Happiness Is Best Kept Stable: Positive Emotion Variability Is Associated With Poorer Psychological Health

June Gruber, Aleksandr Kogan, Jordi Quoidbach, and Iris B. Mauss

Online First Publication, November 19, 2012. doi: 10.1037/a0030262

CITATION

Positive emotion has been shown to be associated with adaptive outcomes in a number of domains, including psychological health. However, research has largely focused on overall levels of positive emotion with less attention paid to how variable versus stable it is across time. We thus examined the psychological health correlates of positive emotion variability versus stability across 2 distinct studies, populations, and scientifically validated approaches for quantifying variability in emotion across time. Study 1 used a daily experience approach in a U.S. community sample (N = 244) to examine positive emotion variability across 2 weeks (macrolevel). Study 2 adopted a daily reconstruction method in a French adult sample (N = 2,391) to examine variability within 1 day (microlevel). Greater macro- and microlevel variability in positive emotion was associated with worse psychological health, including lower well-being and life satisfaction and greater depression and anxiety (Study 1), and lower daily satisfaction, life satisfaction, and happiness (Study 2). Taken together, these findings support the notion that positive emotion variability plays an important and incremental role in psychological health above and beyond overall levels of happiness, and that too much variability might be maladaptive.

Keywords: positive emotion, variability, fluctuation, stability, happiness

Psychological research has established that high levels of positive emotion promote well-being (Seligman & Csikszentmihalyi, 2000). For example, increased positive emotion promotes creative thinking (Isen, 1999), social connection with others (Fredrickson, 1998), emotional resilience in the face of stressors (Folkman & Moskowitz, 2000), and better physical health (Tugade, Fredrickson, & Barrett, 2004). This research suggests that higher levels of positive feelings are of paramount importance for human flourishing, including psychological health.

However, a complete understanding of the correlates of positive emotion requires more than an understanding of its overall levels. As a process that varies, or fluctuates, dynamically over time (Davidson, 1998), positive emotion can be fully understood only if we understand its dynamics. For example, two people could be identical in terms of their overall positive emotion levels but quite different from one another in their variability, with one person fluctuating very little around his or her average level and the other person fluctuating a great deal (see Figure 1). Prior work has demonstrated that variability in emotional states, frequently operationalized as the within-person standard deviation of emotions over time (e.g., Eaton & Funder, 2001), can be reliably measured (Trull et al., 2008), is stable within individuals (Eid & Diener, 1999), and is independent of overall emotion levels (Chow, Ram, Boker, Fujita, & Clare, 2005). Thus, examining variations in positive emotion is scientifically feasible.

Although most research agrees that higher mean levels of positive emotion are associated with better psychological health, two different perspectives exist on whether greater variability in positive emotion is adaptive. The first perspective suggests that greater variability is associated with worse psychological health. Indeed, early Buddhist texts underscored the importance of attaining greater emotional stability, rather than emotional variability, as an important component of well-being (Niramasuta: Unworldly [SN 36.21], 2010). In Western psychology traditions, recent work indicates that excessive changes in negative emotions can signal psychological instability associated with distress and mental illness (Kashdan & Rottenberg, 2010; Waugh, Thompson, & Gotlib, 2011). Consistent with this notion, greater variability in negative emotion is associated with increased depressive symptoms (Peeters, Berkof, Delespaul, Rottenberg, & Nicolson, 2006), borderline personality disorder (Trull et al., 2008), and neu-
roticism (Eid & Diener, 1999). Based on these findings, recent mindfulness-based treatments include a focus on decreasing variability in positive emotions (MStudy 1 = 3.43 and MStudy 2 = 3.85).

2 GRUBER, KOGAN, QUOIDBACH, AND MAUSS

...well-being (Kashdan & Rottenberg, 2010). Furthermore, greater variability in emotional states, including positive ones, is part of a healthy mental life.

The Present Investigation

Theoretical considerations suggest that variability in positive emotion should matter for psychological health above and beyond overall mean levels. However, two competing perspectives exist about the psychological health correlates of positive emotion variability. Although research exists that informs each of these two perspectives, few studies have directly examined the psychological health correlates (i.e., functioning, well-being, and symptoms of mental illness) of positive emotion variability. The present research thus examined this important question in large and diverse samples using a robust variety of measurement and sampling approaches. Specifically, we examined positive emotion variability across two studies with 2,635 participants drawn from two different countries, using a combination of diary and daily reconstruction methodologies, assessing both macro- and microlevel measures of variability, controlling for mean levels of affect when assessing variability, and using a wide range of psychological health outcomes.

