Hierarchical growth of entangled states

or

's-sourcery'

John McGreevy (UCSD)

based on work

(arXiv:1407.8203, 1505.07106, 1602.02805, in progress) with

Brian Swingle (Stanford)

and

Shenglong Xu (UCSD)

PLAN:

- Gapped groundstates
- ► Gapless groundstates
- Mixed states

Context

$$ightharpoonup \mathcal{H} = \otimes_{\mathsf{X}} \mathcal{H}_{\mathsf{X}}$$

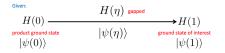
- ► $H = \sum_{x} H_{x}$ hamiltonian 'motif' (rules out many horrible pathologies). support of H_{x} is localized.
- ▶ families of systems labelled by (linear) system size L: H_L with groundstate(s) $\{|\psi_L\rangle\}$

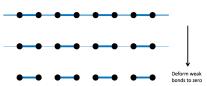
Coarsely-stated, impossible desideratum: efficiently-findable ${\color{blue} \textbf{U}}$ which contructs the groundstate from smaller unentangled subsystems :

$$|\psi_L\rangle \stackrel{??}{=} \mathbf{U}|0\rangle^{\otimes L}$$

Warmup example

$$(d = 1, s = 0)$$
:
adiabatically deform 1d band
insulator to product state





Construct:
$$\mathbf{U} \stackrel{?}{=} Pe^{i\int_0^1 d\eta \mathbf{H}(\eta)}$$

There are two problems with this plan, in general

$$\begin{array}{c|c} \text{Given:} & H(\eta) \text{ gapped} \\ H(0) & \longrightarrow H(1) \\ \text{product ground state} & |\psi(\eta)\rangle & \text{ground state of interest} \\ |\psi(0)\rangle & |\psi(1)\rangle & |\psi(1)\rangle \end{array}$$

1. (Technical, solvable) Even if $H(\eta)$ all have gap $\geq \Delta > 0$, adiabatic evolution has a nonzero failure probability (per unit time, per unit volume).

```
Solution [Hastings, Wen]: \begin{aligned} &\text{Find quasilocal } \mathbf{K} \text{ such that} \\ &\mathbf{i}\partial_{\eta}|\psi(\eta)\rangle = \mathbf{K}(\eta)|\psi(\eta)\rangle \\ & \Rightarrow & \text{Produce quasi-local } \mathbf{U} = e^{\mathbf{i}\int_{0}^{1}d\eta\mathbf{K}(\eta)}. \end{aligned} \qquad \begin{aligned} &K = -\mathbf{i}\int_{-\infty}^{\infty}dtF(t)e^{\mathbf{i}H(\eta)t}\partial_{\eta}H(\eta)e^{-\mathbf{i}H(\eta)t} \\ &F(t) \text{ odd, rapidly decaying, } \tilde{F}(0) = 0, \\ &\tilde{F}(\omega) = -\frac{1}{\omega}, |\omega| \geq \Delta. \end{aligned} Quasilocal means: U = e^{\mathbf{i}K}, \quad K = \sum_{x}K_{x}, \quad K_{x} = \sum_{r}K_{x,r} \\ &K_{x,r} \text{ supported on disk of radius } r, \parallel K_{x,r} \parallel \leq e^{-r^{1-d}} \end{aligned}
```

2. (Crucial, physical) Nontrivial states of matter are *defined* by the inability to find such a gapped path to a product state!

[Swingle, JM, 1407.8203, PRB]

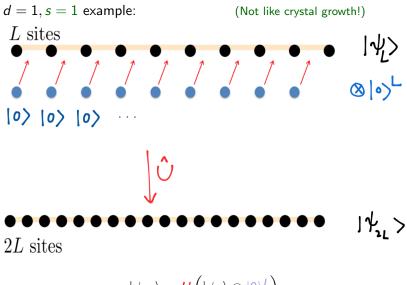
Instead, we are going to $\it grow$ the system $|\psi_L\rangle \to |\psi_{2L}\rangle$ with local unitaries.

$$\mathbf{U} \sim \cdots \circ U_{4L_0 \leftarrow 2L_0} \circ U_{2L_0 \leftarrow L_0}$$

U will in general not have finite depth. but U will have an RG structure.

