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Abstract 
 

Controlling and Imaging Molecular Motion at the Surface of a Gate Tunable Graphene Device 
 

By 
 

Franklin Liou 
 

Doctor of Philosophy in Physics 
 

University of California, Berkeley 
 

Professor Michael F. Crommie, Chair 
 

 
The ability to control nanoscale molecular motion with device-scale electric fields opens 

many exciting possibilities for nanotechnology. Collective motion of molecules can be used to 
assemble new nanostructures, induce mass and charge transport, transform device properties by 
surface modifications, and can potentially be used as a tool for constructing nanoscale machines. 
As components for electromechanical devices approach the nanometer length scale, how they 
interact with local electric fields and currents becomes increasingly important. This dissertation 
focuses on exploring how macroscopic electric fields and currents can manipulate and probe the 
collective motion of adsorbed molecules on gate-tunable devices. 

 
The movement of F4TCNQ molecules on a graphene field-effect transistor was controlled 

by the application of a gate voltage and source-drain current, and concurrently imaged using a 
scanning tunneling microscope. Various field-induced molecular phenomena were investigated 
on the device, including gate-tunable surface molecular concentrations, gate-tunable molecular 
phase transitions, gate-dependent molecular diffusion, molecule density-dependent current 
transport, and current-induced electromigration. These phenomena provide insight into how 
nanoscale molecular motion can be controlled by external electric fields, and how force and 
momentum are transmitted between electrons and adsorbates under non-equilibrium conditions.
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1 Introduction 
1.1 Manipulating Matter at the Nanoscale 

In his 1959 lecture There’s Plenty of Room at the Bottom, Feynman invited his audience 
to venture into the new science of miniaturization, where tiny machines could hypothetically be 
built and operated using only a small fraction of materials usually needed. A prerequisite of 
manufacturing such tiny machines is solving the problem of “manipulating and controlling things 
on a small scale.”1 In the 60 years that have since passed, scientists have answered Feynman’s 
challenge by demonstrating numerous ways to control and image matter at the atomic scale, one 
of which is scanning tunneling microscopy (STM), where an atomically sharp tip can be used to 
nudge and pull atoms on a surface to form desired structures. This development has allowed 
surface scientists to assemble matter in new and interesting ways, enabling the creation of 
quantum corrals,2,3 artificial electronic states,4 and even cascade machines that can be triggered 
with a slight push from a STM tip.5,6 Although the STM has effectively provided an “arm” to 
precisely manipulate matter at the nanoscale, its drawbacks also come from the limited range of 
the tip’s influence, making it less useful as a tool for operating larger and more complex 
nanomachines. On the other hand, large-scale manipulation of atomic and molecular adsorbates 
by macroscopic electric fields has long been a core part of electrochemical technologies such as 
electrocatalysis,7,8 batteries,9 supercapacitors,10,11 neuromorphic devices,12,13 and electrochemical 
sensors.14,15 Interactions between ions and their electrochemical environment are known to 
induce controllable collective motion on electrode surfaces, such as switching in self-assembly 
geometries16–18 and ion migration.19,20 It is thus natural that state-of-the-art STM has progressed 
towards probing nanoscale systems while they are being actively driven by external stimuli such 
as current,21–25 electric fields,5,26–28 and light.29,30 

While nanomachines can conceivably be operated by an electrochemical system, 
complicated electrolytic environments pose a challenge for imaging nanoscale motion.31–33 To be 
able to image atoms and molecules with high resolution under dynamically changing surface 
configurations, STM imaging is typically done in ultra-high vacuum (UHV). To manipulate 
surface adsorbates in UHV, electric fields are not applied through an electrolyte, but through 
electrostatic gating and surface currents in a solid-state device. One example of such a system, 
which will be a main topic of this dissertation, uses a graphene field effect transistor to control 
the motion of F4TCNQ molecules deposited on its surface.34 Such devices can be used to push 
molecules around via macroscopic electric fields and currents while concurrently allowing a 
STM to take atomically-resolved images of the surface. Insights gained from observing such 
externally driven molecular motion can help us understand how energy, force, and momentum 
are transmitted at the nanoscale, something of fundamental importance to the operation of 
nanomachines. 

As the components of a machine are shrunk down to ever smaller sizes, their mechanical 
and electronic properties become vastly different from bulk materials, so there is a need to re-
evaluate the principles of motion at the nanoscale. For instance, electric fields permeate materials 
with reduced dimensionality more easily,35,36 which can lead to stronger interactions that 
influence the diffusive motion of molecules on surfaces. Surface atomic corrugation also causes 
adsorbates to settle into one of a few discrete energetically stable geometries. Perhaps most 
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importantly for electrically-operated nanomachines, the laws of motion are drastically different 
for electrons and adsorbates, the electron being a quantum mechanical object described by 
waves, and the atom being a more classical object with more well-defined position and 
momentum. There is thus a need to rethink how force is transmitted from one object to the other 
at the nanoscale. Just as understanding fluid mechanics is important for the design of wind 
turbines, so too is understanding nanoscale force transmission crucial for designing functional 
nanomachines. 

