. From the 13,472 genes in the GadFly 3.2 annotation, (http://flybase.bio.indiana.edu/annot/download_sequences.html), 2931 were found to have cDNA (EST) evidence of alternative splicing and generate 8315 different alternatively spliced mRNAs (57). In order to monitor the complete set of annotated alternatively spliced transcripts, the single custom microarray contains probes spanning all the Drosophila annotated alternative splice junctions regardless of the specific alternative splicing pattern (Probes labelled “a” in Figure 5.1A, ; 9868 probes), and, up to two probes for constitutive splice
Figure 5.1. Experimental design and clustering results. (A) 36-mer probes were selected for all alternatively spliced junctions from the Gadfly v3.2 Drosophila genome annotation (“a” probes). For each gene, 2 exonic probes were selected from regions common to all isoforms to gauge total gene expression (“e” probes). Up to 2 constant constitutive junction probes were also selected (“c” probes). (B) Immunoblot analysis confirmed effective RNAi-knockdown of the hnRNP proteins PSI and hrp48, and the SR proteins B52/SRp55, and dASF/SF2. (C) Hierarchical clustering using average log expression ratios from all splice junction probes was performed to assess the global affects of biological replicates of each splicing factor RNAi knock-down and to compare between splicing factors. This analysis indicates that the dASF/SF2 and B52/SRp55, and hrp48 experiments produce a characteristic splicing response. The PSI results, however, were more variable (see text). The global splicing response to dASF/SF2 or B52/SRp55 knockdown includes more similarities than either does to hrp48 or PSI knockdown.
junctions (probes labelled “c” in Figure 5.1A; 4377 probes) for each of the alternatively spliced genes. Since it is known that there are many alternative mRNA isoforms yet to be annotated as such (253), some of the junctions labeled constitutive may actually be alternative. Two common exon probes spanning segments present in all isoforms of each gene (probes labelled “e” in Fig. 1A; 5650 probes) were also selected for monitoring overall expression levels of the alternatively spliced mRNAs. This feature of the design allows potential changes in transcription level, or secondary effects, to be separated from effects on splicing patterns for a given gene.

Genome wide monitoring of alternative splicing

Using our array, we monitored splicing profile changes in Drosophila SL2 cells following RNAi-knockdown of four splicing regulators: the SR proteins dASF/SF2 and B52/SRp55, and the hnRNP proteins PSI and hrp48 (Figure 5.2). Each of these four well characterized splicing regulators is highly expressed in SL2 cells and several of them have known pre-mRNA targets. Following treatment with double-stranded RNA (dsRNA) against each splicing factor, efficient protein reduction was confirmed by immunoblot analysis using antibodies specific for each protein (Figure 5.1B). RNAi-knockdown of each of these splicing factors generated no obvious morphological or growth phenotype in SL2 cells, despite the fact that in Drosophila PSI, hrp48, and B52/Srp55 are essential and dASF/SF2 is likely to be essential (268) (269) (175). From each RNAi-treated sample and from control cells treated with non-specific dsRNA,
total RNA was extracted, cDNA prepared, and labeled using a protocol
developed to give good coverage over the entire-length of all mRNAs (132) (55).
Following standard hybridization, scanning, and data extraction each experiment and each probe signal was filtered for consistency and RNAi target specificity. Expression ratios (red/green ratios) of RNAi knockdown of each splicing factor versus no knockdown control were computed for each probe. Biochemical experiments demonstrate that B52/SRp55 and PSI associate with, and presumably modulate splicing of, at least dozens and perhaps hundreds of distinct pre-mRNAs (150) (142). This is also likely the case for dASF/SF2 and hrp48. Therefore, reduction of any of these factors may impede or deregulate pre-mRNA processing severely and inconsistently, rendering the array data undecipherable or irreproducible. To address this possibility, we carried out multiple RNAi knockdown experiments for each splicing factor and compared the effect of experiments using simple hierarchical clustering (92). Clustering experiments using data aggregated for each locus, each isoform, or each splice junction (see Materials and Methods) generated nodes specific for the dASF/SF2, B52/SRp55, and hrp48 experiments (data not shown and Figure 5.1C). This indicates that the global expression patterns and splicing responses assayed on this array are largely distinct for the splicing factor that has been knocked down. The results of this high-level analysis support the notion that knock-down of each of these splicing factors results in a characteristic, interpretable, and reproducible splicing response. Interestingly, the PSI
Figure 5.2 Experimental filters for intra-array consistency and target specific knockdown. (A) Scatter plot of green and red channel signal for each probe. Each probe sequence is printed on the array in two locations. For each probe, its two independent, normalized expression values form each single x, y point. If all probes are exactly consistent between experiments, the x=y line would result. More noise is seen at low expression values. Also shown is the Pearson correlation coefficient, R, for each dataset. The third B52 experiment showed a strange inconsistency and was therefore filtered from later analyses. (B) The average log expression ratio for exon and constitutive probes for each of the splicing factors was calculated. B52 knock-down could not be evaluated as it was not included on the array. Experiments were filtered is the average log-ratio of the knockdown target was not <= -0.1 (ASF experiment 1) or if one of the non-target splicing factors was reduced more than one-fourth the amount of the specific target (hrp48 experiment 2 and PSI experiment 3).
replicates were more variable in this analysis. This is likely due to the relatively small number of PSI-affected splicing events (see below). Despite this variability, PSI experimental replicates did identify several mRNAs that were previously found to be associated with PSI in an embryonic nuclear RNP fraction and whose expression was deregulated in PSI-mutant flies (150).

RNAi knock-down of each splicing factor causes a general decrease in processed mRNA

Five distinct, exogenous and heterologous *in vitro*-transcribed positive control RNAs were amplified and labeled along with the SL2 total cellular RNA to provide an independent assessment of any global changes in gene expression that would otherwise be masked by the normalization procedure. Following a standard assumption, we normalized the expression data from each array so that the average log expression ratio is zero, i.e., no net change in expression (see Materials and Methods). Interestingly, after normalization, the average log expression ratio of RNAi to control of nearly all positive control RNAs in each sample, across the range of expression intensities, was positive (Figure 5.3A). Since identical amounts of the positive control RNAs were introduced in both the reference and experimental samples, these observations indicate an average reduction of the detectable, expressed genes on the array following knockdown of any of these four splicing factors. It is unclear to what extent this represents a biologically direct effect or a secondary consequence of target gene transcript reduction. Anecdotally, a previous screen identifying four B52/SRp55 target
Figure 5.3. Global microarray analysis. (A) Plot of total expression values versus log expression ratio of each positive control probe reveals a strong positive skew. Equal amounts of each positive control RNA were added to control and experimental samples. (B) The distribution of the net expression for each splice junction probe across all experiments is shown in the histogram. Cutoffs for up or down regulation were set at 2 standard deviations from unchanged. (C) Size of the sets of alternative and constitutive junctions that are strongly and consistently up and down regulated following knockdown of each splicing factor. dASF/SF2 affects the largest number of splicing events; PSI affects the smallest number. (D) Number of splicing events strongly and consistently affected by RNAi knockdown of each of two splicing factors. In parentheses are the expected sizes of each set assuming that each splicing factor affects independent sets of splicing events. For each combination except B52 and PSI, the number of affected events is larger than expected by chance. (E) Antagonistically affected splice junctions. The number of splice events that were increased following knockdown of one splicing factor and decreased following knockdown of another are shown. Also shown are the number expected under the random model in which each splicing factor’s affects are independent of the affects of the other splicing factors.
pre-mRNAs showed that the predominant effect of B52/SRp55 deletion was a reduction in target gene mRNA levels (142).

Each splicing factor affects a distinct set of splice junctions

Following data extraction and normalization, we computed log expression ratios for each probe in experimental versus control experiments. In order to determine which splicing events are affected by knockdown of which splicing factors, we calculated a value we call the net expression for each splicing junction (see Materials and Methods). The net expression for each splicing junction is the log expression ratio for that splice junction minus the average log expression ratio for all other probes on the isoforms containing that junction. This value indicates the increase or decrease in abundance of the specific splicing junction in question above and beyond any increase or decrease in abundance of the isoforms that contain the splice junction and is designed to highlight individual splice junction changes by removing any differences in isoform expression or overall RNA levels. Because each splice junction is considered separately, this strategy should be minimally affected by incomplete data about which isoforms exist. The net expression value was calculated for all alternative and all constitutive junctions using the same formula. The distribution of the net expression values in all experiments (Figure 5.3B) was used to generate cut-offs for classifying the affect of knock-down of each splicing factor on each splice junction. In order to find pre-mRNA splicing events that were strongly and consistently affected following knock-down of
each splicing factor, net expression differences for each junction were compared in the biological replicates (see Materials and Methods).

The splicing events that were strongly (≥2 standard deviations) and consistently (in both replicates) affected by knock-down of each splicing factor were identified. The knock-down of dASF/SF2 affected the largest number of splicing events (319 events) while PSI affected the smallest number of splicing events (43 events, Figure 5.3C). This result is consistent with the notion that dASF/SF2 is a general regulator of alternative splicing, affecting a large number of targets, and that PSI is a more specialized regulator of alternative splicing. B52/SRp55 and hrp48 affected intermediate numbers of splice events (107 and 90 events respectively). Interestingly, several of the splicing events detected for B52/SRp55 and for PSI were on genes previously found to interact with these splicing regulators (Table 5.1).

The lists of splicing events consistently affected by each splicing factor were examined across experiments to determine which are significantly affected by knockdown of more than one of these splicing factors (Figure 5.3D). The number of such splicing events was then compared to the number that would be expected by chance under a random model, i.e., assuming the splice junctions affected by one splicing factor are chosen independently of the splice junctions affected by any other splicing factor. The combination of dASF/SF2 and B52/SRp55 produced the most striking result: 22 splicing events were similarly affected by knock-down of either SR protein compared to 1.87 expected by
<table>
<thead>
<tr>
<th>Gene</th>
<th>Name</th>
<th>Gene Expression</th>
<th>This report</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG7439</td>
<td></td>
<td>Up</td>
<td>NE</td>
</tr>
<tr>
<td>CG9381</td>
<td></td>
<td>down</td>
<td>NOA</td>
</tr>
<tr>
<td>CG9281</td>
<td></td>
<td>Up</td>
<td>NC</td>
</tr>
<tr>
<td>CG5654</td>
<td>yps</td>
<td>Very down</td>
<td>NOA</td>
</tr>
<tr>
<td>CG16747</td>
<td>guf</td>
<td>down</td>
<td>NE</td>
</tr>
<tr>
<td>CG5650</td>
<td>Pp1-87B</td>
<td>down</td>
<td>NOA</td>
</tr>
<tr>
<td>CG12101</td>
<td>Hsp60</td>
<td>Very Up</td>
<td>NE</td>
</tr>
<tr>
<td>CG3943</td>
<td>craken</td>
<td>Up</td>
<td>NOA</td>
</tr>
<tr>
<td>CG17791</td>
<td>sqd</td>
<td>Very down</td>
<td>T</td>
</tr>
<tr>
<td>CG7590</td>
<td>scylla</td>
<td>down</td>
<td>T</td>
</tr>
<tr>
<td>CG15112</td>
<td>enb</td>
<td>Up</td>
<td>NC</td>
</tr>
<tr>
<td>CG17610</td>
<td>grk</td>
<td>down</td>
<td>NOA</td>
</tr>
<tr>
<td>CG8293</td>
<td>lap2</td>
<td>Up</td>
<td>NE</td>
</tr>
<tr>
<td>CG12157</td>
<td>Tom40</td>
<td>Up</td>
<td>NC</td>
</tr>
<tr>
<td>CG1404</td>
<td>ran</td>
<td>Up</td>
<td>NC</td>
</tr>
<tr>
<td>CG4551</td>
<td>smi35A</td>
<td>Up</td>
<td>T</td>
</tr>
<tr>
<td>CG1088</td>
<td>Vha26</td>
<td>down</td>
<td>NC</td>
</tr>
<tr>
<td>CG4084</td>
<td>f(2)not 1.60</td>
<td>Up</td>
<td>NOA</td>
</tr>
<tr>
<td>CG7623</td>
<td>sll</td>
<td>Up</td>
<td>NOA</td>
</tr>
<tr>
<td>CG1668</td>
<td>Pbprp2</td>
<td>down</td>
<td>NC</td>
</tr>
<tr>
<td>CG3644</td>
<td>bic</td>
<td>down</td>
<td>NC</td>
</tr>
<tr>
<td>CG3161</td>
<td>Vha16</td>
<td>Up</td>
<td>T</td>
</tr>
<tr>
<td>CG12345</td>
<td>Cha</td>
<td>Up</td>
<td>NE</td>
</tr>
<tr>
<td>CG6575</td>
<td>glec</td>
<td>down</td>
<td>NOA</td>
</tr>
<tr>
<td>CG1691</td>
<td>Imp</td>
<td>Very down</td>
<td>T</td>
</tr>
<tr>
<td>CG5887</td>
<td>desat1</td>
<td>Very down</td>
<td>T</td>
</tr>
</tbody>
</table>
Previously identified B52 targets

<table>
<thead>
<tr>
<th>CG ID</th>
<th>Gene Name</th>
<th>This report</th>
<th>Kim et al.(142)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG1765</td>
<td>Ecdysone receptor (EcR)</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>CG6570</td>
<td>ladybird late (lbl)</td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG3646</td>
<td>frizzled (fz)</td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG10772</td>
<td>Furin 1 (Fur1)</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>CG12052</td>
<td>longitudinals lacking (lola)</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>CG10052</td>
<td>Rx</td>
<td>NOA</td>
<td>*</td>
</tr>
<tr>
<td>CG13219</td>
<td>skiff (skf)</td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG18362</td>
<td>Mix interactor (Mio)</td>
<td>NC</td>
<td>*</td>
</tr>
<tr>
<td>CG31762</td>
<td>Arrest</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>CG7122</td>
<td>RhoGAp16F</td>
<td>T</td>
<td>*</td>
</tr>
<tr>
<td>CG17716</td>
<td>faint sausage</td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG10497</td>
<td>Syndecan</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>CG11760</td>
<td></td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>CG5228</td>
<td></td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG14796</td>
<td></td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG5953</td>
<td></td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>CG15593</td>
<td></td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>CG9080</td>
<td></td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG3950</td>
<td></td>
<td>NOA</td>
<td></td>
</tr>
<tr>
<td>CG14670</td>
<td></td>
<td>NOA</td>
<td>*</td>
</tr>
</tbody>
</table>

NC = No change, NE = not expressed, NOA = Not on array (not alternatively spliced), T = target (gene containing splice event whose net expression change is >= 1.0 in both biological replicates), * = splicing defect shown by RT-PCR by Kim et al.

Table 5.1. Previously identified target genes of PSI and B52 are re-identified in this microarray analysis. Labourier et al. (150) identified genes found in complexes with wild-type PSI and genes whose expression was altered in PSIΔAB mutants. The PSIΔAB gene product does not associate with U1 snRNP. 6 of the 13 genes from this list that are on our array and were expressed in the PSI experiments were found to have an affected splicing event in both biological replicates with a net expression change of magnitude >= 1.0 (p-value 0.08), including all of the most dramatically affected previously identified PSI targets. Kim et al. (142) identified genes associated with B52 using a “genomic SELEX” method. This method starts with genomic fragments whose transcripts bind B52. 4 of the 13 genes that are on our array and expressed showed reproducible splicing changes in our experiments (p-value 0.23). This genomic SELEX likely generates many false-positives as Kim et al. were unable to confirm splicing defects for many of these genes via RT-PCR.
chance (P-value \(\leq 0.00001\)). This result is particularly interesting considering that, in vitro, SR proteins can complement one another for activity on several RNA targets (285) (99). Since dASF/SF2 and B52/SRp55 are the closest Drosophila SR protein paralogs (data not shown), this functional overlap is perhaps not surprising. However, the unique character of each SR protein is demonstrated by the fact that the majority of the splicing events strongly and consistently affected by RNAi of either dASF/SF2 or B52/SRp55 alone are not strongly or consistently affected by the other alone (22 shared targets out of 319 dASF/SF2 and 127 B52/SRp55 affected targets respectively; Figure 5.3C and Figure 5.3D).