Assumptions:

- ▶ Raw material: a bath of 'ancillas' $\otimes |0\rangle^M$ is freely available.
- ightharpoonup For rigorous results, energy gap Δ for all excitations.
- ► There may be groundstate degeneracy G(H_L) but the groundstates are locally indistinguishable (a necessary condition for the state to be stable)



$$|\psi_{2L}\rangle = \frac{U}{U} \left(|\psi_L\rangle \otimes |0\rangle^L \right).$$

An s-source RG fixed point

(in d dimensions) is a system whose groundstate on $(2L)^d$ sites can be made from the groundstate on L^d sites (plus unentangled ancillas) using a quasilocal unitary.

[Swingle, JM, 1407.8203, PRB]

$$|\psi_{2L}\rangle = \frac{\mathbf{U}}{\mathbf{U}} \left(\underbrace{|\psi_L\rangle \cdots |\psi_L\rangle}_{\mathrm{S}} \otimes |0\rangle^{M}\right) \qquad \text{d=2, s=1}$$

$$\stackrel{\text{d=2, s=1}}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\longrightarrow} \stackrel{U}{\longleftarrow} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet}$$

$$M = L^d(2^d - s)$$

How to construct U

Construct U by quasiadiabatic evolution:

(For s = 1 we must start with s = 1 copy at size L.)

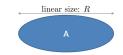
$$H(0) \xrightarrow{\text{ground state on size L (and product states)}} H(1)$$

Produce quasi-local U.

[Hastings, Wen]

Reminder: quasilocal means:

$$U=\mathrm{e}^{\mathrm{i}K}, \ K=\sum_{x}K_{x}, \ K_{x}=\sum_{r}K_{x,r}\ K_{x,r}\ \mathrm{supported}$$
 on disk of radius $r,\parallel K_{x,r}\parallel \leq \mathrm{e}^{-r^{1-d}}$



$$S(2R) \leq sS(R) + kR^{d-1}$$

 $S(2R) \geq sS(R) - k'R^{d-1}$

Why is s-source RG fixed point a useful notion?

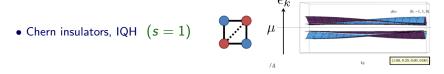
1. Such a circuit controls the growth of entanglement with system size: Area law theorem: any $s \leq 1$ fixed point in d > 1 enjoys an area law for EE of subregions.

$$S(A) \equiv -\mathrm{tr}\rho_A \log \rho_A \le k|\partial A| = kR^{d-1}.$$

- $s \ge 2^{d-1}$ is required to violate the area law.
- 2. The groundstate degeneracy satisfies: $G(2L) = G(L)^s$
- 3. s (smallest possible) is a property of the phase (since by definition an adiabatic path connects any two representatives) \implies classification axis.
- 4. The circuit implies a MERA representation of the groundstate.

Many interesting states are s-source fixed points

• Mean field symmetry-breaking states (s = 0)



- \bullet Topological states (discrete gauge theory, fractional QH), including chiral ones (s=1)
- Any topological quantum liquid
 - \equiv insensitive to smooth deformations of space \simeq gapped QFT has s=1.

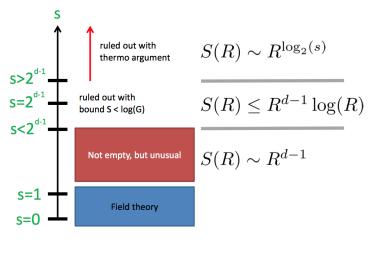
Why: place it in an expanding universe $ds^2 = -d\eta^2 + a(\eta)^2 d\vec{x}^2$

Experimental example: QCD

- Our universe is expanding, $t_{\text{doubling}} \sim 10^{10} \text{years}$.
- ▶ The QCD gap stays open $(m_{\pi}, m_p > 0)$.
- ▶ This is a gapped path from $|\psi_L\rangle$ to $|\psi_{2L}\rangle$.
- ▶ \implies ∃ a quasilocal unitary which constructs the QCD groundstate from a small cluster plus ancillas. (i.e. QCD has s=1).

This suggests a new approach to simulating its groundstate which is in principle very efficient.

Reason to care #3: Classification of gapped states by s



← e.g.:
Layers of FQHE
or
Haah's cubic code

aah's cubic code d = 3, s = 2

⇒ no continuum description!