Moreover, machines are devices that turn energy into useful motion. In order for a 
nanomachine to produce useful motion it must have controllable interactions: essentially the 
knobs and switches by which the machine is operated. In a molecule-based nanomachine, such 
controllable interactions can be provided by molecular orbitals which fill or empty of charge 
based on external stimuli. Such charge-tunable molecules can produce motion through structural 
bending,37 rotation,38 and even via different self-assembly geometries.17 Molecule-molecule 
interactions as well as molecule-substrate interactions can also potentially be adjusted by tuning 
molecular charge through gating. 

Lastly, molecules form ideal building blocks for nanomachines since molecular 
properties are highly tunable through functionalization. Components of different shapes and sizes 
can conceivably be synthesized to produce different functions, and even linked together to 
perform complex motion. The versatility of molecular components is one of the reasons 
molecules of all shapes and sizes can be found throughout nature’s most complex biological 
nanomachines such as ribosomes and motor proteins. Current nanotechnology based on synthetic 
nanomachines comes nowhere close to the complexity of biological nanomachines. However, as 
our understanding of nanoscale motion improves, and as new ways to control matter at the 
nanoscale are developed, one can imagine a day when nanomachines that approach biological 
nanomachines in functionality and complexity are routinely manufactured. 

 

1.2 Graphene as a Substrate for Atomic Manipulation 
Graphene, a single atomic-layer of carbon known for its unique electronic properties, is 

an ideal substrate for studying molecular adsorbates because of its tunable charge density,39 
atomic flatness, and weak adhesion force to most adsorbed molecules.40 Due to graphene’s low 
density of states near charge neutrality, its Fermi level can be easily tuned by either electrostatic 
gating or chemical doping. This means that if a molecular orbital lies close enough in energy to 
the graphene Fermi level, charges can be either injected or removed from the molecular orbital. 
Molecule-substrate interactions such as charge screening and adhesion forces can also be 
adjusted as a result of the tunable Fermi level. Graphene is also atomically flat, especially when 
layered onto a hexagonal boron nitride (hBN) substrate, so it provides an ideal platform for 
observing unimpeded motion of molecules. Furthermore, graphene can adsorb many types of 
molecules, some covalently bound such as NO2,14 hydrogen,41 and oxygen,42 and others bound 
by van der Waals interactions such as porphyrins43 and F4TCNQ.26 Molecules which are only 
loosely bound to the surface remain mobile at low temperatures, and are thus ideal for control 
and characterization via low-temperature STM.  
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1.3 Dissertation Overview 
This dissertation will address the following questions: 

 
1. How can we control collective molecular motion at the nanoscale? 

2. How do adsorbates behave when we change their charge state on a surface? 

3. How is force and momentum transmitted between electrons and adsorbates under 

non-equilibrium conditions? 

The main findings of this work are that molecules which have tunable charge states can 
reconfigure their spatial configuration in response to externally applied electric fields in a 
predictable way. In particular, charge-carrying molecules can reposition themselves in order to 
screen external electric fields, thus causing the Fermi level of the substrate to become pinned to 
molecular energy levels. On graphene, charged molecules tend to disperse uniformly on the 
surface due to Coulomb repulsion, while uncharged molecules can self-assemble into different 
types of geometries due to van der Waals interactions. Under non-equilibrium conditions, such 
as when a current is passed through the substrate, electrons can scatter off potentials created by 
adsorbates and thus create a wind force that pushes adsorbates forward. The direction and 
magnitude of the wind force depend on the particular scattering potential that an adsorbate 
creates. 

The overall structure of this dissertation is as follows: 
The main experimental method used here to investigate molecular motion is STM, and so 

the fundamental operating principles of STM and its various imaging modes will be introduced 
in chapter 2. 

An introduction to the background necessary for understanding the various molecular 
phenomena presented in this work is given in chapter 3, including descriptions of the electronic 
properties of graphene, gate-tunable graphene devices, adsorbates on graphene, electron 
transport and scattering in graphene, surface diffusion processes, and electromigration. 

In chapter 4, I present one of the main findings of this work, a novel phenomenon where 
the surface density of F4TCNQ molecules can be tuned by electrostatically gating a graphene 
device. The mechanism of adjustable surface molecule density will be further explained in 
chapter 5 by the existence of self-assembled molecular structures that function as molecular 
reservoirs in this capacity. 

In chapter 6, a closer look at the diffusion processes of F4TCNQ molecules on graphene 
is presented, which reveals that the diffusion paths taken by molecules are highly sensitive to 
electrostatic gating as well. 