PSI and hrp48 are known to co-regulate alternative splicing of the P-element transposase pre-mRNA by binding to an exonic splicing silencer (243, 245). This analysis suggests their partnership may extend beyond P-element splicing. Of the 43 consistent and strong PSI-targets, 7 were found to also be strongly and consistently under the control of hrp48, whereas only 0.257 would be expected under the random model of independent effect (P-value \(\leq 0.00017\)). Furthermore, for the 25 splice events that were consistently and strongly decreased following PSI knockdown, 21 were reduced following hrp48 knockdown by an average of -1.93 standard deviations (Figure 5.4). Similarly, for the 18 splice events that were consistently and strongly increased following PSI knockdown, 14 were increased following hrp48 knockdown by an average of 1.30 standard deviations (Figure 5.4). Therefore, nearly all of the splicing
events under the control of PSI are similarly controlled by hrp48 - suggesting that hrp48 may be an obligate partner for PSI. Interestingly, PSI does not appear to be an obligate partner for hrp48 as there are many hrp48 splicing events not similarly affected by PSI (Figure 5.4).

Traditionally, SR proteins and hnRNP proteins have been viewed as antagonistic partners, regulating in opposite directions, many of the same alternative splicing units (28, 247). One of the best studied models of antagonistic regulation is the HIV pre-mRNA in which binding of hnRNP proteins to cis-acting splicing silencer elements can be counter-acted by binding of SR proteins to nearby enhancer elements to regulate utilization of adjacent splice sites (50, 51, 131, 284, 292). We analyzed antagonistic regulations by looking at splicing events that were increased following knockdown of one splicing factor and decreased following knockdown of a different splicing factor (Figure 5.3E). Surprisingly, very few splicing events were found to be consistently and strongly regulated in an antagonistic relationship by any combination of these splicing factors. At a cut off of 2.0 standard deviations, only dASF/SF2 and hrp48, which are the Drosophila homologs of the two canonical antagonistic splicing factors ASF/SF2 and hnRNP A1 (47, 185) are found in more than a single antagonistic splicing event (Figure 5.3E). At a more permissive cut off, 1.5 standard deviations, more such antagonistic affects can be seen (Figure 5.5). These data indicate that antagonism between SR proteins and
Figure 5.5. Global microarray analysis. (A) Plot of total expression values versus log expression ratio of each positive control probe reveals a strong positive skew. Equal amounts of each positive control RNA were added to control and experimental samples. (B) The distribution of the net expression for each splice junction probe across all experiments is shown in the histogram. Cutoffs for up or down regulation were set at 1.5 standard deviations from unchanged. (C) Size of the sets of alternative and constitutive junctions that are strongly and consistently up and down regulated following knockdown of each splicing factor. dASF/SF2 affects the largest number of splicing events; PSI affects the smallest number. (D) Number of splicing events strongly and consistently affected by RNAi knockdown of each of two splicing factors. In parentheses are the expected sizes of each set assuming that each splicing factor affects independent sets of splicing events. For each combination except B52 and PSI, the number of affected events is larger than expected by chance. (E) Antagonistically affected splice junctions. The number of splice events that were increased following knockdown of one splicing factor and decreased following knockdown of another are shown. Also shown are the number expected under the random model in which each splicing factor’s affects are independent of the affects of the other splicing factors.
hnRNPs appears to be highly specific for both interacting partners (Figure 5.4) and somewhat uncommon.

RT-PCR validates the microarray results

A validation of the microarray results was performed on several individual genes by RT-PCR designed to amplify the different affected mRNA isoforms. From the analysis described above, six genes were chosen on the basis that they were previously unknown targets of any of the four factors tested and whose structure was amenable to RT-PCR analysis using a single pair of primers for each target (Figure 5.6 and Figure 5.7). All the selected targets confirmed the microarray results with differences in expressed isoforms ranging from less than two-fold (PSI-specific target CG4912, Figure 5.6C) to twenty five-fold (B52/SRp55 specific target CG6084, Figure 5.6C).

B52 binding sites are over-represented around the 5′ splice site of the B52-affected splicing junctions

Any observed change in pre-mRNA splicing in the experiments may be due to a direct interaction between the splicing factor and pre-mRNA in question or to an indirect effect. One feature of direct targets for each splicing factor may be the presence of a cis-acting element within the pre-mRNA near the affected splice site. The assembled lists of splicing events specifically affected by reduction of each of these four splicing factors were used to identify potential binding elements for these factors. While many SELEX and other biochemical studies have been conducted to characterize the RNA binding preferences for
Figure 5.6. RT-PCR validation of selected targets. Shifts in alternatively spliced isoforms predicted from the microarray analysis were monitored by RT-PCR for 3 different targets using oligonucleotides flanking the affected alternative splice sites. Together with the RT-PCR gel analysis, the alternative spliced junction expression computed from the microarray data are shown (bottom panel). The densitometry of the gels are shown on the left expressed as a log2 ratio of the 2 measured isoforms. (A) CG6084 is a predicted target of the SR protein B52/SRp55. B52/SRp55 knock-down promoted skipping of the alternative cassette exon. (B) CG6143 (PEP) is a predicted B52/SRp55 target whose cassette exon is included upon knock-down of B52/SRp55. (C) CG4912 is a predicted target of the hnRNP protein PSI. The knock-down of PSI promotes skipping of the alternative cassette exon.
Figure 5.7 RT-PCR validation of selected targets. Shifts in alternatively spliced isoforms predicted from the microarray analysis were monitored by RT-PCR for 3 different targets using oligonucleotides flanking the affected alternative splice sites. Together with the RT-PCR gel, the alternative spliced junction expression computed from the microarray data are shown (bottom panel). The densitometry of the gels are shown on the left expressed as a log2 ratio of the measured isoforms. (A) CG6395 is a predicted target of the hnRNP proteins PSI and hrp48. Both PSI and hrp48 knock-down promoted inclusion of an intron in the mature mRNA. (B) CG8295 is a predicted target of the SR protein ASF and the hnRNP protein hrp48 affecting different splicing events of the same alternatively spliced region. The products label * are uncharacterized RT-PCR products. (C) CG31641 is a predicted target of the SR protein ASF. The knock-down of ASF promotes skipping of the alternative cassette exon.
splicing factors, the results have been limited in their ability to predict in vivo splicing affects on specific targets. However, one particularly informative study identified a sequence that likely forms a stem-loop structure that binds Drosophila B52/SRp55 tightly in vivo (241). A position weight matrix model of this sequence was used to search for similar sequences in a database composed of sequences around either 3’ or 5’ splice sites that were either reduced or increased specifically upon B52/SRp55 knockdown (Figure 5.8; see Materials and Methods). For comparison, a search was performed using a database of 3’ or 5’ splice site regions found to be affected by RNAi against any of the other three (non-B52/SRp55) splicing factors, but not affected by B52 knockdown. The fraction of 3’ splice site regions that contain two strong matches to this sequence motif is similar to the fraction found in the comparison database search (Figure 5.8B). However, the regions around the 5’ splice site in the B52/SRp55 knockdown-reduced junctions were specifically enriched for pairs of this motif compared with the corresponding non-B52/SRp55 set (Figure 5.8B). A similar search using the SELEX-defined motif recognized by the human ASF/SF2 homolog (257) also shows an overrepresentation near the 5’ and 3’ splice site regions regulated by the Drosophila ASF/SF2 homolog in our experiments (Figure 5.9). Although suggestive, this analysis has the caveat of being performed using human-derived SELEX sites. Although the human and Drosophila orthologs are very similar (62% identical with 10% additional
Figure 5.8. B52/SRp55 binding motifs near B52/SRp55 uniquely affected splice junctions. (A) Sequence logo of the previously identified B52/SRp55 binding motif (Shi et al. 1997). Lines connecting residues indicate predicted base-pairing interactions. Stars underneath residues indicate B52/SRp55 footprint contacts (Shi et al. 1997). (B) Pairs of motifs similar to the previously identified B52/SRp55 binding motif (Shi et al. 1997) are over-represented around 5’ splice sites that are down-regulated when B52/SRp55 is knocked-down relative to the 5’ splice sites affected in the other experiments. No significant difference is seen in 5’ splice site regions around up-regulated junctions or in either up- or down-regulated 3’ splice site regions. Error bars are determined analytically using the binomial distribution and correspond to one standard deviation: \(\sqrt{np(1-p)} / n \) where \(n \) is the number of sequences searched and \(p \) = observed probability of having sites of given score.
Figure 5.9 ASF binding motifs near ASF uniquely affected splice junctions. (A) Sequence logo of the previously identified human ASF binding motif (Tacke and Manley, 1995). (B) Triplets of motifs similar to the previously identified human ASF/SF2 binding motif are over-represented around 5’ and 3’ splice sites that are down-regulated when ASF is knocked-down relative to the splice sites affected in the other experiments. No significant difference is seen in 5’ or 3’ splice site regions around up-regulated junctions ASF or by the other splicing factors. Error bars are determined analytically using the binomial distribution and correspond to one standard deviation: $\sqrt{np(1-p)}/n$ where n is the number of sequences searched and p = observed probability of having sites of given score.
similarity, data not shown), their RNA binding specificities may have diverged. Similar analyses using known binding site motifs for hrp48 and PSI failed to show enrichment around the affected splice junctions (data not shown). However, these negative results may be due to imprecise or inaccurate definition of the PSI and hrp48 binding site motifs: both proteins bind very degenerate sites derived from very limited binding data.

Discussion

This study represents the first genome-wide identification of alternative splicing events modulated by the four splicing factors, dASF/SF2, B52/SRp55, hrp48, and PSI. Traditionally, thorough genetic or in vitro biochemical analyses have been required to identify splicing events controlled by specific splicing factors (28). This difficulty accounts for the paucity of well-defined systems for studying alternative splicing. Although genome-wide analyses involve substantial risk of false positives and false negatives, this new splice junction platform provides the ability to rapidly identify many splicing events regulated by individual splicing factors and provides the basis for more focused searches for corresponding RNA regulatory motifs.

Analysis of the array results allows us to characterize the extent to which alternative splicing events require multiple splicing factors. The significant overlap between dASF/SF2 targets and B52/SRp55 targets reinforces earlier biochemical characterizations that indicate partial functional overlap between these factors (99, 285). However, as many splicing events were found to be
uniquely affected by either factor individually, these data also demonstrate their
discrete characteristics. It remains to be determined whether the observed
functional overlap is due to similar RNA-binding specificities, the presence of
unique binding sites for dASF/SF2 and B52/SRp55 in target pre-mRNAs, or to
other properties of these factors such as interaction with a common binding
partner already present on target pre-mRNAs.

Hrp48 and PSI were also found to regulate many of the same splicing
events. As nearly every identified target of PSI was similarly affected by hrp48
knockdown, these data suggest that hrp48 may be an obligate partner for PSI
action. However, since many of the hrp48-affected splicing events were not
similarly affected by PSI knockdown, the reverse does not appear to be the case,
i.e., hrp48 does not appear to require PSI to regulate splicing.

Several antagonistic relations were also defined in this analysis,
especially between dASF/SF2 and the hnRNPA1 homolog, hrp48. However, the
absence of an overall negative correlation between dASF/SF2 knockdown and
hrp48 knockdown supports a model in which their antagonism is mediated
through cis elements present in target pre-mRNAs rather than through direct
interaction between these proteins. That is, dASF/SF2 and hrp48 appear to be
antagonistic only for a subset of splice sites that bind both factors and
apparently most target pre-mRNAs of both do not.

While computational searches for the high affinity B52/SRp55 SELEX
motif (241) showed an enrichment near some of the affected junctions on the
microarray, searches for the Drosophila PSI SELEX motif (14), which can be found in a very large fraction of pre-mRNAs (data not shown), was not enriched near the 43 PSI-affected splice junctions. This observation is reminiscent of the well-known splicing factor Sex-lethal (Sxl) whose binding site can be found in all known pre-mRNAs (R. Singh, personal comm.), but controls alternative splicing of only three known pre-mRNAs (180). Our results suggest that the mere presence of strong SELEX-defined RNA binding sites is generally not sufficient to predict regulation of nearby splice sites in a physiological setting.

Functional SELEX has been performed in vitro and in vivo to identify both splicing enhancers and silencers (270) (174) (70). The identified motifs were very short and presumably regulated by binding of a single protein, arguing that single factors can control individual alternative splicing events. However, it is also known that several specific regulated splice sites require the formation of large, multi-protein complexes compatible with the requirement for a higher order of complexity, rather than a single RNA-protein interaction (179) (244). As has been the case for transcriptional regulation via DNA-binding proteins, a combination of genome-wide methods to identify target genes together with bioinformatics searches using protein binding site information, may prove to be the only way to validate in vivo the activity of putative cis-acting pre-mRNA elements controlled by specific regulatory proteins.

Current evidence indicates that the number of alternative splice junctions in Drosophila is at least 10,000 (57) and may be as high as 40,000 (253). Based on
the present study using an arbitrary cut off of 2 standard deviations, each splicing factor regulates a few hundred (43 for PSI to 319 for dASF/SF2) alternative splicing events in a given cell type. Since there are around 200 putative splicing factors in the *Drosophila* genome (57, 135), the observed range of splicing junctions regulated by individual splicing factors is within the expected order of magnitude to account for the level of splicing complexity of the fly transcriptome. These splicing microarray experiments demonstrate on a genomic scale the unique character of each of these four splicing factors and give a first glimpse into the network of interactions regulating alternative splicing. Similar experiments using this technology should lead to an understanding of how the genes involved in RNA processing interact to regulate the tens of thousands alternative splicing events in metazoans (41).

Materials and Methods

Drosophila melanogaster alternative splicing array design

All transcript sequences from the Gadfly version 3.2 *Drosophila melanogaster* genome annotation (dmel_all_transcript_r3.2.0.fasta) (57) were mapped to the masked genome sequence (whole_genome_masked_genomic_dmel_RELEASE3-1.FASTA) using spideyv.1.40 (272). Transcripts that overlapped on the same strand were clustered into loci. Only loci with multiple, unique transcripts (alternatively spliced loci) were considered further. For each of these loci, each splice junction was labeled “constitutive” if it was found in all transcripts from that locus and “alternative” otherwise. Note that some alternative isoforms
contain only alternative transcriptional initiation or termination regions and, therefore, may not be alternatively spliced in the strict sense. For each locus, junction probes were selected that are complementary to the 18 exon nucleotides on each side of the junction. Junction probes were selected for each alternative junction and up to two constitutive junctions per locus. Two exon probes for each locus were selected such that they avoid splice junctions and to have at least three mismatches when compared to any other transcribed Drosophila sequence. Five unique probes from each of five exogenous genes were included as positive controls and the same number as negative controls. All probe features were included on two locations on the array for consistency checking.