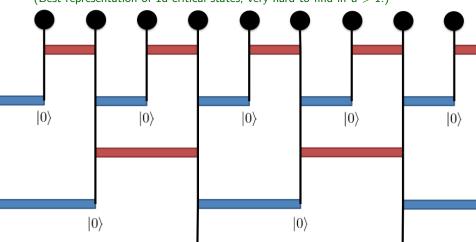
extensive GSD!

Reason to care #4: U → MERA

A MERA is a representation of the groundstate which: [Vidal]

- allows efficient computation of observables (few contractions)
- ▶ organizes the information by scale (like Wilson and AdS/CFT taught us to do)
- geometrizes the entanglement structure [Swingle]

(Best representation of 1d critical states, very hard to find in d>1.)



MERA representations of s = 1 fixed points

Quasilocal \bigcup Trotter \longrightarrow low-depth circuit:

$$|\psi_L\rangle \simeq {f U}_{
m circuit} |\psi_{L/2}\rangle |0\rangle^{L/2}$$

finite overlap requires $\hat{\ell} \sim \log^{1+\delta}(L)$

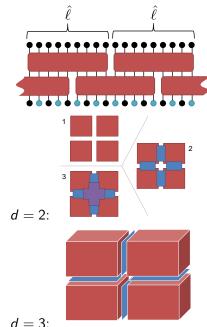
$$\Longrightarrow$$

bond dimension $\sim e^{\hat{\ell}^d} \sim e^{c \log^{d(1+\delta)}(L)}$

Crucial point: This construction of $U_{circuit}$ requires no variational sweeps on large system.

Numerical implementation...?

[getting started with Snir Gazit]



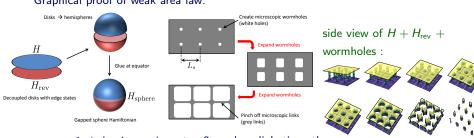
Further payoff: Invertible states

▶ A robust notion of 'short-range-entangled' Related ideas: [Kitaev, Freed] 'Invertible states,' $|\psi\rangle$ means $\exists |\psi^{-1}\rangle$, $\ensuremath{\mathbf{U}}$ s.t.

$$|\psi\rangle\otimes|\psi^{-1}\rangle={\color{red}{\bf U}}|0\rangle^{\otimes 2L^d}$$
 has $s=0.$

Weak area law: a unique groundstate on any closed manifold (no topological order, but can still be interesting as SPTs) implies the existence of an inverse state and the area law.

Graphical proof of weak area law:



step 1: 'edge inverse' kills edge states

step 2: make adiabatic path to $|0\rangle^{\otimes}$ on T^d

Gapless states and s-sourcery

- 'Entanglement Thermodynamics' constrains area law violation by gapless states
- ▶ and gives a relation between s and scaling exponents ($s = 2^{\theta}$).
- Examples of RG circuits for nontrivial critical points.

Entanglement bounds for gapless states

The area law is violated in groundstates of metals: $S \sim R^{d-1} \log k_F R$. This violation is a symptom of many low-energy extended modes. \implies can be seen in thermodynamics.

Result: [Swingle-JM, 1505.07106, PRB] If: thermal entropy of a scale-invariant state is $s(T) \sim T^{\frac{d-\theta}{z}}$ $z \equiv$ dynamical exponent $\theta \equiv$ hyperscaling violation exponent (anomalous dimension of T_{tt})

Then: the groundstate EE obeys the area law when $\theta < d-1$ and $0 < z < \infty$.

(Recall: a Fermi surface has heta=d-1.)

Entanglement thermodynamics

Idea: Recast EE as local thermodynamics problem
$$(T = T_x)$$

Find $\sigma_A \simeq Z^{-1} e^{-\sum_x \frac{1}{T_x} \mathbf{H}_x}$ $(\mathbf{H} \equiv \sum_x \mathbf{H}_x)$ local Gibbs state such that $S(\sigma_A) \geq S(\rho_A)$.

Who is σ_A ?

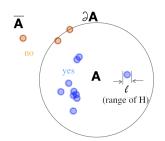
State of max entropy consistent \mathbf{H}_x in A.