In chapter 7, the conductance of F4TCNQ-decorated graphene devices will be presented 
as a function of applied gate voltage, and I will show that the microscopic surface configurations 
of molecules induce coherent changes in the devices’ conductivity observable at a macroscopic 
scale. 

In chapter 8, I present work on the electromigration phenomenon of F4TCNQ molecules 
on graphene, where molecules are pushed along the electron current direction by electrons 
scattering from the molecular potential. 
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2 Scanning Tunneling Microscopy 
This chapter introduces the basic concepts of scanning tunneling microscopy (STM), 

including its principle of operation and various imaging and spectroscopy modes used 
throughout this dissertation. 

STM is an imaging technique based on detecting a small current of electrons tunneling 
through the vacuum between a metal tip and a conductive sample. The vacuum between the tip 
and sample presents a barrier to the tunneling electron, through which the electron wavefunction 
decays exponentially, thus leading to an extremely sensitive dependence of tunneling current on 
the tip-sample separation. To illustrate this principle, let us consider tunneling in a one-
dimensional barrier. Solutions of the Schrödinger equation within a one-dimensional tunneling 
barrier of height 𝑉)  take the form of 𝜓 ∝	𝑒±/0, where 𝜅 = 32𝑚(𝐸 − 𝑉))/ℏ<, 𝐸 is the energy of 
the tunneling electrons, and 𝑧 is the tip-sample separation. Since the tunneling current 𝐼 ∝
	|𝜓|< ∝ 𝑒$</0 , it is very sensitive to the tip-sample separation. Because of this high spatial 
sensitivity, the tunneling current can be used to spatially map the topography of a conductive 
surface either by direct detection of the tunneling current while maintaining constant tip-sample 
distance (constant height mode), or by keeping the current constant while changing the tip-
sample distance through a feedback loop (constant current mode). Besides topography 
information measured through the DC tunneling current, the local density of states of the sample 
can be measured through the differential conductance of the tunnel junction. The theoretical 
description of electron tunneling in STM was first formalized by Bardeen,44 and then applied in a 
more useful form by Tersoff and Hamann.45 

 

2.1 General Expression for Tunneling 
To model the tunneling current, one can apply Fermi’s Golden Rule to calculate the 

transition rate of electrons tunneling between the tip and the sample under a perturbing 
Hamiltonian.46 Fermi’s Golden rule states that given initial and final eigenstates 𝜓@ and 𝜓A  of the 
Hamiltonian 𝐻, the transition rate 𝑊 from state 𝜓@ to state 𝜓A  under a perturbing Hamiltonian 𝐻′ 
is given by 

 
 𝑊@→A =

2𝜋
ℏ
GH𝜓A|𝐻I|𝜓@JG

<
𝜌LℰAN	, 

( 2.1 ) 

 
where 𝜌(ℰA) is the total density of states of the system at the energy of the final state ℰA . 𝜌(ℰ) 
can also be expressed as the product between the density of states of the sample 𝜌P(ℰ) and that 
of the tip 𝜌Q(ℰ), so that the transition rate from tip to sample 𝑑𝑊Q→P at energy ℰ within an energy 
range 𝑑ℰ can be expressed as 
 
 𝑑𝑊Q→P =

2𝜋
ℏ
|⟨𝜓P|𝐻I|𝜓Q⟩|<𝜌P(ℰ)𝜌Q(ℰ)𝑑ℰ		, 

( 2.2 ) 

 
where 𝜓P and 𝜓Q are sample and tip wavefunctions, respectively. Furthermore, a transition from 
𝜓Q to 𝜓P can only occur if 𝜓Q is occupied by an electron and 𝜓P is unoccupied. Since the 
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occupancy is given by the Fermi-Dirac distribution 𝑓(ℰ) = 1/(𝑒
ℰWX
YZ[ + 1), the density of states 

𝜌Q(ℰ) must be multiplied by the probability that the tip state is occupied, 𝑓(ℰ), and the density of 
states 𝜌P(ℰ) must be multiplied by the probability that the sample state is unoccupied, 1 − 𝑓(ℰ), 
so that 
 
 𝑑𝑊Q→P =

2𝜋
ℏ
|⟨𝜓P|𝐻I|𝜓Q⟩|<𝜌P(ℰ)[1 − 𝑓(ℰ)]𝜌Q(ℰ)𝑓(ℰ)𝑑ℰ		. 

( 2.3 ) 

 
If a voltage 𝑉 is applied on the sample relative to the tip, both the density of states of the tip and 
its Fermi-Dirac distribution is shifted down by |𝑒|𝑉, where |𝑒| is the magnitude of the electron 
charge, as shown in Fig.  2.1. The transition rate now becomes 
 
 𝑑𝑊Q→P =

2𝜋
ℏ
|⟨𝜓P|𝐻I|𝜓Q⟩|<𝜌P(ℰ)	[1 − 𝑓(ℰ)]	𝜌Q(ℰ − |𝑒|𝑉)𝑓(ℰ − |𝑒|𝑉)𝑑ℰ		. 