RNAi, RNA extraction, RNA labelling and array hybridization

Production of dsRNA and RNAi was as described (67). RNAi were done for 4 days by incubating 10µg of the different dsRNA with 0.5 X 106 serum-free adapted Schneider SL2 cells (Invitrogen) with addition of 10 µg of dsRNA after 48 hour. At day 4, 10% of the cells were recovered and lysed in protein gel loading buffer while the remaining cells were used for total RNA extraction using the Qiagen mRNA Easy purification kit with on column DNAse digestion following the manufacturer’s protocol. *In vitro* transcribed RNAs of the human U17, U19, 7Sk small RNA as well as the human and *tetrahymena* telomerase RNA (300, 100, 10, 2.5 and 25 fmol each respectively) were added as internal quality and sensitivity control to 10 µg of total RNA and were amplified, labeled and hybridized as described (55) on a 44k custom Agilent oligonucleotide array.
Array analysis

After hybridization, arrays were scanned and images analyzed following the manufacturer’s recommendation (Agilent). Linear-LOWESS dye normalization was performed using all probes except for negative controls. The Pearson correlation co-efficient was computed for all probe expression values using the two instances of each probe on the array as the x and y values and found to be >0.97 for all experiments. One B52/SRp55 experiment was removed from the analysis on the basis of a non-consistent effect in the red channel (Figure 5.2A). Array data from each experiment were then analyzed to determine the extent of specific knock-down of each target. Experiments that failed to yield a strongly negative log expression ratio for probes of the each RNAi target (log-ratio ≤ -0.2) or that also yielded a strongly negative log expression ratio for probes of a different RNAi target were discarded (Figure 5.2B). This removed the first PSI experiment, the second hrp48 experiment, and the first ASF/SF2 experiment. Remaining for further analysis were two experiments of each splice factor target. Since each probe occurs twice on the array, a single expression average was computed. Any probe whose expression at one position in either red or green channels was more than 150% of its expression in that channel at its other position was removed from the analysis. Hierarchical clustering of experiments using average linkage clustering was performed. A single average expression value for each locus, each isoform, or each junction was generated. Locus and
isoform averages were computed by taking the average log expression ratio of all probes from each locus or from each isoform.

To separate gene-level or isoform-level expression changes from splicing changes, the average log expression ratio of all junctions for each isoform was subtracted from the expression ratio of each junction. This value, which we call the net expression of each junction, is given by the formula: log expression ratio (x) – average of log expression ratios (y) where x is the splice probe in question and y is the set of all probes that are on all isoforms that contain junction x. This approach deemphasizes changes in splicing events that are correlated with other splicing events of the same transcript. However, it makes minimal assumptions about the set of isoforms present for a given locus. Therefore, it is unharmed by missing transcript isoform models since each splicing event is considered individually. The distribution of the net expression was found for each experiment and for all experiments and was found to be similar (data not shown). Therefore, we used the data compiled for all experiments to generate statistical cut-offs.

For each splicing junction probe, the net expression was compared between biological replicates of each splice factor knockdown experiment. *Bona fide* targets of each splicing factor are expected to be consistently affected in biological replicates whereas noise is expected to vary among replicates. Therefore, splicing junction net expression values were used to filtered for those within 2 standard deviations of the net-expression value of each other. We
compiled lists of splicing events that were strongly (net expression value
deviated more than 2 standard deviations from 0) and consistently (in both
biological replicates) affected by knock-down of each splicing factor.

Comparisons of each pair of lists were used to determine overlap in splicing
factor targets. The statistical significance was determined using the
hypergeometric distribution with Bonferroni correction for 3 observations on
each splicing factor. These results are given in Table 5.2.

RT-PCR

For each experiment, 5µg of RNA was extracted and primed with a dT16
oligonucleotide and reverse-transcribed using SuperScript II (Invitrogen)
following the manufacturer’s protocol. Amplification was performed following
standard conditions for 21 cycles using 1/20th of the cDNA reaction in the
presence of 5 µCi of α32P-dCTP (3000 Ci/mmol). Oligonucleotide sequences can
be obtained upon request. RT-PCR products were fractionated on a 6%
acrylamide-bisacrylamide gel run in 1X TBE buffer. All gels were dried, exposed
and scanned on a Typhoon phosphorimager (Amersham-Pharmacia).

Densitometry of unsaturated exposure was performed using ImageQuant
(Amersham-Pharmacia).

Sequence motif search

Position weight matrix motifs of ASF/SF2, B52/SRp55, PSI, and hrp48 binding
sites were generated using previously published binding data from a variety of
sources. Databases of regions 100 nt upstream and downstream of 5’ and 3’
splice sites were constructed using the splice junctions found to be uniquely affected for each splicing factor knockdown. The comparison databases for each factor were composed of the sequences uniquely affected by any of the three other splicing factors not under examination. The motif was used to scan each position on each sequence in the database and high-scoring positions were counted and shown in Figure 5.8 and Figure 5.9. The error bars shown indicate the standard deviation for a single test. No correction for multiple testing was done.
CHAPTER 6

Bootstrapping, Bayesian bootstrapping, and normalization for enhanced pairwise sequence evaluation

Note: Much of the material presented in this chapter was included in the publications:

The analyses have been updated with current versions of the databases and current database search programs.
Introduction

The explosive growth of biological sequence databases provides great opportunity for molecular and computational biologists. High-throughput sequencing projects have generated complete genome sequence for hundreds of microbes and several eukaryotes (24), including humans (153). Biologists use these comprehensive data in their attempt to discover the biological functions of genes and the proteins they encode. For many proteins it is possible to make inferences of function based simply on recognizable similarity with previously characterized sequences. Current technology allows between one third to one half of the genes within newly sequenced genomes to be annotated on the basis of recognizable sequence similarity to genes of other organisms (252). Furthermore, as more genomes are sequenced and more genes are characterized, greater fractions of new genomes can be annotated in this way (95).

The ability to make useful inferences based on sequence similarity is based on the relationships between protein sequence, structure, and function – all of which revolve around homology (Figure 6.1). Homologous proteins are those that had a common evolutionary ancestor. The most common means of inferring homology is by sequence comparison: experience has demonstrated that significant sequence similarity is a reliable indicator of homology. Because protein structure evolves very slowly, with cores being exceptionally well conserved over billions of years of evolution, homology between two proteins
Figure 6.1 Inferences from sequence similarity. Detectable similarity between two protein sequences implies a common origin, homology. This, in turn, implies a common 3-dimensional structure. Other inferences are less reliable, indicated by lighter arrows.
effectively guarantees that they will share similar structures (65). It is generally believed that some similar protein structures have evolved independently, so structural similarity does not always signify evolutionarily relatedness. Common ancestry suggests that two related proteins may share similar functions, but proteins may change their roles over evolutionary time. Moreover, similar functions have evolved many times by convergence (82). However, homology can provide sufficient clues about function to suggest experiments or inform hypotheses, allowing further characterization of an unknown protein. Sequence similarity detection is crucial in other aspects of computational molecular biology as well. For example, gene-finding, phylogeny reconstruction and analysis, pathway reconstruction, and homology structure modeling all depend heavily upon the effectiveness and reliability of sequence comparison methods.

Many methods have been developed for detecting sequence similarity, reflecting the central role it plays in computational biology. Proper use and interpretation of the results of these methods requires an understanding of the relative merits of each. Sequence-based similarity detection methods fall into two broad categories: pairwise and profile. Pairwise methods are those that take as input two single sequences and attempt to generate the optimal alignment between them. Searching a database of known sequences using a pairwise alignment method is a straightforward matter of generating alignments between the query sequence and each of the database sequences.
Alignments with the best scores are then examined. Profile methods, on the other hand, generate a statistical model, or profile, of a sequence family and then compare the profile to a given sequence. Using a profile method, therefore, involves both constructing profiles and using them to detect similar sequences. Although profile methods have proven to be more sensitive than pairwise methods, their use requires prior knowledge of the sequence family in question – knowledge that typically derives from pairwise methods.

Sequence similarity detection using pairwise methods generally requires two steps, the first of which is generating the alignment between the sequences. Current pairwise-alignment algorithms for database searching are derivatives of the Needleman-Wunsch dynamic programming algorithm (205) as modified for local alignment by Smith and Waterman (248). The Smith-Waterman algorithm guarantees the optimal alignment under a given scoring scheme, and the SSEARCH program (216) provides a full implementation. Heuristics that speed up pairwise alignment have been introduced in BLAST (12) and FASTA (220), the two most popular algorithms. WU-BLAST and NCBI BLAST are both implementations of the BLAST algorithm, differing in the way score statistics are generated as well as some heuristics. WU-BLAST implements and reports Karlin and Altschul sum statistics (11, 139) by default.

Alignments are generated using a scoring scheme that includes a substitution matrix and gap parameters. Substitution matrices for protein sequence alignments are 20x20 matrices that give scaled, log-odds scores for the
pairing of any two aligned amino acid residues in an alignment (5). The score of a given alignment is simply the sum of the matrix values for each position in the alignment, minus the penalty for gaps within the alignment. The optimal alignment is the one that generates the highest score in this way. For local alignments, this may not include all of either sequence.

The second step in pairwise similarity detection is generating a statistical score for the alignment. It has been shown analytically for ungapped alignments (5, 138) and empirically for gapped (9, 69, 249) alignments that optimal alignment scores follow an extreme value distribution (EVD). Therefore, generating a statistical significance score for an alignment is really a problem of finding appropriate EVD parameters for the raw score in question. The BLAST programs have pre-computed EVD data for several sets of scoring parameters based on large scale computational experiments with simulated data (8). The FASTA package programs (FASTA and SSEARCH), by default, generate empirical EVD parameters for a given alignment by curve-fitting the distribution of alignment scores generated during the database search in question (219). By either method, once the EVD parameters are derived, an E-value can be generated that represents the significance of the alignment in the context in which it was generated (7). Statistical scores have proven to be far superior to other measures of alignment quality (37, 219).
Methodology

Because the primary aim of similarity search methods is homolog detection, they are typically evaluated by their ability to do this effectively. Homolog detection always requires a balance between sensitivity and specificity. Sensitivity is defined here as the ability to identify the homologs of a given sequence within a database of homologous and non-homologous sequences (true positive detection). Specificity, by comparison, is the ability to exclude non-homologs from the list of real homologs (false positive exclusion). The trade-off between sensitivity and specificity is a consideration for all similarity search methods since any set of inputs will generate a score. The most powerful methods assign good scores only to real homologs and bad scores only to non-homologs. Because the number of non-homologs will typically be vastly greater than the number of homologs in a given database search, specificity is especially important.

Constructing the Evaluation Databases

To evaluate the sensitivity and specificity of a comparison method it is necessary to construct a test dataset of sequences whose evolutionary relationships are known. Classifications in existing databases, such as PIR (277), have been used for this purpose (217, 218). Custom datasets, such as the Aravind set, have also been expressly derived for evaluating similarity detection methods (235, 236). Evaluations of new substitution matrices or other scoring parameters have made use of an even wider array of test sets (93, 118). The
power of a given similarity search method is then assessed by its ability to predict known relations while avoiding spurious matches. Naturally, the knowledge of which sequences are related should be derived independently of the method being evaluated. Because a large percentage of sequence database annotation derives from sequence similarity detection, it is not desirable to use this annotation as the basis for constructing evaluation databases. This will miss the truly homologous sequences that have yet to be correctly annotated. Additionally, false annotations which currently corrupt databases will be included (31, 36). Consequently, using sequence-based classifications leads to a circularity and tests consistency with existing methods rather than absolute accuracy.

A solution to this problem is to use structure as a means of inferring evolutionary relationships between pairs of sequences. Because structure evolves more slowly than sequence, structural similarity can be used as a “gold-standard” for determining whether any two sequences are related. To this end, analyses frequently use the classifications in the SCOP (37, 38, 140, 171, 202) and CATH (30, 102, 209) databases as well as direct structural similarity (234). The SCOP: Structural Classification Of Proteins database provides a hierarchical classification of the structural domains of all solved protein structures. Domains are classified at the level of class, fold, superfamily, and family. ASTRAL (60, 61) provides sequence sets of SCOP domains, filtered at various levels of identity. These domain sequences, along with their SCOP classification information, can
Protein domains are the unit of classification within SCOP, and by extension, ASTRAL, because these are the fundamental units of protein evolution and structure. Using domain sequences, rather than whole proteins, allows us to unequivocally identify which domains are involved in any pairwise alignment. This can be difficult to do when using multi-domain sequences or sequences whose domain organization is unknown. An unfortunate consequence of using isolated domain sequences is that more global methods and parameters may be favored; each sequence is a complete structural and evolutionary unit, pairs of which will have similar lengths with meaningful alignments over their entire lengths. By contrast, most typical database queries require identification of regions of similarity within sequence pairs that have both related and unrelated regions.

Within the SCOP hierarchy (Figure 6.2), it is widely acknowledged that domains of the same superfamily are descendants of a common ancestor. Domains of different folds are believed to be evolutionarily unrelated. Domains of the same fold but different superfamily currently lack evidence of homology. If such evidence eventually becomes available, superfamilies can be coalesced to reflect this new understanding. We evaluated similarity detection methods and scoring parameter sets by their ability to generate good scores for all the truly homologous sequences, i.e., those within the same superfamily, while
Figure 6.2 SCOP hierarchy sample. The two top levels of SCOP, class and fold, are purely based on structural similarity. Domains of the same superfamily rely upon common structure and other features as evidence of homology. The superfamily level and all those below are based on homology. The superfamily level is unique in being based on structural information and indicating homology.
simultaneously generating poor scores for all sequences of different folds. Domains classified in the same fold but different superfamilies are treated as undetermined and not considered in our benchmarking.

Our test databases (Figure 6.3) were constructed from the genetic domain sequences within the ASTRAL database based on SCOP release 1.67 (and previous versions where noted). These sequences were filtered at 40% sequence identity to make the test specific for remote homolog detection, as sequences with greater than 40% sequence identity are easily identifiable as similar (232). After masking low-complexity regions with SEG (276) (using parameters –w 12 –t 1.8 –e 2.0) this database was partitioned into two similarly sized databases. Each contained all sequences of every-other sequence fold; there are no sequences in the intersection of the two sets. One dataset, with 3431 sequences, can then used as a training database to determine optimal search parameters (substitution matrix, matrix scaling, gap penalties) for any of the pairwise search methods. Hereafter, it will be referred to as the training database. The other database, with 3169 sequences, was used as the test database. Comparisons are performed against this database using the optimal parameters found on the training database. Separating the original ASTRAL set in this way ensures that we do not simply evaluate a particular algorithm’s ability to be optimized for the database in question.
Figure 6.3 Training and test databases. The ASTRAL 1.67 database, filtered at 40% sequence identity, was partitioned into training and test databases. Partitioning was done at the level of fold. Parameter optimization on the training database was followed by evaluation on the test database.
Summarizing database homolog detection search results: The CVE plot

As mentioned previously, the ability of a similarity detection method to report truly homologous sequence matches must be balanced against its ability to refrain from reporting matches between unrelated sequences. This sensitivity versus specificity tradeoff can be rendered graphically via the coverage versus errors per query (CVE) plot (37). CVE plots are related to ROC plots (37, 111, 293) and SPEC-SENS (114, 229) curves, but present the data in a way that is directly interpretable. A CVE plot is generated by performing a database versus database search and ordering the results by significance score (Figure 6.4).

Then, each reported match pair, from most significant to least significant, is evaluated by its SCOP classification information to be homologous, non-homologous, or undetermined. At each significance threshold, a point on the CVE plot is generated. The x-coordinate of the point is coverage; that is the number of detected homolog pairs divided by the total number of pairs that exist (true positives / number of homolog pairs). The y-coordinate of the point is errors per query (EPQ), namely the number of non-homolog pairs reported divided by the size of the query database (false positives / number of queries). The CVE results generated from a perfect homolog detection method would be a single point at the lower right hand corner (Figure 6.4).