(hence
$$S(\sigma_A) \geq S(
ho_A)$$
)

[Cramer et al 2010, Swingle-Kim 2014]
$$m{\sigma}_{A} \propto e^{-\sum_{{\sf x}\in A}{m{\sf H}_{{\sf x}}}/{\mathcal{T}_{{\sf x}}}}$$

 $1/T_x = Lagrange multipliers$

$$\operatorname{tr} \mathbf{H}_{A} \sigma_{A} = \operatorname{tr} \mathbf{H}_{A} \rho_{A} = \underbrace{\mathcal{E}_{g,A}}_{\operatorname{\mathsf{gs energy of }} H_{A}} + \mathcal{O}\left(|\partial A|\ell|\mathbf{H}_{x}|\right)$$



 $\implies \sigma_A$ is a state with excitations localized at ∂A , $T_x \to 0$ in interior of A.

Entanglement thermodynamics

Crucial Fact (local thermodynamics): For scaling purposes,

$${
m tr} {f H}_A {f \sigma}_A \simeq E_{g,A} + \int_A d^d x \ e(T_x)$$
 $-{
m tr} {f \sigma}_A \log {f \sigma}_A \simeq \int_A d^d x \ s(T_x)$

 $e(T_x) = Ts(T_x)$, bulk thermodynamic densities at temp T_x .

Why: True if $1 \gg \frac{\nabla T_x}{T_x} \cdot \xi_X$ (for all x) $(\xi_x \equiv \text{local correlation length}).$

But: let $\sigma_A(\tau) \equiv Z(\tau)^{-1} e^{-\frac{1}{\tau} \sum_x \tilde{\mathbf{H}}_x/T_x} \stackrel{\tau \to 1}{\to} \sigma_A$.

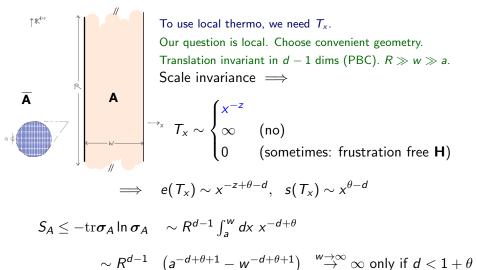
This state has temperature $T_x(\tau) = \tau T_x$, $\Longrightarrow \xi_x(\tau) \sim T_x(\tau)^{-1/z} \propto \tau^{1/z}$

So (unless $z=\infty!$) the figure of merit for local thermo in state $\sigma_A(\tau)$ is

$$1 \gg \underbrace{\frac{\nabla T_{x}(\tau)}{T_{x}(\tau)}}_{\sim \tau^{0}} \cdot \underbrace{\xi_{x}(\tau)}_{\sim \tau^{-1/z}} \stackrel{\tau \to \infty}{\to} 0.$$

$$S(\sigma_A(au)) = au^{rac{d- heta}{z}} S(\sigma_A) \implies$$
 scales the same way with region size.

Scaling in strip geometry



Hence: scale invariant states with heta < d-1 obey the area law.

If our scaling theory is an s-source RG fixed point

$$S(2R) \le sS(R) + kR^{d-1} .$$

Assume saturated (if not, can use smaller s) \Longrightarrow

$$S_{A} = k \left(\frac{R}{a}\right)^{d-1} \sum_{n=0}^{\log_{2}(w/a)} \left(\frac{s}{2^{d-1}}\right)^{n}$$

$$\stackrel{R\gg w\gg a}{\simeq} k \left(\frac{R}{a}\right)^{d-1} \left(1 - \left(\frac{a}{w}\right)^{d-1 - \log_{2} s} + \cdots\right)$$

Compare subleading terms in EE of strip:

$$s=2^{\theta}$$

(Fermi surface has $\theta=d-1$, hence $s=2^{d-1}$, marginally violates area law. \checkmark)

Gapless states with explicit s = 1 RG circuits

Expectation: CFTs are s = 1 fixed points.