( 2.4 ) 

 
To get the total current, we must also account for electrons that tunnel back from sample states 
into tip states. The transition rate of such a process is 
 
 𝑑𝑊P→Q =

2𝜋
ℏ
|⟨𝜓Q|𝐻I|𝜓P⟩|<𝜌P(ℰ)𝑓(ℰ)𝜌Q(ℰ − |𝑒|𝑉)	[1 − 𝑓(ℰ − |𝑒|𝑉)]𝑑ℰ		. 

( 2.5 ) 

 
The total transition rate summing over all tip states 𝜓` and sample states 𝜓a  is then 
 
 𝑊 =	bc𝑑𝑊P→Q − 𝑑𝑊Q→P

`,a

																																																																																												 

	= −
2𝜋
ℏ
b 	cGH𝜓`|𝐻I|𝜓aJG

<
𝜌P,a(ℰ)𝜌Q,`(ℰ − |𝑒|𝑉)	[𝑓(ℰ − |𝑒|𝑉) − 𝑓(ℰ)]𝑑ℰ

`,a

	
d

$d
. 

( 2.6 ) 

 
The total current resulting from tunneling can then be expressed as 
 
 𝐼(𝑉) = −|𝑒|𝑊	

	=
2𝜋|𝑒|
ℏ

b cGH𝜓`|𝐻I|𝜓aJG
<
𝜌P,a(ℰ)𝜌Q,`(ℰ − |𝑒|𝑉)	[𝑓(ℰ − |𝑒|𝑉) − 𝑓(ℰ)]𝑑ℰ

`,a

d

$d
. 

( 2.7 ) 

 
Usually the tip density of states is relatively featureless compared to the sample for a well-
prepared tip, so 𝜌Q(ℰ) can be approximated by a constant 𝜌Q. In addition, since spectroscopy is 
typically measured at low temperatures, we can approximate the Fermi-Dirac distribution as a 
step function, with a chemical potential of ℰe , so that the total current can be further simplified 
and written as 
 
 

𝐼(𝑉) =
2𝜋|𝑒|
ℏ 𝜌Q b cG𝑀`aG

<
𝜌P,a(ℰ)	𝑑ℰ

`,a

ℰgh|i|j

ℰg
		, 

( 2.8 ) 
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where we have denoted the Bardeen matrix elements as H𝜓`|𝐻I|𝜓aJ = 𝑀`a. Intuitively, one can 
see that only electrons with energy between ℰe  and ℰe + |𝑒|𝑉 contribute to the tunneling 
current. 
 The Bardeen matrix elements can be evaluated for zero bias elastic tunneling by 
calculating the volume or surface integrals44 
 
 

𝑀`a = 	
ℏ<

2𝑚
kL𝜓Q,`∇<𝜓P,a∗ − 𝜓P,a∗ ∇<𝜓Q,`N	𝑑𝐫	

									=
ℏ<

2𝑚
kL𝜓Q,`∇𝜓P,a∗ − 𝜓P,a∗ ∇𝜓Q,`N ⋅ 	𝑑𝐀			, 

( 2.9 ) 

 
where 𝐀 is an area that separates the tip from the sample, typically taken to be a horizontal plane 
between the tip and sample. 

Tersoff and Hamann calculated the Bardeen matrix element with the approximation that 
the tip wavefunctions are localized s-waves centered at position (𝐱Q, 𝑧Q), so that the matrix 
element 𝑀`a ends up being proportional to the sample wavefunction amplitude |𝜓P(𝐱Q, 𝑧Q)|<. To 
obtain this important result, one can expand sample states as generalized plane waves decaying 
in the z-direciton: 
 
 𝜓P,a(𝐱, 𝑧) = b𝑑𝐪	𝑎𝐪𝑒$3/

th𝐪t0𝑒@𝐪⋅𝐱	. ( 2.10 ) 

 
Similarly, tip states can be expanded in terms of plane waves, where 𝐱Q and 𝑧Q denote the in-
plane and out-of-plane position of the tip: 
 
 𝜓Q,`(𝐱, 𝐱Q, 𝑧, 𝑧Q) = b𝑑𝐪	𝑏𝐪𝑒$3/

th𝐪t(0v$0)𝑒@𝐪⋅(𝐱$𝐱v)	. ( 2.11 ) 

 
Taking the surface of integration to be a horizontal plane separating the tip and sample, the 
tunneling matrix element can then be written as 
 
 