There are benefits of depicting the error rate in this way that allow analyses not possible by other methods. First, EPQ rates are comparable between experiments, even when the databases are not the same. This is
Figure 6.4 Generating coverage versus error per query (CVE) plots. Results of a database versus database search are ordered by significance (columns 1-3). Using SCOP, each match is classified as having identified related sequences, unrelated sequences, or sequences whose relationship is not known (not shown). If the matched sequences are related, the coverage is increased. If the matched sequences are not related, then an error was made and the errors per query increases. A point on the CVE plot is generated for each significance level in the list, from most significance to least significant. Note that the significance scores themselves are not shown on the CVE plot. A perfect similarity detection method would correctly identify all the relations within the database before making any errors. This would be represented as a single point in the lower right-hand corner of the CVE plot.
because the distribution of false positive scores from a database search is largely independent of the database searched. Also, using EPQ allows the direct evaluation of significance scoring schemes (such as E-values) because EPQ and significance scores share the same scale. EPQ reports the number of false positives observed per database query whereas significance scores report the number of false positives expected per database query. The EPQ axis in a CVE plot is log-scaled to show performance over a wide error range allowing, in particular, consideration of performance at very low error rates.

Superfamily size normalization

On CVE plots, the 100% coverage level is defined by the number of homologous relations between members of all superfamilies. The number of these relations within a given superfamily grows quadratically with superfamily membership. Therefore, any representational biases present within the database are exacerbated, and large families dominate the overall results. There are well-known biases within the database of solved structures and, by extension, within scop and astral. Proteins that are more amenable to structure determination or are deemed more interesting research subjects are over-represented. Because of this bias, performance evaluation may be skewed to favor those methods that detect similarity between members of the larger superfamilies.

We took two approaches to neutralizing this effect (Figure 6.5). Both approaches assign a weight to each correctly identified relation that is a function of the size of the superfamily in which it occurs. Under quadratic normalization
Figure 6.5 Normalization schemes. For each normalization scheme, the size of each matrix element represents the weight given to each relation. (a) The number of correct superfamily level relations, shown in blue, is naturally dominated by large superfamilies. (b) Linear normalization weights each superfamily in linear proportion to the number of sequences it contains. (c) Under quadratic normalization, each superfamily is weighted equally.
each correct pairwise relation identified is weighted by $1/(n^2 - n)$, where n is the number of the sequences within that superfamily, because $n^2 - n$ is the number of relations within each superfamily. Therefore, quadratic normalization weights all superfamilies equally, regardless of size. Under quadratic normalization, the maximum achievable ‘coverage’ is the number of superfamilies in the test database and the quadratically normalized CVE plots presented reflect this fact.

Linear normalization is a compromise between no normalization and quadratic normalization. Linear normalization is motivated by the fact that sequence superfamilies are not, in fact, represented equally in nature. Furthermore, the representational bias within our test databases reflects, at least to some degree, the unequal representation within the sequence superfamilies found in nature. Therefore, the results generated by larger superfamilies should carry more weight, but not necessarily quadratically more weight, than smaller superfamilies. In this normalization scheme, each superfamily is weighted in linear proportion to its size. Each correctly identified pairwise relation is weighted by $1/(n - 1)$. Therefore the maximum achievable ‘coverage’ is the number of sequences within the test database, and the linearly normalized CVE plots presented reflect this. In other words, unnormalized coverage is the fraction of all true relations that are found, linear normalized coverage is the average fraction of true relations per sequence, and quadratic is the average fraction per superfamily. Since linear and quadratic normalization
systematically down-weight larger superfamilies relative to small superfamilies, and because finding correct relations in larger superfamilies is more difficult, quadratic coverage is generally larger than linear coverage, which in turn is larger than unnormalized coverage.

Bootstrapping Provides Significance of Coverage Versus Error

The CVE line for any two search method/parameter set pairs will likely differ. Therefore, to determine which method is superior at a given error rate, it is a straightforward matter to pick a suitable error rate and rank methods by the coverage generated. However, the significance of any difference between two coverage levels is not immediately apparent. In order to address the question of performance difference significance, we implemented the bootstrap strategy described in Figure 6.6a. In brief, the database in question is sampled randomly with replacement n times, where n is the number of sequences in the database. Based on the results of this sampling a new, bootstrap database is constructed in which each sequence is represented 0, 1, or more than 1 times.

The alignment results between the two methods being compared are then recomputed, but restricted to only those sequences that were sampled and repeated if the sequence was sampled multiple times. The difference in coverage between methods is calculated for each bootstrap replicate to generate a distribution of this statistic. If there is a consistent difference between methods in an overwhelming majority of the bootstrap replicates, then we can conclude that this difference is significant. We use a 95% confidence interval to declare
that two methods vary in their ability to detect homologs at the error rate under consideration.

An interesting consequence of using the standard bootstrap is that the original coverage versus EPQ line, i.e., the line that corresponds to sampling each sequence once and only once, invariably falls toward the higher coverage end of the bootstrap distribution in normalized results (Figure 6.6a). We determined that this is the case because during bootstrap sampling, by chance, some of the smaller superfamilies are not sampled or sampled only once. When this happens, no relations remain for that superfamily. Since the easier relations to detect are primarily within the smaller superfamilies, the effect of eliminating them will be felt more emphatically when results are normalized by superfamily size. As a consequence of this bootstrap artifact, the bootstrap average of coverage at a given error rate is not in agreement with the coverage at the same error rate in the underlying data.

A solution to this problem was subsequently developed by Gavin Crooks, Gavin Price and me. This solution is an implementation of the Bayesian bootstrap (233), a Bayesian resampling procedure that is operationally similar to the standard nonparametric bootstrap (Figure 6.6b). In the standard bootstrap, resampling with replacement in effect assigns to each sequence integer weights that are drawn from a multinomial distribution. In the Bayesian bootstrap, the sequences are assigned continuously varying weights drawn from a Dirichlet distribution. Because the sequence weights are continuously varying there is a
Figure 6.6 Standard and Bayesian bootstrap procedures. (a) In the standard bootstrap procedure, the database is sampled with replacement a number of times equal to the number of sequences it originally contains. This generates a bootstrap replica database with some sequences left out and others repeated. CVE statistics for the replica database are generated for each round. During each round, the statistic of interest for the two methods being compared is calculated. For the results presented in this study, the statistic is the difference in coverage at 0.01 errors per query. (b) In the Bayesian bootstrap, weights are randomly assigned to each sequence in each round of sampling. No sequences are left out, so all superfamilies are included. Comparisons are done as above.
vanishingly small chance of assigning a zero weight to any sequence.

Consequentially, the Bayesian bootstrap does not undersample small superfamilies and we do not expect, and do not observe, the strong replica bias exhibited by the standard bootstrap (Figure 6.7). In addition, this Bayesian bootstrap procedure has a clear interpretation. The Dirichlet distribution is conjugate to the multinomial and consequentially is frequently used as the prior and posterior distribution for multinomial sampling with replacement.

Therefore, we can think of the ensemble of Bayesian bootstrap replicas, and the distribution of statistics derived from them, as samples from Bayesian posterior distributions (88). One further, critical refinement was implemented in the Bayesian bootstrap procedure. Instead of comparing the difference of the means of two bootstrap distributions, we now use the mean of the differences. This is necessary because the performance of one method on a given bootstrap replicate is not independent of the performance of a second method. In other words, a difficult replicates for one method is likely to be a difficult replicate for another method. Procedurally, this requires that any given comparison of methods be performed together on the same ensemble of Bayesian bootstrap database replicates, as was done.

Similarity Search Methods Evaluated

We set out to evaluate several of the most commonly used pairwise search tools (Table 6.1). All were downloaded from the source given in Table 6.1, compiled
Figure 6.7 Demonstration of the difference between a standard and Bayesian bootstrap using the optimal parameter settings for the BLOCKS 13+ BLOSUM matrix family and the test dataset. (a) The standard bootstrap preferentially selects sequences from larger, more diverse superfamilies where the correct sequence relationships are harder to discover. Thus, when each superfamily possesses the same amount of possible coverage (quadratic normalization), the bootstrap is biased towards the left because smaller superfamilies often drop out of the analysis entirely. Linear normalization displays a less severe effect. Since larger superfamily relationships are harder to discover, when the superfamilies have equal total weight (quadratic normalization) the coverage is much higher than with no normalization. To a lesser degree, the same effect is observable with linear normalization. The bottom graph makes clear that the standard bootstrap also over-predicts the variance under normalization. (b) As the Bayesian bootstrap assigns non-integer weights to each sequence, smaller superfamilies will not drop out of the analysis. This eliminates the bias and over-predicted variance of the standard bootstrap.
and installed per documented instructions, and run on Linux systems using
default options, except where otherwise noted.

Results

Parameter Optimization and Pairwise Method Evaluation

In order to conduct as unbiased a test as possible, we partitioned our test
database into two, non-overlapping databases (Figure 6.3). Each pairwise
method was then evaluated on the training database using a range of
substitution matrices and gap parameters. The training phase was conducted
by searching gap opening and gap extension parameter space around the values
found previously to be optimal (109). For each pairwise search method, we
chose the parameter set that generated the highest coverage at 0.01 EPQ under
linear normalization for further evaluation. These matrices and parameters
explored and the optimal parameter sets are given in Table 6.2. It is worth
noting that the highest coverage yielding parameter set at 0.01 errors per query
may not necessarily be best at other error rates. However, in all cases, the top
scoring parameter set at 0.01 errors per query was among the best at errors per
query rates in the range of 0.001 to 10.

To determine the significance of the performance differences of each of
the four pairwise search methods, we performed database-versus-database
searches using the test database and the optimal parameter sets listed in Table
6.2. Results were compiled and are presented as CVE plots in Figure 6.8 in
unnormalized, linearly normalized, and quadratically normalized format. It is
<table>
<thead>
<tr>
<th>Pairwise search method</th>
<th>Version</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTA3</td>
<td>3.4t25 Nov 12, 2004</td>
<td>http://fasta.bioch.virginia.edu/</td>
</tr>
<tr>
<td>SSEARCH3</td>
<td>3.4t25 Nov 12, 2004</td>
<td>http://fasta.bioch.virginia.edu/</td>
</tr>
</tbody>
</table>

Table 6.1. Pairwise methods evaluated. The version number and download source for each program is also given.
interesting that when the results are normalized for superfamily size, the
coverage invariably increases. This indicates that for any of these methods it is
more difficult to detect the relations within larger superfamilies; de-
emphasizing larger superfamilies increases coverage. As expected, the SSEARCH
algorithm, which fully explores the alignment space, finds the most
relationships over most error rates. The popular NCBI BLAST, finds the fewest.
The relative order of performance between these four methods is largely
unchanged under each normalization scheme across the range of error rates.
We bootstrap sampled the CVE data from the pairwise alignment results 200
times. SSEARCH outperforms the heuristic methods under each normalization
scheme, and the difference is significant. Interestingly, the differences between
each method do not vary much under the various normalization schemes,
indicating that the large superfamily bias affects each method roughly equally.
We examined the size distribution of superfamilies within our test dataset to
further investigate the correlation between superfamily size and ability to detect
remote homologs. Figure 6.9a shows the distributions of superfamilies, by size,
within the test database. Note that the most populous superfamily size is one.
These superfamilies are important in that there are no relations to detect within
them. Therefore, they serve only as decoys within these experiments, i.e., they
can contribute to the errors but not to the coverage. There is a strong negative
correlation between superfamily size and number of superfamilies. That is,
there are more smaller superfamilies and fewer larger superfamilies. This trend
<table>
<thead>
<tr>
<th>Pairwise search method</th>
<th>Matrix</th>
<th>Gap parameters (open, extension)</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCBI BLAST</td>
<td>BLOSUM50</td>
<td>(15,1), (16,1), (17,1), (18,1), (19,1)</td>
<td>BLOSUM62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12,2), (13,2), (14,2), (15,2), (16,2)</td>
<td>(12,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9,3), (10,3), (11,3), (12,3), (13,3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOSUM62</td>
<td>(9,1), (10,1), (11,1), (12,1), (13,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,2), (7,2), (8,2), (9,2), (10,2), (11,2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOSUM80</td>
<td>(9,1), (10,1), (11,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,2), (7,2), (8,2), (9,2), (13,2), (25,2)</td>
<td></td>
</tr>
<tr>
<td>WU-BLAST</td>
<td>BLOSUM50</td>
<td>(13,1), (14,1), (15,1), (16,1)</td>
<td>BLOSUM62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10,2), (11,2), (12,2), (13,2), (14,2), (15,2), (16,2)</td>
<td>(10,2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9,3), (10,3), (11,3), (12,3), (13,3), (14,3), (15,3), (16,3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOSUM55</td>
<td>(14,1), (15,1), (16,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15,2), (16,2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9,3), (10,3), (11,3), (12,3), (13,3), (14,3), (15,3), (16,3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOSUM62</td>
<td>(9,1), (10,1), (11,1), (12,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7,2), (8,2), (9,2), (10,2), (11,2), (12,2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,3), (7,3), (8,3), (9,3), (10,3), (11,3), (12,3)</td>
<td></td>
</tr>
<tr>
<td>FASTA3</td>
<td>VTML150-VTML250</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td>VTML190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td>(12,1)</td>
</tr>
<tr>
<td></td>
<td>BLOCKS13 BLOSUM55</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOCKS13 BLOSUM60</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOCKS13 BLOSUM65</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td></td>
</tr>
<tr>
<td>SSEARCH3</td>
<td>VTML230-VTML250</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td>VTML240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td>(11,2)</td>
</tr>
<tr>
<td></td>
<td>BLOCKS13 BLOSUM55</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOCKS13 BLOSUM60</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLOCKS13 BLOSUM65</td>
<td>(11,1), (12,1), (13,1), (14,1), (15-1), (16-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,2), (12,2), (13,2), (14,2), (15-2)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2. Substitution matrix and gap parameter space explored and optimums. Each method was run on the training database using each matrix and gap parameter set shown. The VTML matrix ranges are shown. For example, VTML230-VTML250 indicates use of VTML230, VTML240, and VTML250.
Figure 6.8 Coverage versus errors per query (CVE) plot comparison of pairwise database search methods. Each program was used with optimal parameters to search the test database. The CVE lines are shown for unnormalized, linearly normalized, and quadratically normalized data. SSEARCH finds the most pairwise relations for most error rates, including 0.01 errors per query. NCBI BLAST finds the fewest. For all methods, normalizing the results gives increased coverage, indicating that relations in larger superfamilies are more difficult to detect.
Figure 6.9 Superfamily size distribution in test database. (a) The number of superfamilies of increasing number of members is shown. Superfamilies with only a single member, the most numerous group, have no evolutionary relationships to detect. Not shown are the several superfamilies with more than 40 members. (b) The fraction of correctly identified relations at 0.01 errors per query is shown as a function of superfamily size. Generally, the relations within larger superfamilies are more difficult to detect than those within smaller superfamilies. These data were generated using the SSEARCH program with optimal parameters.
is also present within the training database (data not shown). Also, not shown in Figure 6.9a are the few very large superfamilies present within the test database. The largest superfamily within the test database is the NAD(P)-binding Rossmann-fold, containing 132 members. Within this superfamily, there are 17292 relations, as compared to the 662 relations within all the 331 superfamilies of size 2, representing 662 sequences, in the test database.

To further investigate the general effect of apparently poor homolog detection within larger superfamilies, we broke down the results of the pairwise-test database search using SSEARCH with optimal parameters (Figure 6.9b). As expected from the normalization trend, there is a general negative correlation between superfamily size and percentage of relationships identified.