The present investigation expands on extant work in positive emotion variability in several key ways. First, the present study is one of the first to comprehensively link positive emotion variability with psychological health. This builds on prior work providing associations with more indirect or specific indices of psychological health, including associations with the personality trait of neuroticism (Eid & Diener, 1999; McConville & Cooper, 1998) and nonclinical borderline personality features (e.g., Zeigler-Hill & Abraham, 2006). Second, we examined relatively fine-grained temporal variability in positive emotion within the course of a single day and across 2 weeks, which extends previous work linking variability in happiness across a 1-year period with depression and anxiety symptoms in adolescents (e.g., Neuman, van Lier, & Frijns, 2011). Third, we examined whether associations between variability and ill health in specialized clinical populations (e.g., Kashdan, Uswatte, Steger, & Julian, 2006; Newton & Ho, 2008) generalize to broader community samples and with more comprehensive measures of psychological health.

Method

Study 1 included a sample of 244 adult participants from the Denver, Colorado, community (55% women; M_age = 40.69 years). Participants were asked to rate their positive feelings each day before going to bed (between 7:00 p.m. and 11:00 p.m.) for 14 consecutive days (M = 12.60 days, SD = 2.29). Participants were asked to indicate how “happy” and “excited” they felt over the past 24 hr on a scale ranging from 1 (very slightly/not at all) to 5 (extremely), with responses combined into one positive emotion composite. Following established methods (Eid & Diener, 1999; Trull et al., 2008), we calculated two scores individually for each...
participant from these reports: positive emotion variability (PE\textsubscript{var}) as the standard deviation across 14 days and overall positive emotion (PE\textsubscript{mean}) as the average across 14 days. We controlled for effects of stressful events by measuring the number of daily stressful events with the following daily diary item: “In total, since this time yesterday, how many things happened to you that turned out to be stressful?” For each participant, the frequency of stressful events each day was averaged across the 14 days. Thus, both major stressors and daily hassles were accounted for.

Participants also completed four measures of psychological health, including functioning, life satisfaction, symptoms of depression, and symptoms of anxiety. Functioning was measured using a modified self-report version of the Global Assessment of Functioning Scale (Axis V, Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association, 2000), consisting of 23 items rated individually on a 1 (not at all) to 9 (extremely) scale, with total functioning scores ranging from 23 (lowest functioning) to 207 (highest functioning). Life satisfaction was measured using the Satisfaction With Life Scale (Diener, Emmons, Larsen, & Griffin, 1985) rated on a 1 (strongly disagree) to 7 (strongly agree) scale. Depression symptoms were measured using the Beck Depression Inventory (Beck & Steer, 1984), rated on a 0 to 3 scale. Anxiety symptoms were measured using the Anxiety Screening Questionnaire (Wittchen & Boyer, 1998), which measures symptom counts (yes/no) of social anxiety, generalized anxiety, panic, and agoraphobia. Higher scores indicate greater depressive and anxiety symptom severity, respectively.

We conducted Study 2 using a data set that enabled us to examine whether our results would generalize to more microlevel (day-to-day) measures of variability, to a larger and culturally distinct population, and when using distinct quantification methods to calculate variability across time. Study 2 consisted of 2,391 francophone adults (83% women; M\textsubscript{age} = 37.1 years, SD\textsubscript{age} = 12.0) recruited through a large online study mentioned during the French TV show Leurs Secrets du Bonheur. A Website link to the questionnaire was placed on the TV show Website to be completed on a voluntary basis. Participants were asked to report what they did on the previous day, episode-by-episode, following the validated day reconstruction method (Kahne\text{man}, Krueger, Schkade, Schwarz, & Stone, 2004). For each episode (M = 12.84 episodes, SD = 4.68), participants indicated whether they had experienced each of nine positive emotions items (yes/no) from the Differential Emotion Scale (Izard, 1972; French validation, Philippot, 1993), which included alertness, amusement, awe, contentment, joy, gratitude, hope, love, and pride. Positive emotion items were summed for each episode, and similar to Study 1, two scores were calculated individually for each participant, including PE\textsubscript{var} as the within-person standard deviation across episodes reported throughout the day, and PE\textsubscript{mean} as the positive emotion average across episodes. After completing the daily reconstruction method (DRM), participants were asked to report how satisfied they were with their day as a whole on a three-item 7-point scale (I am satisfied with how yesterday went; If I could start yesterday over, I wouldn’t change anything; Yesterday was a bad day—reversed scored); general life satisfaction using the same five-item Satisfaction With Life Scale (Diener et al., 1985), and trait subjective happiness using the four-item Subjective Happiness Scale (Lyubomirsky & Lepper, 1999). Higher scores on both scales signify greater life satisfaction and happiness, respectively.

Results

For both Study 1 and Study 2, both PE\textsubscript{var} and PE\textsubscript{mean} scores were entered as simultaneous predictors in regression models with the psychological health outcome measures. The regression models were checked for multicollinearity using the variance inflation factor, and all values were well below the maximum threshold level of 10. Means and standard deviations for both studies are reported in Table 1 and Table 2.