𝑀`a =
4𝜋<ℏ<

𝑚
b𝑑𝐪	𝑎𝐪𝑏𝐪∗𝑒$3/

th𝐪t0v𝑒@𝐪⋅𝐱v	 =	𝐴	𝜓P,a(𝐫Q)		, 
( 2.12 ) 

 
where 𝐫Q = (𝐱Q, 𝑧Q) is the center position of the wavefunction on the tip. This shows that the 
matrix element is proportional to the sample wavefunction at the center of the tip. 
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This approximation of the matrix element leads to the useful result that the STM 
differential conductance is proportional to the sample local density of states, a principle that 
underlies the interpretation of most scanning tunneling spectroscopy. In the low-temperature 
regime where  𝜕𝑓(ℰ − |𝑒|𝑉)/	𝜕𝑉	 ≈ |𝑒|𝛿(ℰ − |𝑒|𝑉 − ℰe) the differential conductance 
𝑑𝐼/𝑑𝑉	can be expressed as 
 
 𝑑𝐼

𝑑𝑉
(𝐫Q, 𝑉) =

2𝜋|𝑒|<

ℏ 𝜌Q𝐴< b cG𝜓P,a(𝐫Q)G
<
𝜌P,a(ℰ)𝛿(ℰ − |𝑒|𝑉 − ℰe)𝑑ℰ

a

ℰgh|i|j

ℰg
		

																				=
2𝜋|𝑒|<

ℏ 𝜌Q𝐴< b cG𝜓P,a(𝐫Q)G
<
𝜌P,a(ℰe + |𝑒|𝑉)𝑑ℰ

a

ℰgh|i|j

ℰg
	. 

( 2.13 ) 

 
Since 𝜌P,a  is defined as the density of states of a single state 𝜓P,a  with the matrix element 
H𝜓P,a|𝐻I|𝜓QJ, then 𝜌P,a(ℰ) = 𝛿(ℰ − ℰa), so that 
 
 𝑑𝐼

𝑑𝑉
(𝐫Q, 𝑉) ∝cG𝜓P,a(𝐫Q)G

<
𝛿(ℰe + |𝑒|𝑉 − ℰa)

a

	 

																																															= 𝑒$</0vcG𝜓P,a(𝐱Q, 𝑧Q = 0)G
<
𝛿(ℰe + |𝑒|𝑉 − ℰa)

a

 

	= 𝐿𝐷𝑂𝑆(𝐫Q, ℰe + |𝑒|𝑉)	.	 

( 2.14 ) 

 
The differential conductance thus reflects the local density of states at the point of the tip. Since 
sample wavefunctions decay exponentially through the vacuum, the tunneling current is very 
sensitive to changes in the tip-sample distance. By keeping the tunneling current constant 
through a feedback loop, one can map out the topography of a sample. In the following section 
the different scanning modes used to map out surface topography and spectroscopy will be 
introduced. 
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Fig.  2.1: Tip and sample Fermi levels under an external bias. (a) Without an external bias, 
the Fermi level of the tip and sample are assumed to be the same (b) With an applied bias 𝑉 to 
the sample, the density of states of the tip is shifted up by |𝑒|𝑉. 
 

2.2 Scanning Tunneling Microscope Operation 
A STM maps the surface topography of a sample by using a feedback loop to control the 

tip-sample separation as the tip is scanned across the surface of the sample. Fig.  2.2 shows the 
basic setup of a STM operating in constant-current mode. When the z-feedback loop is engaged, 
the tip-sample separation is changed such that the tunneling current setpoint is maintained. 
Tunneling currents typically range from 10-12 to 10-9 A, so a high-gain current amplifier is used 
to amplify the signal. The current amplifier outputs a measurable voltage in the −10V < 𝑉��Q <
10V range, which is read and controlled by a real-time computer in a PID loop. The output 
voltage of the z-feedback controller is then applied to the z-piezo to maintain constant tunneling 
current. Control voltages applied to the x- and y-piezos deform the scan tube such that the tip can 
be scanned across the x-y plane. As the z-piezo responds to changes in the topography of the 
sample, the control voltage is recorded to obtain a topographic map of the sample. Typically, the 
voltage bias between the sample and tip is applied onto the sample (although certain 
configurations can be used to bias the tip by applying a voltage on the non-inverting input of the 
current amplifier). In STM convention this bias is always thought of as a voltage applied to the 
sample, even if the negative bias is applied to the tip. If the applied bias is sufficiently small, the 
tunneling current 𝐼(𝐫Q, 𝑉�)~𝑑𝐼(𝐫Q, 𝑉�)/𝑑𝑉� ∝ 𝐿𝐷𝑂𝑆(𝐫Q, ℰe + |𝑒|𝑉�) is proportional to the local 
density of states at ℰe , thus a low-bias topograph shows the spatial distribution of electron 
probability density from orbitals near ℰe . 