Statistical Score Evaluation

In addition to being able to differentiate between related and non-related sequences, similarity detection methods should also give the user a reliable estimation of the significance of any similarity detected. This is especially important when a newly discovered sequence is used as a query and the user can not be sure that it has any homologs within the search database. Each of the pairwise methods evaluated is capable of generating E-value statistical significance scores. The interpretation of an E-value is the number of matched pairs one would expect by random chance that are as good as or better than the one reported, given the database search performed to find it.
Figure 6.10 Observed error rate versus statistical score. If the statistical scores reported by a database search method are correct, at each E-value there will be as many errors (false positives) as there are alignment pairs at that significance level (red Ideal line). The SSEARCH, FASTA, and NCBI BLAST scoring routines estimate the statistical significance of alignments mostly correctly. The WU-BLAST program, however, underestimates significance. That is, for a given significance score, it is generating fewer false positives than it reports it is.
To determine the reliability of the E-value significance scores generated by each method, we further analyzed the results of the database searches performed by each method using optimized search parameters. For each incorrectly identified relationship (false positive) we plotted the E-value at which it was reported. One should expect to find, for example, one false positive at E-value one per database query. The results of this experiment are shown in Figure 6.10. The E-values generated by SSEARCH, FASTA, and NCBI-BLAST are remarkably close to the ideal line. WU-BLAST, on the other hand, consistently underestimates the significance of the database hits it generates.

Also of note, at higher error ranges, each method converges on a line nearly parallel with the idealized score. While some methods consistently overstate or understate the significance of their results, all methods generate E-values that are at least in direct linear proportion to the number of false positives generated. This beautiful statistical result may be, in part, due to the composition of the database sequences used for this evaluation. ASTRAL sequences are all single domain sequences of known structure – typically soluble and globular, and thus generally well-behaved.

Database Growth

It is intuitively unclear how database growth will affect the performance of similarity detection methods. As databases grow, it becomes more likely that there will be present at least a single related sequence for any given query.
However, the most useful statistical score, the E-value, can be adversely affected by database growth (251). Even though the raw alignment score for any pair of sequences will not change as databases grow, the E-value significance does. This is because E-values are calculated as a function of the size of the database that was searched.

Figure 6.11a shows the growth of the number of solved structures within the PDB compared with the number of superfamilies within recent SCOP releases. The number of solved structures is growing at a faster rate than the number of superfamilies. This means that newly solved domain structures are more often being classified into existing superfamilies than they are defining new superfamilies. For this reason, many superfamilies are growing and, as shown in Figure 6.9b, this has a negative impact on the ability to detect all true homologs at a given error rate. It was previously shown that with each subsequent release of SCOP and ASTRAL, from version 1.35 to version 1.57, the coverage at all errors rates decreased (109). To determine if this trend still holds, NCBI-BLAST searches using default parameters were done to generate CVE plots from the ASTRAL databases, filtered at 40% sequence identity, corresponding to each of the last six SCOP releases. As shown in Figure 6.11b, the relationships within each subsequent astral database release are more difficult to detect than those of the previous database, up to version 1.61 which continues the trend evident since the first SCOP release (109). However, starting at version 1.63, the trend has reversed. It is not clear to what this reversal is attributable, though.
Figure 6.11 Growth of SCOP/ASTRAL databases and effect on ability to detect remote homologs. (a) Growth in number of SCOP domains and PDB entries (left axis) and ASTRAL40 and number of SCOP superfamilies (right axis). ASTRAL40 is the database of ASTRAL sequences filtered at 40% sequence identity. (b) Unnormalized and linearly normalized CVE lines generated by searching with NCBI BLAST against the six most recent versions of the ASTRAL40 databases. The trend of degrading coverage, observed for version 1.35 through 1.57 ends with 1.61.
One possibility is that there has been a shift in emphasis in what structures are being solved and therefore, in what sequences are added to these structure-derived databases. Another possibility is that SCOP itself has changed. The SCOP release notes for versions 1.63 and 1.65 mention that several parts of the SCOP classification have been restructured.

Discussion

The power, speed, and accessibility of pairwise sequence comparison programs have made them some of the most important methods – experimental or computational – for biological discovery. We have evaluated the merits of the latest versions of several of these programs and found that using the latest versions of tools that address the effect of database compositional bias and allow the significance of performance differences to be measured.

The rigourous SSEARCH program detects a significantly greater fraction of the relations between remote homologs than any of the heuristic methods. Further, the significance scores reported by SSEARCH are remarkably reliable. However, the price for these benefits is a significant time penalty.
CHAPTER 7
Pairwise alignment incorporating dipeptide covariation

Note: Much of the material presented in this chapter was included in the publications:

Crooks, GE, Green RE, and Brenner SE. Pairwise alignment incorporating dipeptide covariation *Bioinformatics. (submitted).*
Introduction

Among the most commonly used tools in computational biology are the pairwise protein sequence alignment methods, such as SSEARCH, FASTA and BLAST (12, 220, 248). These algorithms are elegant, efficient and effective methods of detecting similarity between closely related protein sequences. However, the ability of fast pairwise methods to detect homology deteriorates as the divergence between the sequences increases. Past the “twilight zone” (20-30% pairwise sequence identity), only a small fraction of related proteins can be found (37, 83, 234). Therefore, in order to make better use of the vast and increasing amount of available biological sequence data, there is an immediate need for more sensitive, fast database search methods.

For the sake of computational efficacy, current pairwise alignment methods make several simplifying assumptions. First, amino acid substitutions are assumed to be homogeneous between protein families. The most commonly used substitution matrices (BLOSUM (117) and PAM (79)) are thus generic models of protein sequence evolution across all protein sequence families at various evolutionary distances. Second, substitutions at a given site are assumed to be uncorrelated with those on neighboring sites. That is, the likelihood of substituting an amino acid, X, for amino acid Y is assumed to be independent of the sequence context of X. It is known that both of these simplifying assumptions introduce errors into homology searching. Relaxing the assumption of homogeneous substitution across protein families can
significantly improve the performance of pairwise alignment methods (281). Furthermore, alignment methods that remove the assumption of homogeneity among different positions in the sequence, and instead model the heterogeneity of the given protein family, have been found to be dramatically superior for remote homology detection (R. E. Green and S. E. Brenner, unpublished data) (214). Unfortunately, these profile methods (PSI-BLAST (13), HMMER (90), SAM (140), etc.) are not tractable for all query sequences. They require the presence, identification, and correct alignment of homologous sequences in order to generate a model of the query sequence's family. Therefore, the fast, easy to use, and universally applicable pairwise methods remain widely used for database searching, despite their lower sensitivity.

One proposed strategy for increasing the sensitivity of pairwise alignment is to use a more sophisticated scoring function for amino acid substitutions, namely one that is sensitive to the sequence context in which the residue reside. For example, amino acid sequences are correlated with secondary structural features, such as helixes and loops, which can directly lead to structure (and therefore sequence) dependent substitution patterns (105, 263, 264). Similarly, one might intuitively expect structurally and functionally important residues, such as cystines and prolines, to be more or less conserved depending on their local sequence environment and the prevalence of particular motifs.
The first large-scale exploration of the effect of sequence context on amino acid evolution was performed by Gonnet and co-workers (106), who examined the frequencies of dipeptide substitutions, and compared them to the dipeptide substitution frequencies expected assuming no sequence dependent correlations. Despite the fact that nearly half of the elements of the 400 X 400 observed dipeptide matrix were vacant (due to the sparsity of data) several interesting patterns were evident.

More recently, Jung and Lee (134) have taken advantage of the large increase in available data to reexamine trends in dipeptide evolution. They used the observed patterns of substitution within a large set of structure-based alignments to generate dipeptide substitution matrices. Furthermore, they developed an extension to the standard Smith-Waterman alignment algorithm that incorporates a term from these dipeptide matrices. By using sequence and structure context information, they show some improvement in homolog detection in a limited test set. However, their method could not be extensively tested, or practically utilized, because an efficient dynamic programming method for finding the optimal alignment was not known to the authors. Instead, they adopted a heuristic search that is not guaranteed to find optimal alignments.

In this study, Gavin Price and I have extended the work described above by examining the strength of local, dipeptide substitution correlations using the massive amount of alignment data within the BLOCKS database. We have also
extended the standard Smith-Waterman algorithm to include local dipeptide
correlation information over a user-defined distance. Like Smith-Waterman,
this new polynomial time algorithm, doublet, finds the optimal alignment under
the scoring scheme described. Using a standard remote homolog detection
evaluation strategy, we have tested doublet against the Smith-Waterman
algorithm to measure the impact of including this extra information. Perhaps
surprisingly, we found that incorporating doublet substitution correlations
leads to a statistically insignificant difference in homology detection. Gavin was
responsible for deriving the doublet substitution matrices. I performed the
remote homolog evaluation. We jointly conceived and designed the doublet
algorithm.

Results

Doublet Substitution Correlations

Various trends are evident within the doublet score matrix, as illustrated in
Figure 7.1. Notably, exact conservations, such as AA→AA, AD→AD and
DD→DD, etc., generally have positive scores. In other words, conserved
residues are more likely to be located near other conserved residues than would
be expected from uncorrelated substitutions. Also notable is that many (but far
from all) exact swaps, such as DA→AD, are significantly more likely than
expected. Possibly, this is because the effect of a deleterious mutation X→Y can
sometimes be ameliorated by the occurrence of the corresponding mutation
Y→X, in the immediate sequence neighborhood. Partial swaps, where only one
BLOSUM65 (from BLOCKS 13+)

Singlet Substitutions

A	R	N	D	C	Q	E	S	G	B	R	L	K	M	F	S	T	W	Y	V	B	X	
A	6	-1	-2	-2	-1	-1	0	-2	-2	-2	0	0	-2	-1	0	-3	-3	0	0	-2	1	1
R	-1	7	0	-1	-4	2	1	-3	0	-3	3	2	-3	-2	-1	-1	-2	-3	0	1	-1	-1
N	-2	0	8	-2	-3	1	0	1	-3	-3	0	-2	1	-1	0	-2	-2	5	0	-1	6	0
D	-2	1	2	-2	-9	1	3	-3	-1	-4	0	-3	-4	-1	0	1	-3	-3	-4	6	2	1
C	-2	1	2	-4	-4	-4	-4	-3	-3	-4	-2	-4	-2	-3	-3	-2	-3	-4	-3	-3	2	1
Q	-1	2	1	1	-4	6	3	-3	-2	2	-1	3	-1	0	2	-2	2	1	4	0	0	0
E	-1	1	0	3	-4	3	-3	-1	-3	3	2	-4	1	-1	-1	-1	-3	3	-2	3	2	5
K	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 7.1 BLOSUM65 singlet substitution matrix derived from the BLOCKS 13+ database (above), and selected elements of the corresponding doublet substitution matrices (below). Scores are in 1/4 bit units, rounded to the nearest integer. The average standard statistical error is about 1/4 bits (i.e., about 1 unit) for the doublet scores, and essentially insignificant for the singlet scores, as judged by bootstrap resampling. The singlet scores are the log odds of observing the given substitution; positive scores are more likely, and negative score less likely to be observed than would be expected for uncorrelated sequences (Eq. 3). Similarly, the doublet scores represent the log odds for observing pairs of substitutions, at various sequence separations, relative to the singlet substitutions likelihood (Eq. 6). For example, the L=3 column for ET AV (bottom right) indicates a score of zero for the alignment of ExxT in one sequence to AxxV in the other.
of the substitution pair is conserved, are also often positive. This might reflect alignment errors in the original dataset. The most highly positive scores (and therefore those events that are most over-represented in the data relative to uncorrelated substitutions) are associated with the substitutions PC↔Cx, i.e. a translocation of a cystine, replacing a proline. The most relatively uncommon substitutions involve the mutation of one cystine in the cystine pair CxxC (second column), a widespread and important motif found, for example, in the thioredoxin family. However, these interesting particular cases are atypical. Most of the doublet substitution matrix is similar to the ET↔Ax substitutions displayed in the third column; the majority of the scores are not significantly different from zero, indicating that most possible substitution doublets are essentially uncorrelated.

We can place the above observations on a quantitative footing by considering the inter-sequence mutual information, a measure of the correlation strength between aligned homologous sequences. The first order contribution is equal to the average singlet score, which is 0.31 bits per aligned residue for BLOSUM65 (BLOCKS13+) (117, 119). The corresponding average doublet score, the additional information encoded in inter-site substitution covariation, is around 0.04 bits at modest sequence separations (illustrated in Figure 7.2). Thus, the inter-site substitution correlations carry relatively little information. However, these correlations appear to persist to non-local neighbors, suggesting that the total information from interactions at all sequence separations is
Figure 7.2 The inter-sequence mutual information of homologs encoded in inter-site correlations at increasing separation, L. In other words, the average doublet substitution scores (Eq. 7). The top, dark line is the total information at various sequence separations. For comparison, the information encoded in the corresponding singlet substitutions (the average singlet matrix score) is 0.31 bits per residue. The remaining lines illustrate the relative contributions of different substitutions classes to this total information; these are exact conservation $XY \leftrightarrow XY$, partial conservation $XY \leftrightarrow XZ$, swaps $XY \leftrightarrow YX$, partial swaps $XY \leftrightarrow ZX$, and unconserved, double substitutions $XY \leftrightarrow ZU$.

substantial. However, Figure 7.2 also displays the contributions to this total information from various categories of substitution. The largest contribution, and the only contribution to persist above a sequence separation of 4 residues, represents exactly conserved pairs of residues. This is a rather trivial correlation (it simply indicates that conserved residues cluster), and its persistence suggests that, in large part, these correlations may simply be an artifact of the way in which the BLOCKS sequence alignments have been generated. All other substitution classes, summing over all sequence separations, contribute no more than 0.1 bits per residue. This is not entirely insignificant, but it is still small compared to the singlet mutual information. Thus non-trivial correlations between substitutions are relatively weak.

Homology Detection

The primary use for pairwise alignment methods is to search databases of previously characterized biological sequences for homologs of the sequence of interest. Therefore, the most powerful methods will perform this task most effectively by assigning true homologs significant statistical scores and assigning unrelated sequences low statistical scores. Our assessment methodology compares database search methods on this criteria.

We compared the doublet alignment algorithm against the standard Smith-Waterman algorithm. To perform a fair test, we converted raw scores to statistical scores for both algorithms using the same length normalized maximum likelihood EVD parameter determination method (18). Optimal
parameters for gapping, matrix scaling, and distance over which to consider dipeptide correlations were found using the training database described above. Then, the algorithms were evaluated by comparing the relative ability to detect remote homologs within the test dataset, using the parameters optimized on the training dataset (Figure 7.3).

The results of a database search for Smith-Waterman and doublet, using only nearest neighboring dipetide covariations, are shown in Figure 7.3a. Both the Smith-Waterman and doublet methods performed remarkably similarly over all error rates and normalization schemes. The linearly normalized coverage at 0.01 errors per query was slightly higher for Smith-Waterman than doublet (Figure 7.3). From this, we conclude that including dipeptide covariation information does not improve remote homology detection and, in fact, slightly degrades performance at this error rate. We also performed the same coverage versus errors per query analysis using only sequences with less than 30% sequence identity (Figure 7.3b), as it was previously reported that dipeptide covariation information may be useful only for detecting these extremely remote evolutionary relationships (134). Our results, however, show that even at this evolutionary distance, dipeptide covariation scoring does not improve homology detection.

We used Bayesian bootstrap resampling to estimate statistical errors, and to determine if the observed coverage difference was statistically significant. We
Figure 7.3. These coverage versus errors per query plots show that including dipeptide covariation information in alignment determination (Doublet) does not improve remote homolog detection. (a) Optimized matrix, gap and look-back parameters were used to search the test database with the doublet and Smith-Waterman algorithms. This database contains no sequence pairs that share more than 40% sequence identity. The number of correctly identified homologs is shown as a function of the number of errors made. Smith-Waterman outperforms doublet over all but extremely low error-rates. (b) Remote homolog test using only sequence pairs with less than 30% sequence identity. As above, Smith-Waterman correctly identifies more remote homologs than the doublet algorithm. Insert: Optimal matrix scale parameter, gap parameters, and corresponding linearly normalized homology detection coverage at 0.01 EPQ, as a function of the covariation distance considered, L.
found that a 95% confidence interval for the coverage difference at 0.01 errors per query comfortably contained zero difference. Therefore, we cannot distinguish between the remote homolog detection abilities of Smith-Waterman and doublet.

