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This study models traffic congestion with a system of differential equations which describe vehi-
cles moving on a one-dimensional ring. Numerical integration using the fourth-order Runge-Kutta
method was performed on the model. We found that the model develop shockwaves which propagate
in the opposite direction of traffic, and also exhibits numerous spectral modes. Time evolution of
the density and velocity profile were analyzed.

I. INTRODUCTION

The emergence of congestion in steadily flowing traffic
is a well-studied problem in numerical modeling. Pre-
vious studies, as well as an actual test involving sub-
jects driving cars around a circular single-lane track show
that traffic jams can emerge in uniform traffic from small
perturbations[1, 2]. One method of modeling this phe-
nomenon is assigning to each vehicle an equation of mo-
tion which is determined by its relation to neighbor-
ing cars. This study investigates a particular class of
accident-avoiding equations of motion which does not al-
low a car to surpass its neighbor.

II. DYNAMICAL MODEL

The dynamical model used here is described in detail
in a previous study[1]. The equation of motion of car n
(n = 1,2,...,N) is modeled by

ẍn = a(V (∆xn)− ẋn) (1)

where

∆xn = xn+1 − xn (2)

Since V (∆xn) is the effective speed limit, the equa-
tion describes an acceleration proportional to the differ-
ence between the speed limit and the current speed of a
car. Periodic boundary condition is imposed, such that
xn+1 = x1. Many choices for V (∆xn) can be made, in-
cluding linear relations such as the three-second following
distance rule, V (∆xn) ∝ ∆xn, and non-linear relations
such as V (∆xn) ∝ tanh(∆xn). These choices both allow
a steady-state solution of

xn = bn + ct (3)

for constants b = L/N and c = V (b), where L is the
circumference and N is the total number of cars. In
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addition, the stability of the solution is governed by pa-
rameters a and b. If the condition V ′(b) < a

2 is met, the
modes induced by a perturbation decay and the solution
reduces to steady flow. However, if V ′(b) > a

2 , the modes
are amplified [1]. In the cases where V (∆xn) ∝ ∆xn or
∝ tanh(∆xn), the modes eventually amplify until a car
tagging behind catches up with a car in front, causing an
“accident.” In order to eliminate these “accidents,” one
can choose V (∆xn) as follows

V (∆xn) = tanh(∆x− 2) + tanh(2) (4)

III. NUMERICAL SIMULATION

In this study, we choose N = 40, L = 60, a = 1, which
yields a steady flow velocity v0 = 0.5. These parame-
ters fulfill the requirement V ′(b) 0.786 > a

2 = 0.5 for
oscillation modes to occur. Simulations with parameters
outside this range were found to exhibit the steady flow
solution. With initial conditions ẋn = v0, we introduce a
10% extra velocity in the first car. The solution is then
integrated using the RK4 algorithm.

The positions of all cars are plotted as a function of
time in Fig. 1. The solution exhibits shockwaves, or
“traffic jams”, propagating in the reverse direction of the
traffic, which emerge from the small perturbation in the
initial condition. The shockwaves are rendered more vis-
ible when plotted as traffic density in Fig. 2.

0 50 100 150 200 250 300 350 400

Time

0

10

20

30

40

50

60

D
is
ta
n
ce

FIG. 1: Positions of all cars with time.
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FIG. 2: Density of the traffic as a function of position
and time. The density was calculated with a running
average over 1/10 of the circumference. Traffic flows in
the positive distance direction.

The temporal Fourier Transform reveals that numer-
ous modes exist in the density of the traffic (Fig. 3). In
particular, there is a harmonic with a frequency of ˜0.5
throughout the spectrum. However, the dominant fea-
tures of the spectrum are mostly in the low frequency
range, where a harmonic of frequency spacing ˜0.003 ap-
pears (Fig. 4). One can also observe that the velocity
of the shockwaves tend to decrease with time, with one
shockwave merging into another, forming a conglomerate
with lower velocity. Although the shockwaves propagate
with a fraction of the velocity of the cars, they can grad-
ually slow down to two orders of magnitude of the steady
flow velocity. This contributes to the spectral dominance
of low frequency modes.
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FIG. 3: The temporal Fourier Transform of the traffic.A
harmonic with frequency spacing 0.5 is evident in the
spectrum.
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FIG. 4: The temporal Fourier Transform of the traffic
at low frequencies. A harmonic with frequency spacing
0.003 appears in the low frequency spectrum.

The velocity profile of the traffic also exhibits changes,
as expected from the traffic jam (Fig. 5). The cars which
originally start out with the steady flow velocity gradu-
ally fall into two groups–one group with lower velocity
(the congested group) and another with higher velocity
transitioning between shockwaves.
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FIG. 5: The velocity profile as a function of time. As
time passes, cars originally at the steady flow velocity
gradually fall into two bunches.

IV. DISCUSSION AND CONCLUSION

The equations of motion, eq. 1, together with a choice
of a speed limit function such as eq. 4 are likely to be a
sufficient description of traffic jams. The main advantage
is that these equations do not allow a car to overtake an-
other car, thus avoiding “accidents.” While this choice of
the speed limit function cannot accommodate modeling
of the delayed reaction time of drivers, it is nevertheless
useful for observing the dynamics of a traffic jam.

In this study, we found that given sufficient vehicle den-
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sity, traffic jams can grow from small perturbations. We
also found that the shockwaves propagate in the opposite
direction of traffic. In addition to previous findings that
a common mode in traffic jams propagate at 20 km/hr
in 40 km/hr traffic[2], this simulation demonstrated that
evolution through time can slow traffic to much lower
speeds. Lastly, the velocity profile clearly show that the
vehicles evolve into two groups, one stuck in the traffic

jam and the other transitioning between traffic jams.
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