A STM can also be operated in constant-height mode when the sample has a relatively 
homogeneous local density of states. In constant-height mode the feedback loop is disengaged so 
that changes in the tunneling current can be interpreted directly as changes in sample 
topography. 
 𝑑𝐼/𝑑𝑉 spectroscopy is performed by applying a wiggle voltage 𝑉��	at a reference 
frequency onto the sample while detecting the AC current through a lock-in amplifier. The lock-
in amplifier picks out the AC component of the tunneling current signal at the reference 
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frequency, which is proportional to 𝐿𝐷𝑂𝑆(𝐫Q, ℰe + |𝑒|𝑉�). One typically obtains a 𝑑𝐼/𝑑𝑉 
spectrum by keeping the tip at a constant position while sweeping the sample bias. By scanning 
the tip across the surface while in feedback and monitoring the 𝑑𝐼/𝑑𝑉 signal, one can obtain a 
map of the local density of states at a given energy ℰe + |𝑒|𝑉�. Such an image is called a 𝑑𝐼/𝑑𝑉 
map, and reveals the spatial distribution of the surface electron wavefunction at a given energy. 
 

 
Fig.  2.2: Basic setup of a STM. A STM detects tunneling current through a high-gain current 
amplifier. In constant current scanning mode the detected current is fed into a feedback 
controller which outputs a control voltage to the z-piezo to control the tip-sample separation in 
order to keep the tunneling current constant. An AC wiggle voltage can be applied to the 
sample to perform 𝑑𝐼/𝑑𝑉 spectroscopy and 𝑑𝐼/𝑑𝑉 mapping. 
 

2.3 Scanning Tunneling Potentiometry 
Scanning tunneling potentiometry (STP) takes advantage of the high spatial resolution of 

STM to create detailed electrochemical potential maps of a conductor under current flow. Within 
a conductor of finite resistance an electrochemical potential gradient develops between source 
and drain electrodes when an external bias is applied. When a STM tip is placed into the 
tunneling regime at some point between the source and drain contact, a DC tunneling current will 
flow between the tip and sample if the electrochemical potential is not equal on both sides. The 
operating principle of STP is to apply a bias on the tip such that the measured DC current is 
nulled to zero. The bias needed to make the DC current zero is then equal to the potential at the 
location of the tip. A feedback loop can be employed to adjust the bias applied to the tip such 
that the DC current is always kept at zero. A diagram of such a setup is shown in Fig.  2.3. A 
second feedback loop is needed to keep the tip-sample separation constant. The topography 
feedback signal used in lieu of a DC current (since the DC current is nulled out) is a small AC 
wiggle voltage applied between the tip and sample which causes an AC tunneling current. The 
AC component of the tunneling current is picked up by a lock-in amplifier and used to drive the 
z-feedback. By keeping the AC tunneling current constant one can perform STM topography in 
much the same way as STM using DC tunneling current. 
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STP has been used to map out the potential drop created by residual resistivity dipoles 
(RRDs) in metal films,22,24 and, more recently, at the interface of mono- and bi-layer graphene.21 
STP can also be used to obtain the in-plane electric field gradient, a quantity of interest in 
electromigration processes. This is used in chapter 8 to determine the magnitude and direction of 
the average in-plane electric field, which allows us to extract the effective charge of migrating 
molecular adsorbates. 

 

 
Fig.  2.3: Scanning tunneling potentiometry setup. A STP setup detects the electrochemical 
potential at the point of measurement by applying an offset voltage to the tip such that the DC 
current is zero. An AC wiggle voltage creates an AC tunneling current for topography 
feedback, replacing the DC current in normal STM. 
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3 Theoretical Background for Molecule-

decorated Graphene Devices 
 The purpose of this chapter is to introduce the necessary theoretical background to 
understand how electrons and surface adsorbates behave on a graphene field-effect transistor, as 
well as theoretical concepts and notation frequently used in this field to describe electronic and 
molecular behavior. 

3.1 Graphene as a Gate-tunable Substrate 
Graphene, first successfully isolated by Novoselov and Geim in 2004,47 is a single-atom-

thick layer of sp2-bonded carbon which offers a unique conductive substrate for studying 
molecular adsorbates due to its special electronic properties. Some of the key features of 
graphene include its extraordinarily high carrier mobility due to its low concentration of defects, 
suppressed scattering due to its symmetry-protected Dirac quasiparticles, its ability to sustain 
high current densities without deterioration, its integrability with other van der Waals layered 
materials,39 and (most importantly for this dissertation) the tunability of its charge density 
through electrostatic gating. By laying graphene flat on an insulating substrate with an 
electrostatic gate below via a sandwich of hBN/SiO2/Si, electrons can be easily added to the 
graphene to change its Fermi level. The low density of states of graphene at the Fermi energy 
allows the Fermi level to be tuned over a range of ±0.25 eV. 

 In this section I will introduce the fundamental electronic structure of graphene, which 
gives rise to a vanishing density of states at charge neutrality. I will then explain the architecture 
of a typical graphene field effect transistor, as well as how gating affects the Fermi level of 
graphene. 
 