 ∞ many examples of d=2 quantum critical points

which are exact s=1 fixed points: 'Square-root states' [Kimball 1979]

• Classical stat mech model
$$\longrightarrow$$
 • Quantum system in d space dimensions

• configurations
$$s$$
 \longrightarrow • states $|s\rangle$ (orthonormal)
• Boltzmann weight $e^{-\beta h(s)}$ • g.s. wavefunction

$$\Rightarrow \text{Boltzmann weight } e^{-\beta h(s)} \longrightarrow \text{g.s. wavefunction}$$

$$\mathcal{Z} \equiv \sum_{s} e^{-\beta h(s)} \qquad \qquad |h, \beta\rangle = \mathcal{Z}^{-1/2} \sum_{s} e^{-\beta h(s)/2} |s\rangle$$
• coolness $\beta = 1/T \qquad \longrightarrow \qquad$ e coupling

e.g. near-neighbor Ising
$$\mathbf{Z}_i|s\rangle = s_i|s\rangle$$
. Parent Hamiltonian:

model:
$$h(s) = \sum_{\langle ij \rangle} s_i s_j$$
 \longrightarrow $\mathbf{H} = \sum_i \left(-\mathbf{X}_i + e^{-\beta \mathbf{Z}_i \sum_{\langle i|j \rangle} \mathbf{Z}_j} \right)$

correlations
$$\langle Z_r Z_{r'} \rangle$$
 = $\begin{array}{c} \text{correlations of diagonal operators} \\ \langle \operatorname{\mathsf{gs}} | \mathbf{Z}_r \mathbf{Z}_{r'} | \operatorname{\mathsf{gs}} \rangle \\ \text{quantum critical point} \end{array}$

• real-space RG scheme • quantum RG circuit with s=1

RG circuits for square root states

2d classical Ising TRG scheme: $\mathcal{Z} = \sum_{abcd...} T_{abc} T_{ade} \cdots$ Two parts of classical RG step

[Levin-Nave]:

$$1: \sum_{e} T_{abe} T_{cde} = \sum_{f} S_{acf} S_{bdf}$$

$$\sum_{e} \sum_{b} c = \sum_{d} c = \sum_{f} \sum_{b} c$$

$$2: \sum_{abc} S_{akc} S_{cjb} S_{bia} = T'_{ijk}$$

$$\sum_{abc} \sum_{b}^{k} \sum_{b}^{c} \sum_{i}^{j} = \sum_{i}^{k} \sum_{j}^{i}$$

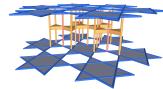
Quantum version:

$$\left. \mathbf{U}_{1} \right|_{b}^{a} \underset{e}{\nearrow}_{e} \right\rangle \otimes |0\rangle_{f} = \sum_{f} \left|_{b}^{a} \underset{d}{\nearrow}_{f}^{c} \right\rangle \otimes |0\rangle_{e} \; . \; \left. \mathbf{U}_{2} \sum_{abc} \left|_{a}^{k} \underset{b}{\nearrow}_{b}^{c} \right| \right\rangle = \left|_{i}^{k} \underset{i}{\nearrow}_{j}^{i} \right\rangle \otimes |000\rangle_{e} \; . \;$$

$\textbf{U} = \prod \textbf{U}_2 \prod \textbf{U}_1$

Fixed point of classical TRG

$$\implies$$
 $s = 1$ fixed point.



Mixed s-sourcery

Mixed s-sourcery

The extension of tensor network ideas to open quantum systems will be useful. What should replace the unitaries in the *s*-source RG circuit?

A sequence of states $\{\rho_L\}$ form a **purified** s source fixed point if there exists a sequence of purifications $\{|\sqrt{\rho_L}\rangle_{12}\}$ with $\mathrm{tr}_2(|\sqrt{\rho_L}\rangle\langle\sqrt{\rho_L}|_{12})=\rho_L$ and

$$|\sqrt{
ho_{2L}}
angle = \tilde{V}\left(\underbrace{|\sqrt{
ho_L}
angle \otimes ... \otimes |\sqrt{
ho_L}
angle}_{s ext{ times}} \otimes |0...0
angle
ight)$$

where $|0...0\rangle$ is a product state of the appropriate size and \tilde{V} is a quasi-local unitary on A^sE . i.e.: \exists a quasilocal channel $\rho_{2L}=\mathcal{E}\left(\rho_L^{\otimes s}\otimes|0...0\rangle\langle0...0|\right)$

• The entropy can be volume law, but the mutual info is still area law:

$$I(A_{2R}, A_{2R}^c) \leq sI(A_R, A_R^c) + kR^{d-1}.$$

ullet Local channel preserves locality of operators \Longrightarrow efficiently contractible.