For Study 1, participants who experienced greater PE\textsubscript{var} throughout the 14-day study period reported worse psychological health outcomes, including decreased life satisfaction (\(\beta = -0.16\)), decreased functioning (\(\beta = -0.15\)), increased depression (\(\beta = 0.23\)), and increased anxiety (\(\beta = 0.18\); ps < .05). These associations held when controlling for life stressors, suggesting that they were not driven merely by external life events (ps < .05). It should be noted that life stressors predicted lower levels of life satisfaction (\(\beta = -0.12\)) and functioning (\(\beta = -0.29\)) and higher levels of anxiety (\(\beta = 0.19\)) and depression (\(\beta = 0.23\)). For Study 2, participants who reported greater PE\textsubscript{var} throughout the previous day experienced worse psychological health outcomes, including decreased daily satisfaction (\(\beta = -0.38\)), decreased life satisfaction (\(\beta = -0.23\)), and decreased subjective happiness (\(\beta = -0.26\); ps < .01).

Across both studies, three facts suggest that the results for PE\textsubscript{var} held above and beyond overall mean positive emotion levels (i.e., PE\textsubscript{mean}). First, all results were obtained when PE\textsubscript{var} and PE\textsubscript{mean} were entered simultaneously into our regression models. Second, even though PE\textsubscript{var} and PE\textsubscript{mean} were moderately positively correlated, PE\textsubscript{mean} predicted all outcomes in an opposite manner. For Study 1, this included PE\textsubscript{mean} predicting increased functioning (\(\beta = 0.31\)), increased satisfaction (\(\beta = 0.43\)), decreased depression (\(\beta = -0.27\)), and decreased anxiety (\(\beta = -0.24\); ps < .05). For Study 2, this included increased daily satisfaction (\(\beta = 0.64\)), increased life satisfaction (\(\beta = 0.43\)), and increased subjective happiness (\(\beta = 0.49\); ps < .01). Third, we employed two additional measures of quantifying PE\textsubscript{var} that produced identical results across both studies, including the probability of acute change (PAC; Trull et al., 2008), which calculates the proportion of large degrees of variability in positive emotion (e.g., Trull et al., 2008), and the mean square of successive differences (MSSD), which incorporates the temporal sequence and magnitude of variations (Jahng, Wood, & Trull, 2008). Specifically, for Study 1, participants who reported greater PE\textsubscript{var} throughout the previous day experienced worse psychological health outcomes, including decreased life satisfaction (PAC: \(\beta = -1.80\); MSSD: \(\beta = -0.37\)), decreased global functioning (PAC: \(\beta = -46.39\); MSSD: \(\beta = -7.89\)), elevated depression (PAC: \(\beta = 11.56\); MSSD: \(\beta = -2.44\)), and increased anxiety (PAC: \(\beta = 4.49\); MSSD: \(\beta = 0.73\); ps < .017). For Study 2, participants who reported greater PE\textsubscript{var} throughout the previous day experienced worse psychological health outcomes, including decreased daily satisfaction (PAC: \(\beta = -0.09\); MSSD: \(\beta = -0.11\)), decreased life satisfaction (PAC: \(\beta = -0.12\);
Means, Standard Deviations, Alphas, and Simple Correlations Among Measures in Study 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PEvar</td>
<td>0.75</td>
<td>0.27</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. PEmean</td>
<td>2.53</td>
<td>0.73</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.19</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. Functioning</td>
<td>147.35</td>
<td>27.10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4. Life satisfaction</td>
<td>3.72</td>
<td>1.63</td>
<td>.92</td>
<td>0.07</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. Depression</td>
<td>10.44</td>
<td>9.88</td>
<td>.93</td>
<td>0.16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. Anxiety</td>
<td>16.21</td>
<td>3.44</td>
<td>.95</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7. SLE</td>
<td>1.82</td>
<td>1.29</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. PEvar = positive emotion variability (range = 0.00–1.77); PEmean = overall positive emotion mean levels (range = 1.00–4.93); SLE = stressful life events.

Discussion

The present results suggest that regardless of overall positive emotion levels, greater variability in positive emotion was linked to detrimental psychological health outcomes, including decreased life satisfaction and global functioning and increased depression and anxiety (Study 1) and decreased daily satisfaction, life satisfaction, and subjective happiness (Study 2). These results were obtained in large and diverse international populations and with a wide range of indices of psychological health; qualitatively distinct measures of emotion (diary vs. day reconstruction methods; intensity vs. categorical ratings); different timeframes (day-to-day vs. moment-to-moment variation, reflecting macro- and microlevel variability); and different mathematical quantifications of variability (i.e., standard deviation, MSSD, PAC). This consistency of findings suggests that these results are robust and persist across distinct populations, domains of psychological health, timeframes, and measures of positive emotion variability. One important feature of the present study is that the results held when controlling for mean affect levels, which is especially important in light of prior studies that have conflated true change across time with mean-level variance (Baird, Le, & Lucas, 2006).