3.1.1 Electronic Properties of Graphene 

The crystal structure of graphene is shown in Fig.  3.1 (a). Graphene has two atoms per 
unit cell (labeled A and B in Fig.1.1 (a)) with lattice vectors 

 
 𝐚� =

𝑎
2
L3,√3N, 𝐚< =

𝑎
2
L3,−	√3	N, ( 3.1 ) 

 
where 𝑎 is the C-C distance of ≈1.42Å. The atoms of the A and B sublattices are arranged in a 
honeycomb lattice such that each atom in the A sublattice has 3 nearest neighbors in the B 
sublattice, and each atom in the B sublattice has 3 nearest neighbors in the A sublattice. Of the 
four valence electrons in carbon’s s-p shell, three of them form 𝜎 bonds by coupling the sp2 
hybrid orbitals together, leading to the strong backbone of the honeycomb structure. The 
remaining electron resides in the pz orbital, which, by overlapping with neighboring pz orbitals, 
forms the 𝜋 and 𝜋∗ bands. Carrier transport is primarily conducted through the 𝜋 bands in 
graphene. The Brillouin zone structure of graphene is a hexagon. The reciprocal lattice vectors 
are 
 𝐛� =

2𝜋
3𝑎

L1, √3N, 𝐛< =
2𝜋
3𝑎

L1,−√3N	. 
( 3.2 ) 
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Fig.  3.1: Real and reciprocal space structure of graphene. (a) Atomic structure of 
graphene. Graphene consists of two sublattices A and B arranged in a honeycomb structure. a1 
and a2 are the two lattice vectors. (b) Brillouin zone of graphene with the high symmetry 
points K, K’, M and 𝛤. b1 and b2 are the two reciprocal lattice vectors. 

 
Two inequivalent corners of the Brillouin zone are located at 
 
 𝐊 = �

2𝜋
3𝑎 ,

2𝜋
3√3𝑎

� , 𝐊I = �
2𝜋
3𝑎 , −

2𝜋
3√3𝑎

�. ( 3.3 ) 

 
These two high symmetry points are important for the electronic structure of graphene because 
they are the momentum-space locations of the Dirac point. 

The band structure of graphene can be understood with a simple tight-binding model. The 
tight-binding Hamiltonian for electrons in graphene, considering only nearest-neighbor hopping, 
can be expressed as 

 
 𝐻 = −𝑡 c 𝑎�,@

�

⟨@,�⟩,�

𝑏�,� + 𝐻. 𝑐.		, ( 3.4 ) 

 
where 𝑎�,@	(𝑎�,@

� ) annihilates (creates) an electron with spin 𝜎 on site 𝐑@ of sublattice A, and 
𝑏�,@	(𝑏�,@

� ) annihilates (creates) an electron with spin 𝜎 on site 𝐑@ of sublattice B. 𝑡 ≈ 2.7eV is the 
hopping integral between nearest-neighbor orbitals in different sublattices. The vectors 𝛿 
connecting the A atoms to their nearest neighbors are 
 
 𝛅� =

𝑎
2
L1, √3N, 					𝛅< =

𝑎
2
L1,−√3N, 				𝛅� = 𝑎(−1,0), ( 3.5 ) 
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thus Fourier transforming to momentum space and writing 𝐑� = 𝐑@ + 𝛅, we obtain 
 
 𝐻 = −𝑡 c 𝑎�

�(𝐑@)
⟨@,�⟩,�

𝑏�L𝐑�N + 𝐻. 𝑐. 

					= −𝑡c 𝑎�
�(𝐑@)

@,𝛅,�

𝑏�(𝐑@ + 𝛅) + 𝐻. 𝑐.	

					= 	−
𝑡
𝑁cc𝑒@𝐪�⋅𝛅

𝐪,𝐪�	

𝑒@𝐑�⋅L𝐪�$𝐪N𝑎�
�(𝐪)

@,𝛅,�

𝑏�(𝐪I) + 𝐻. 𝑐.	

					= 	−𝑡 c 𝑒@𝒒⋅𝜹𝑎�
�(𝐪)

𝒒,𝜹,�

𝑏�(𝐪) + 𝐻. 𝑐.	 