[Swingle-JM, to appear]

$$H = \sum c_x^\dagger h_{xy} c_y + h.c., \qquad ext{with } h_{xy} o 0 ext{ for } |x-y| \gg a$$

thermal eqbm: $\rho_T = e^{-H/T}/Z = \operatorname{tr}_2 \sum_E \sqrt{\frac{e^{-\beta E}}{Z}} |E\rangle_1 |E\rangle_2$ is s = 0.

 $|T\rangle$ is the groundstate of $(f_k = \frac{1}{e^{\epsilon_k} + 1})$

$$H_T \equiv \sum_{k} \left(-d_k^{\dagger} d_k + \tilde{d}_k^{\dagger} \tilde{d}_k \right), \qquad {}^{\left(d_k \equiv \sqrt{f_k} c_k + \sqrt{1 - f_k} \tilde{c}_k, \cdot \right) \atop \tilde{d}_k \equiv -\sqrt{f_k} c_k + \sqrt{f_k} \tilde{c}_k, \cdot} \right)$$

which is gapped, local and adiabatically connected to

$$H_{\infty} = -\sum_{x} \left(c_x^{\dagger} c_x^{} + \tilde{c}_x^{\dagger} \tilde{c}_x^{}
ight), \quad |{
m gs}_{\infty}
angle = \prod_{x} rac{c_x^{} + \tilde{c}_x^{}}{\sqrt{2}} |0
angle \qquad {
m (ultralocal)}.$$

So the resulting a quasiadiabatic ${\bf U}$ gives a quasilocal channel: ${m
ho}_T o {
m tr}_2 {\bf U} |T\rangle \langle T| {\bf U}^\dagger = {\sf product state}.$

A sufficient condition for mixed s = 0

$$S(A) = c_1 \operatorname{vol}(A) + \int_{\partial A} \left(c_2 + \sum_{i>2} c_i f_i(K, R) \right) + \mathcal{O}(\ell^d e^{-\ell/\xi}) \quad (\star)$$

 $\ell \equiv \text{linear size of } A$.

$$\implies I(A:C|B) \approx 0 \text{ if } {}^{AB+BC-B-ABC=0}_{\text{and } \partial B+\partial(AC)=\emptyset}$$

[Fawzi-Renner 15]: approximate quantum Markov chains can be reconstructed from marginals via a channel on the buffer.

Make a cellular decomposition of space (e.g. d=2) (all regions $> \xi$)

$$I(p ext{-cells}: (p-1) ext{-cells}|\mathsf{buffer}) pprox \mathcal{O}(N_\mathsf{cells}e^{-\ell/\xi}).$$

$$\rho(T) = \rho_{2\text{-cells} \cup 1\text{-cells} \cup 0\text{-cells}} \approx \mathcal{N}_{1 \to 2}(\mathcal{N}_{0 \to 1}(\mathcal{N}_{\emptyset \to 0}(\cdot)))$$

When is cellular reconstruction possible?

(*) is true for:

- invertible states.
- CFT at finite temperature.
- states with classical gravity duals.
- states which are not finite- T quantum memories [Hastings def of TO]: adiabatically connected to $T=\infty \implies$ quasilocal channel to product state.

Two possible obstructions: edge modes and TEE [Preskill-Kitaev]. For *p*-form gauge theory, $I_{p-1\to p}$, $I_{d-p-1\to d-p}\neq 0$

Run the construction backwards: an array of bubbles-of-nothing.

Q: Is the thermal double the groundstate of a local, gapped **H**? 'Yes' would let us use groundstate *s*-sourcery.

Q: Can we improve the structure of the channel? The range of the resulting circuits is the thermal correlation length $(\to \infty$ as $T \to 0$).

Fawzi-Renner result doesn't take advantage of locality within the buffer B.

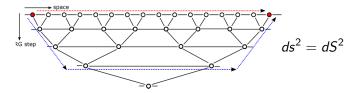
U will be more local if we incorporate the s=1 groundstate circuit near the IR.

Brief but provocative concluding remarks

Geometry is made of entanglement

This is a step in a larger program to understand the emergence of space in gauge/gravity duality:

entanglement determines (much of)* bulk geometry [Swingle, van Raamsdonk, ...]



Entanglement of a subregion bounded by the minimum number of bonds which must be cut to remove it from the graph.