We also evaluated the effect of including covariation information over larger sequence separations. As can be seen in the table of Figure 7.3, incorporating this additional information into alignment scores actually results in a slow degradation of homology detection efficacy.

Discussion

We have developed, implemented, and tested an alignment algorithm, doublet, that generates the optimal pairwise protein sequence alignment under a scoring scheme that includes dipeptide covariation information. Perhaps surprisingly, and in marked contrast to previous reports, we found that using this information provides no benefit to remote homolog detection. The performance of the doublet algorithm for detecting remote homologs is statistically indistinguishable from the standard Smith-Waterman algorithm.

The underlying explanation for this indifference of alignment to dipeptide covariation is that substitution correlations are weak on the average (Figures 7.1 and 7.2). Therefore, the average effect of these interactions is insignificant and including covariation in sequence alignment makes very little material difference to remote homology detection.
We might reasonably question if the training data is at fault. Indeed, the slight degradation of homology detection as more distant correlations are included (Figure 7.3) does indicate that the doublet substitution matrices contain anomalies, perhaps due to the training or alignment of the BLOCKS sequences, or perhaps because of the different sampling of sequences included in BLOCKS compared to those included in SCOP. The BLOCKS database that we use to train the doublet substitution matrices contains ungapped alignments, many of shorter length than the average SCOP protein domain. Fikamikobayashi and co-workers showed that the covariation signal is strongest within single secondary structure elements (100). The poor performance of doublet, then, may be due to its applying the covariation model too bluntly across entire protein sequences when it is only applicable within secondary structure elements. However, we note that the BLOCKS database has been used to derive very effective singlet substitution matrices (109), and therefore it is implausible that the substitution signals within the BLOCKS database are substantially erroneous. Rather, the observed degradation simply reinforces the idea that neighboring substitutions are weakly correlated, particularly when compared to single substitutions correlations, and therefore the doublet signal is readily degraded by minor anomalies in the data.

Another line of evidence comes from examining the inter-site amino acid correlation of single protein sequences (72, 74, 271). Neighboring amino acids are almost entirely uncorrelated; the nearest neighbor mutual information has
been estimate as only 0.006 bits (72). This lack of sequence correlation is consistent with (but does not require) small inter-site substitution correlations. In should be emphasized, however, that the observation of weak average dipeptide covariation does not negate the possibility of strong, interesting covariation in particular instances, such as CP↔Cx, or within particular families. Moreover, it is conceivable that covariation information could be used more judiciously, thereby improving alignment results. For example, as previously discussed, one might include doublet-type scoring information only for residue pairs that are likely to be within the same secondary structural element. Similarly, one might examine the covariation of residues that are proximate in the tertiary structure, rather than along the sequence (170, 230). However, residues that are proximate in space are also weakly correlated (68, 74), and the inter-residue mutual information is not improved by foreknowledge of the local structure environment (72, 74). Therefore, we suspect that such approaches will also not have dramatic effects on protein sequence alignment.

In conclusion, the ubiquitous assumption that neighboring sites along a protein sequence evolve independently is generally appropriate. This leads to fast, elegant and effective algorithms for protein sequence alignment and homology detection.
Materials and Methods

Quantifying substitution correlations

Consider two aligned, ungapped sequences, \(x = x_1, x_2, \ldots, x_n \) and \(y = y_1, y_2, \ldots, y_n \), both of length \(n \), where each element represents one of the 20 canonical amino acid, and corresponding positions are considered aligned and homologous. We wish to use the patterns of conservation and variation between these sequences to estimate the probability \(P(\text{hom}|x,y) \) that the sequences are homologous – i.e., that both sequences have descended from a common ancestor. By Bayes’ theorem, we can re-express this probability as

\[
P(\text{hom} | x, y) = \frac{P(\text{hom}) \cdot q(x;y)}{p(x)p(y)} \quad (1)
\]

Here, \(p(x) \) is the background probability of the given amino acid segment and \(q(x;y) \) is the target probability of observing the pair of segments in diverged homologous sequences (5). By taking logarithms and dropping the additive constant \(\log P(\text{hom}) \) we generate an additive score, \(S \), a measure of sequence similarity due to homology,

\[
S = \log \frac{q(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)}{p(x_1, x_2, \ldots, x_n)p(y_1, y_2, \ldots, y_n)} \quad (2)
\]

Except for very short segments, the background and target probability distributions are large and cannot be directly measured. Therefore, Eq. 2 is typically simplified by assuming that substitutions probabilities are homogeneous (independent of the location in the fragment) and that both the
substitutions and the sequence themselves are uncorrelated from one position to the next. Consequentially, the total similarity score is now a sum of independent parts,

\[
S \approx \sum_k s(x_k; y_k), s(i; j) = \log \frac{q(i; j)}{p(i)p(j)}
\]

(3)

The log odds of residue replacement, \(s(i, j) \), is an element of a standard singlet substitution matrix, of the type widely used in pairwise sequence alignment (5). This approximation of the full similarity by a sum of singlet substitution scores requires that we neglect all inter-site correlations. We can perform a more controlled approximation by noting that a homogeneous multivariate probability can be expanded into a product of single component distributions, pairwise correlations, triplets correlations, and so on.

\[
P(z_1, z_2, ..., z_n) = \prod_i P(z_i) \prod_{i<j} \frac{P(z_i, z_j)}{P(z_i)P(z_j)} \prod_{i<j<k} \frac{P(z_i, z_j, z_k)P(z_k)P(z_j)}{P(z_i, z_j)P(z_i, z_k)P(z_k, z_j)} \ldots
\]

(4)

If we assume that substitution probabilities are independent of the location within the fragment, then we can apply this expansion to the segment homology score (Eq. 2).

\[
S = \sum_{k=1}^n s(x_k; y_k) + \sum_{l=1}^{n-1} \sum_{k=1}^{n-l} d_l(x_k, x_{k+l}; y_k, y_{k+l}) + \ldots
\]

(5)

The first term of this expansion represents single residue replacements, as in Eq. 3. The next term defines the doublet substitution scores,

\[
d_l(i, i'; j, j') = \log \frac{q(i, i'; j, j')}{p(i, i')p(j, j')} - s(i; j) - s(i'; j')
\]

(6)
Here, \(i \) and \(i' \) are residues separated by a distance \(l \) along one amino acid chain, while \(j \) and \(j' \) are the corresponding aligned residues on the putative homologous sequence; \(q(i,i';j,j') \) is the target probability of observing this aligned quartet, and \(p(i,i') \) is the background probability of this residue pair in protein sequences. These **doublet** scores represent the additional similarity due to correlations between substitutions.

By truncating the expansion of the full similarity score at doublet terms (Eq. 5), we are assuming that triplet and higher order correlations between substitutions are relatively uninformative. For reasons discussed below, this is probably a reasonable approximation. Furthermore, the most important inter-site correlations are between residues neighboring on the chain (Fig. 7.2). Therefore, we can restrict the maximum distance over which doublet interactions are scored without serious error.

The average similarity score is the inter-homolog mutual information, \(I \) (71), a measure of the inter-sequence correlations. A high mutual information value indicates strong correlation, whereas a mutual information value of zero indicates uncorrelated variables. Mutual information has various advantages as a correlation measure: it is firmly grounded in information theory, it is additive for independent contributions and it has consistent, intuitive units (bits).

\[
I(x;y) = \sum q(x,y) \log_2 \frac{q(x,y)}{p(x)p(y)} \quad (7)
\]

The average singlet score is the inter-homolog mutual information per residue, under the assumption that replacements are uncorrelated. This is frequently
reported as the "relative entropy" of the substitution matrix. The average
doublet score is the first order correction to the inter-sequence mutual-
information due to inter-site correlations. Consequentially, we may evaluate the
comparative importance of singlet and doublet contributions to the sequence
similarity by examining the average contributions of these different components
to the full inter-homolog mutual information.

The preceding analysis applies to contiguously aligned sequence
segments. However, in addition to substitutions, protein sequences are modified
by the insertion and deletion of residues. Since it is not obvious how to capture
the existence of indels in doublet scores, in the following discussion we assume
that dipeptide correlations do not extend across gaps, and we adopt the simple
and standard affine model of gap lengths.

Alignment algorithm

We have extended the standard Smith-Waterman optimal local sequence
alignment algorithm (248) to incorporate doublet substitution scores (See Figure
7.4). The time complexity of Smith-Waterman is $O(nm)$, where n and m are the
lengths of the two sequences. Adding doublet scores increases the complexity
to $O(nmL)$, where L is the distance over which substitution correlations are
scored. This efficient dynamic programming alignment is possible because,
although we are scoring correlations between residues that are not directly
aligned, these correlations are local along the chain. The space complexity of our
implementation is also $O(nmL)$; this could be improved using standard techniques (88).

The additional similarity score associated with adding the final match pair x_i, y_j to the alignment contains singlet (S) doublet (D) substitution scores:

$$S(i, j) = s(x_i, y_j), \quad (8)$$

$$D(i, j, r) = \sum_{l=1}^{r} d_l(x_{i-l}, x_i; y_{j-l}, y_j). \quad (9)$$

Here, r is the length of the preceding contiguous segment of aligned residues, or the maximum sequence separation over which doublet correlations are scored, whichever is less. Deletions of length k are weighted with the affine penalty $-(g_{\text{open}} + (k-1) g_{\text{ext}})$, where g_{open} and g_{ext} are positive constants. This standard affine gap length model is both computationally efficient and surprisingly effective (10, 248, 283).

The optimal, highest scoring alignment between two sequences $(x = x_1, x_2, \ldots, x_n$ and $y = y_1, y_2, \ldots, y_m)$ is found by populating a series of score tables, also known as dynamic programming matrices. The entries of the match table, $M(i,j,r)$, are the maximum alignment score for an alignment that terminates with an ungapped segment of length r, ending at the ith position of x, and the jth position of y. Similarly, the gap tables $G_x(i,j)$ and $G_y(i,j)$ contain the maximum alignment similarity given that the alignment ends with x_i or y_j gapped.

The entries of these tables can be efficiently computed starting from the following boundary conditions: $M(i,0,l)$, $M(0,j,l)$, $G_x(i,0)$, $G_y(j,0)$, $G_x(0,i)$, $G_y(0,j)$ =
A single aligned amino acid pair may signal the beginning of a new local alignment, or it may occur immediately after any alignment gap.

\[
M(i, j, 1) = \max \begin{cases}
S(i, j) \\
S(i, j) + G_x(i - 1, j) \\
S(i, j) + G_x(i, j - 1)
\end{cases}
\]

(10)

In standard Smith-Waterman this is the only necessary match score table. However, in doublet we require additional match tables so that we may keep track of match scores over extended, contiguously aligned regions. Of necessity, longer ungapped segments occur only after shorter segments. We restrict the maximum distance \(L\) over which doublet correlations are scored, since we expect that the useful information that can be extracted from doublet correlations will decay rapidly with sequence separation (See Figure 7.2). Consequentially, we do not need to explicitly consider ungapped segments of length greater than \(L+1\).

\[
M(i, j, 2 \leq r \leq L) = S(i, j) + D(i, j, r - 1) + M(i - 1, j - 1, r - 1)
\]

\[
M(i, j, L + 1) = S(i, j) + D(i, j, L) + \max \begin{cases}
M(i - 1, j - 1, L) \\
M(i - 1, j - 1, L + 1)
\end{cases}
\]

(11)

Gaps in the alignment are either preceded by a match or they extend an existing gap.

\[
G_x(i, j) = \max_{r=1:L} \begin{cases}
M(i - 1, j - 1, r) - g_{\text{open}} \\
G_x(i - 1, j) - g_{\text{ext}}
\end{cases}
\]

\[
G_y(i, j) = \max_{r=1:L} \begin{cases}
M(i - 1, j - 1, r) - g_{\text{open}} \\
G(i - 1, j) - g_{\text{ext}}
\end{cases}
\]

(12)
Figure 7.4. A comparison of Smith-Waterman and doublet sequence alignment. (a) A Smith-Waterman match table, with the optimal alignment highlighted. In value of each cell is the maximum of 1. the singlet match score (this is the start of an alignment), 2. the singlet score plus the match score from the previous cell along the diagonal (this extends an aligned region), or 3. the singlet score plus the optimal score from a gap score table (the previous residue was not aligned) (b) For doublet, multiple match tables are used (Eqs. 10-12). The number of match tables is the distance over which dipeptide correlation information is considered (in this example, 2) plus 1. Again, the optimal alignment is highlighted. The top table corresponds to the starts of aligned regions, the middle table corresponds to aligned regions of at least 2 consecutive residues and the bottom table corresponds aligned regions of at least 3 consecutive residues. The alignment path through these tables falls through to lower tables in regions of consecutive aligned residues and begins again in the top table following gaps. To extend dipeptide context scoring over longer distances requires additional match tables.
The largest score within the match table marks the last aligned position of the optimal alignment. The full alignment can be found by backtracking through the table, according to the choices previously made during the scoring step.

We used the method of Bailey and Gribskov (18) to fit an extreme value distribution to the results of aligning a query sequence against a database of possible homologs. The maximum likelihood parameters are then used to assign E-values to each alignment.

Doublet BLOcks Substitution Matrix

A doublet substitution matrix (Eq. 6) contains $20^4 = 160,000$ entries, of which $20^2 \times (20^2 + 1) = 80,200$ are unique due to the underlying symmetry,

$$d_{(i,i';j,j')} = d_{(j,j';i,i')}.$$

To accurately estimate these scores we require a very large collection of reliably aligned protein sequences. The BLOCKS database is one such resource (116, 117). Each database block consists of a reasonably reliable, ungapped multiple sequence alignment of a core protein region. BLOCKS version 13+ contains 11,853 blocks, containing, on average, 56 segments of average length 26 residues. Overall, about 10^9 pairwise amino acid comparisons are available for study.

The widely used canonical BLOcks SUbstitution Matrices (BLOSUM) were generated from version 5 of the BLOCKS database (117). In order to generate a series of matrices representing different evolutionary divergences, the sequences in each block are clustered at a given level of sequence identity and the inter-cluster sequence correlations are collected. Thus BLOSUM100
(where only 100% identical sequences are clustered) represents a wide range, including low levels, of evolutionary divergence, whereas BLOSUM30 represents only correlations between very diverged sequences.

In principle, we should match the divergence inherent in the substitution matrix to the divergence of the pair of sequences we wish to align (6). However, this is computationally expensive, and, in practice, a single matrix is chosen based on its ability to align remote homologs, on the grounds that matching close homologs is relatively easy (37, 73). In a recent evaluation of remote pairwise homology detection efficacy (109, 283), we discovered that the BLOSUM65 substitution matrix, re-parameterized from the BLOCKS 13+ database, was more effective than any other reparameterized BLOSUM (BLOCKS 13+), classic BLOSUM (BLOCKS 5) or PAM (79) substitution matrix, and was comparable to the most effective VTML matrix (200). Consequentially, we have used the BLOCKS 13+ database at 65% clustering to build singlet and doublet BLOSUM substitution matrices. This provides approximately $10^7 - 10^8$ independent aligned doublets, depending on the sequence separation l.