Such findings support the examination of intraindividual variability in emotion across time, in addition to their overall level, to gain a more complete understanding of the dynamic nature of emotion (Davidson, 1998) and its relationship with psychological health (Eid & Diener, 1999). Specifically, the present findings suggest that too much variability within a relatively brief time interval is associated with decreased functioning and psychological health in a general community sample. Future work is needed to systematically probe whether different types of variability—such as frequent yet small oscillations versus infrequent but large oscillations—predict different psychological health trajectories. This finding is consistent with the position that positive emotion serves an adaptive function if it is relatively stable over time. Unstable compared with stable positive emotion may be harmful because it involves extreme lows and highs, both of which have been shown to be maladaptive (Gruber, Mauss, & Tamir, 2011). Importantly, the fact that the present findings hold when controlling for mean levels of positive emotion suggests that psychological health is not merely driven by extreme lows in positive emotions, but rather by the simultaneous experience of lows and highs across time. The present finding also has implications for interventions aimed at promoting well-being and psychological health. Specifically, it suggests that psychological interventions may be most successful when they reduce variability in positive states as opposed to solely focusing on enhancing peak experiences and the frequency of positive emotion. Finally, it is striking that findings converged across different time scales, as variability in these time scales is likely driven by different processes. This convergence may indicate that effects on psychological health of

One potential alternative explanation of our results is that our findings are not specific to variability of positive emotions; instead, there may be a similar pattern for negative emotions as well. We thus evaluated whether negative emotion variability predicted well-being in Studies 1 and 2, controlling for mean negative emotion levels. In Study 1, we did not find any evidence for an association between negative variability (measured as the mean across 11 items: irritable, sad, distressed, angry, ashamed, worried, nervous, guilty, hopeless, anxious, hostile) and well-being, and in Study 2, only one of three tests (i.e., daily satisfaction, but not happiness or life satisfaction) yielded a significant negative relationship with negative emotion variability (measured as the mean across nine items: anger, sadness, embarrassment, fear, disgust, guilt, shame, contempt, and anxiety). Thus, although some of these tests suggest that negative variability is linked to well-being, the strength of these associations does not parallel the effects observed for positive emotion variability in the present study. We therefore focus on the novel question of whether positive variability specifically is linked to psychological health.

Table 2

Means, Standard Deviations, Alphas, and Simple Correlations Among Measures in Study 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PEvar</td>
<td>1.46</td>
<td>0.78</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. PEmean</td>
<td>1.57</td>
<td>1.15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.54</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. Life satisfaction</td>
<td>23.45</td>
<td>6.82</td>
<td>.88</td>
<td>.01</td>
<td>0.31</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4. Daily satisfaction</td>
<td>14.49</td>
<td>4.88</td>
<td>.84</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. Happiness</td>
<td>18.71</td>
<td>4.93</td>
<td>.85</td>
<td>.01</td>
<td>0.35</td>
<td>0.68</td>
<td>0.49</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. PEvar = positive emotion variability (range = 0.00–5.64); PEmean = overall positive emotion mean levels (range = 0.00–8.91); SLE = stressful life events.

*p < .05.
affective processes at very different time scales are governed by similar rules, an idea that has yet to receive in-depth empirical scrutiny and is ripe for future inquiry.

The present findings suggest several directions for future research. First, it will be critical to parse apart the most detrimental aspects of variability (e.g., frequent dips down from positive peaks, exhaustion experienced as a result of reacclimating to a constantly changing internal emotional ecosystem). Second, it will be critical to examine whether positive emotion variability is always detrimental, or whether it might be adaptive when it is associated with flexibly and adaptively shifting one’s emotion state to meet specific environmental changes or needs (Kashdan & Rottenberg, 2010). Third, although identifying cross-sectional associations is an important step in developing a model of positive emotion variability, this feature limits our ability to inform causal claims. On the one hand, it is possible that variability in positive emotion causes decreased psychological health by creating instability in people’s ability to function. On the other hand, reduced psychological health could lead to heightened variability because it leads to difficulty maintaining a stable emotional state. Ultimately, longitudinal and experimental designs are needed to examine the prospective and causal impact of positive emotion variability. Finally, it will be important to gain a better understanding of the mechanisms that link positive emotion variability to poorer psychological health.

In sum, positive emotion variability appears to play an incremental and critical role in psychological health above and beyond overall levels of positive emotion. Specifically, the present results provide evidence in support of the notion that how emotions unfold over time (in addition to their mean level) is involved in health. Specifically, too much variability and not enough stability in one’s positive feelings appear to co-occur with unhealthy psychological outcomes.

References

Received June 20, 2012
Revision received August 23, 2012
Accepted August 23, 2012