* Interesting exception: behind horizons, where time is emergent, it seems extra data about the *complexity* of the state is required. [Stanford group]

$$\mathcal{H}, \mathbf{H} \overset{\mathsf{RG} \ \mathsf{circuits}}{ o} \overset{[\mathsf{Swingle-van} \ \mathsf{R}, \ \mathsf{Faulkner} \ \mathsf{et} \ \mathsf{al}]}{ o} \mathcal{G}_{\mu\nu} = \mathcal{T}_{\mu\nu}$$

The end.

Thank you for listening.

State of matter	Z	5	θ	EE
Insulators, etc.	Gap	0	n/a	Area
SSB, discrete	Gap	0	n/a	Area
IQHE (invertible)	Gap	1	n/a	Area
FQHE	Gap	1	n/a	Area
Topological states	Gap	1	n/a	Area
SSB, continuous $(d > 1)$	1	1	0	Area
QCP (conformal), $d = 1$	1	1	0	Area*Log
QCP (conformal), $d > 1$	1	1	0	Area
Quadratic band touching	2	≤ 1	0	Area
Fermi liquids	1	2^{d-1}	d-1	Area*Log
Spinon Fermi surface	3/2?	2^{d-1}	d-1	Area*Log
Diffusive metal, $d = 3$	2	2^{d-2}	d-2	Area
QED	1	1	0	Area
QCD	Gap	1*	0	Area

Digression about dragons vs motives

There are nefarious counterexamples ('dragons') to many of the things I will say, but they all (?) involve some *localized cleverness*.

An example of a pathology that goes away upon 'H-motivization':

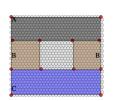
Expectation: Any 2d gapped state: $S_A=R/\epsilon-\gamma$

signature of topological order (determines $\mathcal{D}^2 \stackrel{abelian}{=} \#$ of

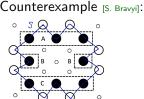
$$T^2$$
-groundstates: $\gamma = \log \mathcal{D}$) [Preskil-Kitaev, Levin-Wen 04].

 $\gamma\,$ can be extracted by inclusion-exclusion (cancel boundaries):

$$2\gamma = S_{AB} + S_{BC} - S_B - S_{ABC}$$



linear size: R



a qbit at each site (
$$\mathbf{x} \equiv \sigma^{\mathbf{x}}, \mathbf{z} \equiv \sigma^{\mathbf{z}}$$
 to save eyesight) **pick** S

 $\mathbf{H}_{\mathsf{snake}} = -\sum_{n \in S} \mathbf{Z}_{n-1} \mathbf{X}_n \mathbf{Z}_{n+1} - \sum_{n \notin S} \mathbf{X}_n$ This state does *not* have topological order (unique gs)

$$|gs\rangle = |snake \ state\rangle_S \otimes_{n \notin S} |+\rangle_n$$

but has
$$\gamma = 1 \neq \log(\mathcal{D} = 1) = 0$$
. Not motivic!

Digression about dragons vs motives

Make the Bravyi snakes hop [D. Ben-Zion, D. Das, JM, 1511.01539, PRB]:

$$H = -\sum_{i} A_{i} - \sum_{p} B_{p} S_{p} - \sum_{i} X_{i} \prod_{l \in i} (Z_{i+l})^{\frac{1-\sigma_{l}^{2}}{2}}.$$

a solvable model with a $\boldsymbol{H}\text{-motif}$ made from the Bravyi snake.

$$|\mathrm{gs}\rangle = \sum_{\{S\}} |S\rangle \otimes (|\mathrm{snake\ state}\rangle_S \otimes_{n \notin S} |+\rangle_n)$$

$$\{\mathrm{S} : \{S\} = \{\{S\}\}\} \otimes (|\mathrm{snake\ state}\rangle_S \otimes_{n \notin S} |+\rangle_n)$$

 $oxed{\ell} \equiv oldsymbol{\sigma}^{z}_{\ell} = -1$

But this is in the same phase as \mathbb{Z}_2 gauge theory: $\gamma = \ln 2$. (\checkmark)

(Side remark: However, in the presence of symmetry $(\mathbb{Z}_2 \times \mathbb{Z}_2)$, it is distinct. This is an example of a *symmetry-enriched topological phase*:

the anyons come in doublets of $\mathbb{Z}_2\times\mathbb{Z}_2!)$

The point of the Wagnerian digression: it is the motivic structure itself (not Siegfried) which slays the dragon.

Tensors for 2d ising model

abcd...