The estimated doublet target frequencies $q_l(i,i';j,j')$ were smoothed and regularized by adding a pseudocount $\alpha(i,i';j,j')$ to the raw count data, $n(i,j';j,j')$. The pseudocounts are taken to be proportional to the marginal singlet target probabilities, $q_l(ij)q_l(i'j')$.

\begin{align}
q_l(i,i';j,j') &\approx \frac{\alpha(i,i';j,j')}{A+N} \frac{n(i,i';j,j')}{q_l(i,j)q_l(i',j')}
\end{align}

(13)

\begin{align}
\alpha(i,i';j,j') &= A \times q_l(i,j)q_l(i',j')
\end{align}

(14)
where \(N \) is the total number of counts. Thus, if no data are available (the total number of counts is zero, \(N=0 \)), then all doublet scores would be zero, as can be seen from Eq. 6. Here, \(A \) is a scale parameter that determines how much data is required to overcome the prior probability inherent in the pseudocount.

Typically, such scale factors are picked empirically. However, in this case, we performed a full Bayesian analysis, and determined that for doublet substitutions reasonable values of \(A \) are about \(2 \times 10^6 \), which can be compared to the \(10^7 \) to \(10^8 \) actual observations. The full details are given in the supplemental materials of this publication, and a representative subset of a doublet substitution matrix is shown in Figure 7.2.

Standard statistical errors were estimated by non-parametric Bayesian bootstrap resampling on sequence blocks (91, 233). Instead of assigning equal weight to every sequence block, each block is instead given a random weight drawn from a Dirichlet distribution. This random reweighting induces random changes in the estimated scores, thereby providing an estimate of the statistical errors caused by the finite size and inhomogeneity of the training data.

Evaluation of remote homology detection

We have previously developed and applied a sensitive strategy for evaluation of database search methods (37, 109, 283). In our approach, each sequence is aligned against every other sequence, and the alignment scores are used to determine putative homologs. We then consider the proportion of correctly identified homologs as a function of erroneous matches. The collection of
related sequences is derived from the Structural Classification Of Proteins (SCOP) database (202). We use the ASTRAL compendium (39, 60) of representative subsets of SCOP release 1.61 (Sept. 2002), filtered so that no two domains share more than 40% sequence identity. We partition every other SCOP fold into separate test and training subsets of approximately equal size, each containing about 550 superfamilies, 2500 sequences, and 50,000 homologous sequence pairs. To avoid over-fitting, adjustable parameters are optimized using the training set. Results of an all-versus-all comparison of the test set, using these optimized parameters, are reported as a plot of coverage (fraction of true relations found) versus errors per query (EPQ), the total number of false relations divided by the number of sequences (See Figure 7.3). The raw, unnormalized coverage is the fraction of all true relations that are found.

Since the number of relations within a superfamily scales as the square of the size of the superfamily, and because SCOP superfamilies vary greatly in size, this reported coverage is dominated by the ability to detect relations within the largest superfamilies. To compensate for this unwarranted dependence, we also report the average fraction of true relations per sequence (linear normalization) and the average fraction of true relations per superfamily (quadratic normalization). In general, large superfamilies are more diverse, and the relationships within them are harder to discover (109). Thus, unnormalized coverage is typically less than the linearly normalized coverage, which in turn is
less than quadratically normalized coverage. One important point of
comparison for search results is 0.01 errors per query rate for linearly
normalized results, the average fraction of true relations per database query at a
false positive rate of 1 in 100. We report the observed difference in coverage of
two methods at this selected EPQ, and determine standard statistical errors and
confidence intervals using Bayesian bootstrap resampling (see Chapter 6).
CHAPTER 8

Discussion and future directions of development and evaluation of remote homology detection methods
As sequence and structure databases continue to grow, there will be an ever-present need to improve and evaluate the computational methods that are used to identify the relationships between entries in these databases. Furthermore, as the more sensitive profile based methods like PSI-BLAST and HMMER are refined and gain acceptance, there will be an increasing need to understand their strengths and weaknesses. Therefore, the field of evaluating remote homolog detection methods should grow and adapt. Several ideas to improve evaluation of the existing pairwise methods have been offered and I will summarize them here.

In our current scheme, we use single domain sequences whose evolutionary relationships have been defined. However, many of these domains are found in nature only in the context of multi-domain proteins. Further, databases that one might use to search for homologs, like SWISS-PROT or GenBank, typically contain a mix of single and multi-domain sequences. In this way, our evaluation scheme, which contains only single domain sequences, is different than most real-world database search scenarios. This difference may favor methods and parameters that generate more global alignments. This shortcoming could be addressed by embedding each of our test domain sequences within a sequence context that is similar or identical to that which it is found in real protein sequences. This fix would slightly complicate the evaluation protocol because not all alignments would be relevant, i.e., an alignment between the query sequence and the contextual sequence would need
to be ignored. Regardless, this improvement should be fairly simple to implement.

Another improvement would be to consider a more natural normalization scheme than the two currently used. Normalizing by the size of the superfamily that a sequence belongs to reduces or eliminates an unwanted effect wherein large superfamilies dominate the overall results. However, in the databases that biologists use to identify homologs (as in nature), certain superfamilies are more prevalent than others. Therefore, favoring a database search method that is superior in identifying homologs within superfamilies that are naturally more numerous may be warranted. This rationale suggests a strategy to normalize database search results by the prevalence of each superfamily. The prevalence could be measured within complete genomes as a proxy for measuring their prevalence in nature or, more pragmatically, in the large, non-redundant databases used for homolog detection.

Alignment quality is an evaluation criterion that could also be improved. Our current scheme only evaluates methods for their ability to detect remote homologs. A related use for database search methods is to generate an accurate alignment that correctly matches homologous residues within each sequence. A correct alignment is critically important in homology modeling, profile generation, and phylogenetics. Structurally derived test databases for evaluating alignment quality have been generated, but no consensus method or set is available. This is likely because the problem is more difficult than that of remote
homolog test database generation. To determine if two structures are homologous, an expert assesses many features of the two structures, both global and local, and renders one verdict: either they are homologous or they or not. Generating a correct alignment based on structural information can be indeterminate. Insertions and deletions within each sequence can make exact residue-to-residue assignments ambiguous. In other words, although the sequences as a whole may both derive from a common ancestor, often not all of the parts of each sequence have.

Finally, there is a need to develop an evaluation methodology for profile database search methods. These programs are fundamentally different from pairwise search methods in that they search sequence databases with a statistical model of a sequence family rather with an individual instance, i.e. a sequence, of that family. Because model generation is part of the process of using a profile method, there are two steps to evaluate: model generation and model searching. Put another way, a profile method could fail because it incorrectly models a sequence family, perhaps by trying to model a “family” of sequences that are not evolutionarily related. Or, it could fail because it does not compare the model to each database in a sensitive way. An ideal profile evaluation scheme should disentangle these issues.
Appendix A

Human SWISS-PROT isoforms derived from PTC+ mRNAs
<table>
<thead>
<tr>
<th>Accession.</th>
<th>Swiss-Prot ID</th>
<th>Isoform name</th>
<th>Gene name(s)</th>
<th>cDNA/mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P78314</td>
<td>3BP2_HUMAN</td>
<td>SHORT</td>
<td>SH3BP2; 3BP2; RES4-23</td>
<td>AB000463</td>
</tr>
<tr>
<td>P05023</td>
<td>A1A1_HUMAN</td>
<td>SHORT</td>
<td>ATP1A1</td>
<td>U16798</td>
</tr>
<tr>
<td>Q9N5E7</td>
<td>ABCD_HUMAN</td>
<td>2</td>
<td>ABCC13</td>
<td>AF418600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>NM_138726</td>
</tr>
<tr>
<td>Q75078</td>
<td>AD11_HUMAN</td>
<td>SHORT</td>
<td>ADAM11; MDC</td>
<td>NM_021172</td>
</tr>
<tr>
<td>Q9P0K1</td>
<td>AD22_HUMAN</td>
<td>2</td>
<td>ADAM22; MDC2</td>
<td>NM_021172</td>
</tr>
<tr>
<td>Q9Y6N9</td>
<td>AI75_HUMAN</td>
<td>3</td>
<td>USH1C; AI75</td>
<td>AF039699</td>
</tr>
<tr>
<td>Q92667</td>
<td>AKP1_HUMAN</td>
<td>2</td>
<td>AKAP1; AKAP149</td>
<td>NM_139275</td>
</tr>
<tr>
<td>P20594</td>
<td>ANPB_HUMAN</td>
<td>SHORT</td>
<td>NPR2; ANPRB</td>
<td>NM_000907</td>
</tr>
<tr>
<td>P18547</td>
<td>ATP3_HUMAN</td>
<td>2</td>
<td>ATP3</td>
<td>NM_004024</td>
</tr>
<tr>
<td>Q9H6X2</td>
<td>ATR1_HUMAN</td>
<td>MAJOR</td>
<td>ANTXR1; ATR; TEMB</td>
<td>NM_032208</td>
</tr>
<tr>
<td>Q9NY97</td>
<td>B3G7_HUMAN</td>
<td>2</td>
<td>B3GNT1; B3GALT7</td>
<td>AF288209</td>
</tr>
<tr>
<td>Q9H6B9</td>
<td>BC12_HUMAN</td>
<td>2</td>
<td>BCL2L12; BPR</td>
<td>NM_052842</td>
</tr>
<tr>
<td>P13497</td>
<td>BMP1_HUMAN</td>
<td>BMP1 6</td>
<td>BMP1</td>
<td>NM_006130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMP1 5</td>
<td></td>
<td>NM_006131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMP1 4</td>
<td></td>
<td>NM_006132</td>
</tr>
<tr>
<td>Q9H6B55</td>
<td>C343_HUMAN</td>
<td>4</td>
<td>CYP3A43</td>
<td>AF280111</td>
</tr>
<tr>
<td>P01258</td>
<td>CAL0_HUMAN</td>
<td>2</td>
<td>CALCA; CALC1</td>
<td>M64486</td>
</tr>
<tr>
<td>Q9HC96</td>
<td>CANA_HUMAN</td>
<td>B</td>
<td>CAPN10; KIAA1845</td>
<td>NM_023084</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>NM_023086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>NM_023087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td>NM_023088</td>
</tr>
<tr>
<td>P28907</td>
<td>CD38_HUMAN</td>
<td>2</td>
<td>CD38</td>
<td>D84277</td>
</tr>
<tr>
<td>Q06722</td>
<td>CD47_HUMAN</td>
<td>OA3 305</td>
<td>CD47</td>
<td>BC037306</td>
</tr>
<tr>
<td>Q15519</td>
<td>CFLA_HUMAN</td>
<td>9</td>
<td>CFLAR; CLARP; MRIT; CASH</td>
<td>AF009617</td>
</tr>
<tr>
<td>Q9H6X0</td>
<td>CHRD_HUMAN</td>
<td>3</td>
<td>CHRD</td>
<td>AF209930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>AF283325</td>
</tr>
<tr>
<td>O43526</td>
<td>CIQ2_HUMAN</td>
<td>3</td>
<td>KCNQ2</td>
<td>NM_004518</td>
</tr>
<tr>
<td>Q9NYG8</td>
<td>CIW4_HUMAN</td>
<td>2</td>
<td>KCNK4; TRAAK</td>
<td>NM_016611</td>
</tr>
<tr>
<td>P49759</td>
<td>CLK1_HUMAN</td>
<td>SHORT</td>
<td>CLK1; CLK</td>
<td>L29222</td>
</tr>
<tr>
<td>P49760</td>
<td>CLK2_HUMAN</td>
<td>SHORT</td>
<td>CLK2</td>
<td>NM_001291</td>
</tr>
<tr>
<td>P49761</td>
<td>CLK3_HUMAN</td>
<td>2</td>
<td>CLK3</td>
<td>NM_001292</td>
</tr>
<tr>
<td>Q13286</td>
<td>CLN3_HUMAN</td>
<td>4</td>
<td>CLN3; BTS</td>
<td>AF077953</td>
</tr>
<tr>
<td>Q99788</td>
<td>CML1_HUMAN</td>
<td>MAJOR</td>
<td>CMKL1R1; DEZ; CHEMR23</td>
<td>U79526</td>
</tr>
<tr>
<td>P27815</td>
<td>CN4A_HUMAN</td>
<td>2</td>
<td>PDE4A</td>
<td>AF069491</td>
</tr>
<tr>
<td>Q9H6E3</td>
<td>COG4_HUMAN</td>
<td>2</td>
<td>COG4</td>
<td>AB008369</td>
</tr>
<tr>
<td>Q9Y215</td>
<td>COLQ_HUMAN</td>
<td>VII</td>
<td>COLO</td>
<td>NM_080543</td>
</tr>
<tr>
<td>Q96SM3</td>
<td>CPXM_HUMAN</td>
<td>2</td>
<td>CPXM</td>
<td>BC032692</td>
</tr>
<tr>
<td>Q96Z30</td>
<td>CRN1_HUMAN</td>
<td>4</td>
<td>CRNKL1; CRN</td>
<td>AF318304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>AF318305</td>
</tr>
<tr>
<td>Q9BUV8</td>
<td>CT24_HUMAN</td>
<td>4</td>
<td>C200RF24</td>
<td>BC004446</td>
</tr>
<tr>
<td>P57077</td>
<td>CU07_HUMAN</td>
<td>B</td>
<td>C21ORF7</td>
<td>AF269152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>AF269153</td>
</tr>
<tr>
<td>Q9NVD3</td>
<td>CUB_HUMAN</td>
<td>B</td>
<td>C21ORF18</td>
<td>AF248648</td>
</tr>
<tr>
<td>Q92679</td>
<td>CUG1_HUMAN</td>
<td>MAJOR</td>
<td>CUGBP1; BRUNOL2; CUGBP; NAB50</td>
<td>AB028911</td>
</tr>
<tr>
<td>O76075</td>
<td>DFFB_HUMAN</td>
<td>BETA GAMMA</td>
<td>DFFB; DFF2; DFF40; CAD</td>
<td>AB028912</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELTA</td>
<td></td>
<td>AB028913</td>
</tr>
<tr>
<td>P25686</td>
<td>DJB2_HUMAN</td>
<td>3</td>
<td>DNAJB2; HSJ1; HSPF3</td>
<td>NM_006736</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAJOR</td>
<td></td>
<td>S37374</td>
</tr>
<tr>
<td>Q90013</td>
<td>DMK_HUMAN</td>
<td>11</td>
<td>DMPK; MDPK</td>
<td>L19268</td>
</tr>
<tr>
<td>Q9NYP3</td>
<td>DONS_HUMAN</td>
<td>2</td>
<td>DONSON; C21ORF60</td>
<td>NM_145794</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>NM_145795</td>
</tr>
<tr>
<td>Accession.</td>
<td>Swiss-PROT ID</td>
<td>Isoform name</td>
<td>Gene name(s)</td>
<td>cDNA/mRNA</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Q9NY33</td>
<td>DPP3_HUMAN</td>
<td>2</td>
<td>DPP3</td>
<td>NM_130443</td>
</tr>
<tr>
<td>O60941</td>
<td>DTNB_HUMAN</td>
<td>3</td>
<td>DTNB</td>
<td>NM_033147</td>
</tr>
<tr>
<td>P29320</td>
<td>EPA3_HUMAN</td>
<td>MAJOR</td>
<td>EPHA3; ETK1; ETK; HEK</td>
<td>NM_005233</td>
</tr>
<tr>
<td>O75616</td>
<td>ERL1_HUMAN</td>
<td>HERA B</td>
<td>ERL1; HERA</td>
<td>AF082658</td>
</tr>
<tr>
<td>Q92731</td>
<td>ESR2_HUMAN</td>
<td>3</td>
<td>ESR2; NR3A2; ESTRB</td>
<td>BC024181</td>
</tr>
<tr>
<td>O00507</td>
<td>FAFY_HUMAN</td>
<td>SHORT</td>
<td>USP9Y; USP10; DFFRY</td>
<td>Y13619</td>
</tr>
<tr>
<td>P24071</td>
<td>FCAR_HUMAN</td>
<td>B DELTA S2</td>
<td>FCAR; CD89</td>
<td>NM_133280</td>
</tr>
<tr>
<td>P41439</td>
<td>FOL3_HUMAN</td>
<td>SHORT</td>
<td>FOLR3</td>
<td>Z32633</td>
</tr>
<tr>
<td>O95954</td>
<td>FTCD_HUMAN</td>
<td>E</td>
<td>FTCD</td>
<td>AF269024</td>
</tr>
<tr>
<td>P59103</td>
<td>G72_HUMAN</td>
<td>MAJOR</td>
<td>G72</td>
<td>AL138546</td>
</tr>
<tr>
<td>Q9UBA6</td>
<td>G8_HUMAN</td>
<td>MAJOR</td>
<td>C6ORF48; G8</td>
<td>NM_016947</td>
</tr>
<tr>
<td>Q9UBS5</td>
<td>GBR1_HUMAN</td>
<td>1E</td>
<td>GABBR1</td>
<td>NM_021905</td>
</tr>
<tr>
<td>Q9BSJ2</td>
<td>GCP2_HUMAN</td>
<td>2</td>
<td>TUBGCP2; GCP2</td>
<td>BC005011</td>
</tr>
<tr>
<td>P56159</td>
<td>GDNR_HUMAN</td>
<td>2</td>
<td>GFRA1; GDNFRA; TRNR1; RETL1</td>
<td>NM_145793</td>
</tr>
<tr>
<td>O94925</td>
<td>GLSK_HUMAN</td>
<td>GAC</td>
<td>GLS; KIAA0838</td>
<td>AF158555</td>
</tr>
<tr>
<td>Q969S8</td>
<td>HD10_HUMAN</td>
<td>4</td>
<td>HDAC10</td>
<td>AL022328</td>
</tr>
<tr>
<td>Q30201</td>
<td>HFE_HUMAN</td>
<td>MAJOR</td>
<td>HFE; HLH</td>
<td>NM_000410</td>
</tr>
<tr>
<td>Q9NR6M</td>
<td>II7S_HUMAN</td>
<td>2</td>
<td>IL17RB; IL17BR; EVI27</td>
<td>NM_172234</td>
</tr>
<tr>
<td>Q14790</td>
<td>ICEB_HUMAN</td>
<td>7</td>
<td>CASP8; MCH</td>
<td>NM_033537</td>
</tr>
<tr>
<td>Q92651</td>
<td>ICEA_HUMAN</td>
<td>B</td>
<td>CASP10; MCH4</td>
<td>NM_001230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>NM_032976</td>
</tr>
<tr>
<td>Q92965</td>
<td>IRF7_HUMAN</td>
<td>C</td>
<td>IRF7</td>
<td>NM_004030</td>
</tr>
<tr>
<td>Q16388</td>
<td>IRL1_HUMAN</td>
<td>C</td>
<td>IL1RL1; ST2; T1; DER4</td>
<td>NM_173459</td>
</tr>
<tr>
<td>O14713</td>
<td>ITP1_HUMAN</td>
<td>MAJOR</td>
<td>ITGB1BP1; ICAP1</td>
<td>NM_004763</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>NM_022334</td>
</tr>
<tr>
<td>Q9HCPO</td>
<td>KC11_HUMAN</td>
<td>1S</td>
<td>CSNK1G1</td>
<td>NM_022048</td>
</tr>
<tr>
<td>P20151</td>
<td>KLK2_HUMAN</td>
<td>3</td>
<td>KLK2</td>
<td>AF188745</td>
</tr>
<tr>
<td>Q9H2R5</td>
<td>KLK3_HUMAN</td>
<td>2</td>
<td>KLK15</td>
<td>NM_023006</td>
</tr>
<tr>
<td>Q9JUJ2</td>
<td>LEF1_HUMAN</td>
<td>B</td>
<td>LEF1</td>
<td>AF294627</td>
</tr>
<tr>
<td>P19256</td>
<td>LFA3_HUMAN</td>
<td>SHORT</td>
<td>CD58; LFA3</td>
<td>X06296</td>
</tr>
<tr>
<td>P53667</td>
<td>LK1_HUMAN</td>
<td>3</td>
<td>LMK1; LMK</td>
<td>NM_016735</td>
</tr>
<tr>
<td>Q99698</td>
<td>LYST_HUMAN</td>
<td>MAJOR</td>
<td>CHS1; LYST; CHS</td>
<td>NM_000081</td>
</tr>
<tr>
<td>P49641</td>
<td>M2A2_HUMAN</td>
<td>SHORT</td>
<td>MAN2A2; MANA2X</td>
<td>NM_006122</td>
</tr>
<tr>
<td>Q95405</td>
<td>MADI_HUMAN</td>
<td>2</td>
<td>MADH1P; SARA</td>
<td>NM_007324</td>
</tr>
<tr>
<td>P11137</td>
<td>MAP2_HUMAN</td>
<td>MAJOR</td>
<td>MAP2</td>
<td>NM_002374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAP2C</td>
<td></td>
<td>NM_031845</td>
</tr>
<tr>
<td>P27816</td>
<td>MAP4_HUMAN</td>
<td>2</td>
<td>MAP4</td>
<td>BC015149</td>
</tr>
<tr>
<td>P25912</td>
<td>MAX_HUMAN</td>
<td>3</td>
<td>MAX</td>
<td>NM_145113</td>
</tr>
<tr>
<td>Q15759</td>
<td>MK11_HUMAN</td>
<td>BETA 2</td>
<td>MAPK11; PRK1M1; SAPK2</td>
<td>NM_002751</td>
</tr>
<tr>
<td>O15438</td>
<td>MRP3_HUMAN</td>
<td>3A</td>
<td>ABCC3; CMOAT2; MRP3; MLP2</td>
<td>NM_020037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3B</td>
<td></td>
<td>NM_020038</td>
</tr>
<tr>
<td>P21757</td>
<td>MSRE_HUMAN</td>
<td>II</td>
<td>MSR1</td>
<td>NM_002445</td>
</tr>
<tr>
<td>Q9H4B4</td>
<td>NXF5_HUMAN</td>
<td>MAJOR</td>
<td>NXF5; TAPL1</td>
<td>NM_032946</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>NM_033152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>NM_033153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td>NM_033154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>NM_033155</td>
</tr>
<tr>
<td>Q96QS1</td>
<td>PHMX_HUMAN</td>
<td>5</td>
<td>PHEMX; TSSC6</td>
<td>NM_130023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>NM_130024</td>
</tr>
<tr>
<td>O14829</td>
<td>PPE1_HUMAN</td>
<td>2</td>
<td>PPEF1; PPEF; PFFP7C</td>
<td>NM_152225</td>
</tr>
<tr>
<td>Q9UMR5</td>
<td>PPT2_HUMAN</td>
<td>2</td>
<td>PPT2</td>
<td>NM_138934</td>
</tr>
<tr>
<td>Q9NQQ5</td>
<td>PRD7_HUMAN</td>
<td>MAJOR</td>
<td>PRDM7; PF4M4</td>
<td>NM_052996</td>
</tr>
<tr>
<td>O14818</td>
<td>PSAT_HUMAN</td>
<td>4</td>
<td>PSA4</td>
<td>NM_152255</td>
</tr>
<tr>
<td>Acc.</td>
<td>Swiss-Prot ID</td>
<td>Isoform name</td>
<td>Gene name(s)</td>
<td>cDNA/mRNA</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>P55036</td>
<td>PSD4_HUMAN</td>
<td>RPNI0E</td>
<td>PSMD4; MCB1</td>
<td>NM_153822</td>
</tr>
<tr>
<td>P49768</td>
<td>PSN1_HUMAN</td>
<td>I374</td>
<td>PSEN1; PSNL1; AD3; PS1</td>
<td>NM_007319</td>
</tr>
<tr>
<td>P23468</td>
<td>PTPD_HUMAN</td>
<td>MAJOR</td>
<td>PTMRD</td>
<td>NM_002839</td>
</tr>
<tr>
<td>O75771</td>
<td>R51D_HUMAN</td>
<td>2</td>
<td>RAD51L3; RAD51D</td>
<td>NM_133627</td>
</tr>
<tr>
<td>Q93062</td>
<td>RBMS_HUMAN</td>
<td>MAJOR</td>
<td>RBPM5</td>
<td>NM_006867</td>
</tr>
<tr>
<td>P78563</td>
<td>RED1_HUMAN</td>
<td>MAJOR</td>
<td>ADARB1; RED1; DRADA2</td>
<td>NM_015833</td>
</tr>
<tr>
<td>O15126</td>
<td>SCA1_HUMAN</td>
<td>2</td>
<td>SCAMP1; SCAMP</td>
<td>NM_052822</td>
</tr>
<tr>
<td>Q13243</td>
<td>SFR5_HUMAN</td>
<td>SRP40 2</td>
<td>SFR55, SRP40; HRS</td>
<td>NM_006925</td>
</tr>
<tr>
<td>O60902</td>
<td>SHX2_HUMAN</td>
<td>MAJOR</td>
<td>SHOX2; SHOT; OG12X</td>
<td>NM_006884</td>
</tr>
<tr>
<td>Q13425</td>
<td>SNB2_HUMAN</td>
<td>2</td>
<td>SNTB2; SNT2B2</td>
<td>NM_130845</td>
</tr>
<tr>
<td>Q9Y5W8</td>
<td>SNXD_HUMAN</td>
<td>2</td>
<td>SNX13; KIAA0713</td>
<td>NM_015132</td>
</tr>
<tr>
<td>P18883</td>
<td>SON_HUMAN</td>
<td>E</td>
<td>SON; NREBP; DBP5; C21ORF50; KIAA1019</td>
<td>NM_058183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td>NM_138926</td>
</tr>
<tr>
<td>Q15528</td>
<td>SUR5_HUMAN</td>
<td>SURF5A</td>
<td>SURF3; SURF-5</td>
<td>NM_006752</td>
</tr>
<tr>
<td>O14763</td>
<td>T10B_HUMAN</td>
<td>MAJOR</td>
<td>TRICK2; KILLER; ZTNFR9</td>
<td>NM_003842</td>
</tr>
<tr>
<td>Q9BZY9</td>
<td>TM31_HUMAN</td>
<td>BETA</td>
<td>TRIM31</td>
<td>NM_052816</td>
</tr>
<tr>
<td>P25445</td>
<td>TNR6_HUMAN</td>
<td>4</td>
<td>TNFRSF6; APT1; FAS; FAS1</td>
<td>NM_152873</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>NM_152875</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>NM_152876</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>NM_152877</td>
</tr>
<tr>
<td>P00750</td>
<td>TPA_HUMAN</td>
<td>SHORT</td>
<td>PLAT</td>
<td>NM_009931</td>
</tr>
<tr>
<td>Q93038</td>
<td>TR12_HUMAN</td>
<td>12</td>
<td>TNFRSF25; TNFRSF12; WSL1; WSL; APO3; DR3; DDR3</td>
<td>NM_148968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>NM_148969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>NM_148971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>NM_148972</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>NM_148973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>NM_148974</td>
</tr>
<tr>
<td>Q9BYM8</td>
<td>U713_HUMAN</td>
<td>4</td>
<td>UBCE7IP3; C20ORF18; XAP4</td>
<td>NM_031227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>NM_031228</td>
</tr>
<tr>
<td>P58418</td>
<td>USH3_HUMAN</td>
<td>B</td>
<td>USH3A</td>
<td>NM_174880</td>
</tr>
<tr>
<td>Q9NP71</td>
<td>WS14_HUMAN</td>
<td>5</td>
<td>WBSOR14; MIO</td>
<td>NM_032994</td>
</tr>
<tr>
<td>Q02040</td>
<td>XE7_HUMAN</td>
<td>SHORT</td>
<td>(XE7X; XE7; DXYS155E); (XE7Y; XE7; DXYS155E)</td>
<td>NM_005088</td>
</tr>
<tr>
<td>Q9Y493</td>
<td>ZAN_HUMAN</td>
<td>1</td>
<td>ZAN</td>
<td>NM_173055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>NM_173056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>NM_173057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>NM_173058</td>
</tr>
</tbody>
</table>
Appendix B

Correlation between SWISS-PROT structural domains

and alternatively spliced regions
My initial investigation into alternative splicing was motivated by the hypothesis that alternative splicing may correlate with in some way with the domain organization encoded in genes that are alternatively spliced. The rationale was that if evolution has bothered to set up a system of alternative splicing, then it likely affected regions that had some function and these would more likely than not be the structural (and functional) domains. If this hypothesis could be confirmed, then perhaps alternative splicing could be used to discover the domain organization in newly sequenced genes.

To investigate this possibility I wrote several programs that may be of use for others. In this appendix, I describe these programs.

varprot.pl

This perl program generates takes as input the complete SWISS-PROT database, in SWISS-PROT format and outputs a FASTA format database that contains complete entries for all annotated alternative isoforms. It uses the BIOPERL SWISS-PROT parser to extract the ALTERNATIVE PRODUCTS section from each SWISS-PROT entry, described in section 3.11.2 of the SWISS-PROT user manual (http://us.expasy.org/sprot/userman.html). Each entry in the output database contains information in its header that describes which regions are alternatively spliced. The format of the header line is:

```
>SWISS-PROTID-# NAME [M|V START END] [M|V START END]...
```

Where SWISS-PROTID-# is the Isoform ID and name is the name given in the ALTERNATIVE PRODUCTS section. These are followed by a variable number
of bracketed descriptions of the variably spliced regions. Each region has three components. The first is either an M or a V. M indicates that this region is missing (deleted) in some other isoform(s). V indicates that this region is variable (different sequence) in some other isoforms. The last two components are the start and end coordinates on the sequence given in this entry.

res2altsp.pl

This perl program generates and outputs a data structure that contains information about structural domain hits against sequences in a specified database. The database can be either a FASTA database containing the variable region descriptions given by VARPROT.PL or it can be an entire SWISS-PROT database in SWISS-PROT format. The other input is a database containing BLAST or HMMER hits against the sequences in the named database.

ASDOMTypes.pl

Takes as input the data structure ouput by RES2ALTSP.PL. Classifies each SWISS-PROT isoform by the spatial relationships between its alternatively spliced (AS) regions and its structural domains (SDs). There are eight categories:

(0) No identifiable structural domain (SD) regions

(1) All SDs do not overlap alternatively spliced (AS) regions

(2) Single AS region contains SD

(3) Single SD contains single AS region
(4) There is overlap between an AS region and a SD

(5) SD contains multiple AS regions

(6) There is overlap between SD and multiple AS regions

(7) SD contains AS region(s) and is overlapped by an AS region

Along with the observed number of each category, the number in each category that would be expected if SDs were placed within the database sequences randomly with respect to AS regions is output.

ASDOMTypesByDom.pl

Takes the same inputs as ASDOMTYPES.PL, but classifies each domain rather than each isoform. Also generates output for each domain identifier seen.

References

175

178

180

splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci U S A 101: 4118-23

144. Kim YK, Furic L, Desgroseillers L, Maquat LE. 2005. Mammalian Staufen1 recruits Upf1 to specific mRNA 3’UTRs so as to elicit mRNA decay. Cell 120: 195-208

184. Maquat LE, Li X. 2001. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. Rna 7: 445-56

196. Modrek B, Lee CJ. 2003. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. *Nat Genet* 34: 177-80

254. Sun X, Perlick HA, Dietz HC, Maquat LE. 1998. A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay
of nonsense-containing mRNAs in mammalian cells. Proc Natl Acad Sci U S A 95: 10009-14