( 3.6 ) 

 
If we define 𝜓�(𝐪) = L𝑎�(𝐪), 𝑏�(𝐪)N

�
, then	𝐻 can be rewritten as 

 
 𝐻 = −𝑡c𝜓�

�(𝐪)
𝒌,�

� 0 𝑓(𝐪)
𝑓∗(𝐪) 0 �𝜓�(𝐪)			, 

( 3.7 ) 

 

where 𝑓(𝐪) = 𝑒$@¡¢£ + 2𝑒
�¤¢¥
t cos	(√�	¡©£

<
). Diagonalizing the Hamiltonian, we find the 

eignevalues 
 

𝐸(𝐪) = ±𝑡|𝑓(𝐪)| = ±𝑡ª3 + 2 cosL√3𝑞¬𝑎N + 4 cos 
√3
2 𝑞¬𝑎® cos �

3
2 𝑞¯𝑎� 

( 3.8 ) 

 

 
Fig.  3.2: 𝝅-band structure of graphene. (a) The band structure of graphene with 𝑡 ≈ 2.7eV 
(b) The band structure of graphene including second nearest-neighbor hopping, with 𝑡 ≈ 2.7eV 
and 𝑡I ≈ −0.2𝑡. (c) Zoom-in of the graphene band structure near the Dirac point, showing the 
characteristic linear dispersion. 

The resulting band structure is shown in Fig.  3.2 (a). Notably, the upper and lower bands touch 
at the points 𝐊 and 𝐊′, which lie at zero energy and are known as the Dirac points. Since 
graphene has one accessible electron per carbon atom, the lower band (𝜋) is fully filled while the 
upper band (𝜋∗) remains empty. This leads to the result that graphene is a semimetal, with 
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conduction and valence bands touching at the Dirac points 𝐊 and 𝐊′. Near these special points 
𝑓(𝐪) can be expanded to first order. Expanding around the 𝐊 point, for instance, we define 𝐪 =
𝐊 + 𝐤 , where |𝐤| ≪ |𝐊|, and 𝑓(𝐤) can be rewritten as 
 
 𝑓(𝐤) =

−3𝑎
2 𝑒$@

<³
� L𝑘¯ − 𝑖𝑘¬N	, 

( 3.9 ) 

 
dropping the phase factor 𝑒$@

t¶
·  (since it does not affect the energies), the Hamiltonian becomes 

 
 

𝐻𝐊 =
3𝑎𝑡
2 

0 𝑘¯ − 𝑖𝑘¬
𝑘¯ + 𝑖𝑘¬ 0 ®			. 

( 3.10 ) 

 
Defining the Fermi velocity as 𝑣e =

�£Q
<ℏ

  and using the Pauli matrices 
 
 𝜎¯ = ¹0 1

1 0º , 	𝜎¬ = ¹0 −𝑖
𝑖 0 º, 

( 3.11 ) 

 
the Hamiltonian can be conveniently expressed as 
 
 𝐻𝐊 = ℏ𝑣e(𝑘¯𝜎¯ + 𝑘¬𝜎¬) = ℏ𝑣e𝐤 ⋅ 𝛔	. ( 3.12 ) 

 
Similarly, expanding the Hamiltonian near the 𝑲 point leads to the result 
 
 𝐻𝐊� = ℏ𝑣e(𝑘¯𝜎¯ − 𝑘¬𝜎¬) = ℏ𝑣e	𝐤 ⋅ 𝛔∗	. ( 3.13 ) 

 
The 𝐊 and 𝐊′ valley labels are called the valley isospin, and the equations governing electrons in 
the two valleys are related to each other by time-reversal symmetry. The form of the Hamiltonian 
represents a massless Dirac equation in two-dimensions. The eigenenergies of this Hamiltonian 
are thus 
 
 ℰ±(𝐤) = ±ℏ𝑣e|𝐤|		, ( 3.14 ) 

 
and the bands disperse linearly near the Dirac point, as shown in Fig. 1.2(c). The eigenvectors 
near the 𝐊′ point are 
  
 

𝜓𝐊�,± =
1
√2

�𝑒
@½𝒌
< ,±𝑒$

@½𝒌
< �

�

		, 
( 3.15 ) 

 
and near the 𝐊 point,  
 
 

𝜓𝐊,± =
1
√2

�𝑒$
@½𝒌
< , ±𝑒

@½𝒌
< �

�

	, 
( 3.16 ) 
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where 𝜃¿ = arctan(𝑘¯/𝑘¬) and the ± signs correspond to the sign of the eigenenergies. These 
eigenvectors correspond to symmetric and antisymmetric electron wavefunctions on the A and B 
sublattices, and can be interpreted as spinors. Conservation of this pseudospin (unrelated to the 
real spin of the electrons) in graphene leads to interesting properties, including suppression of 
current backscattering in the absence of intervalley scattering.48 
 Inclusion of second-nearest neighbor hopping on the same sublattice does not 
fundamentally change the electronic properties of graphene near the Dirac point. The 
Hamiltonian including second-nearest neighbor hopping is 
 
 𝐻 = −𝑡 c (𝑎�,@

�

⟨@,�⟩,�

𝑏�,� + 𝐻. 𝑐. ) − 𝑡′ c (𝑎�,@
�

H⟨@,�⟩J,�

𝑎�,� + 	𝑏�,@
� 𝑏�,� + 𝐻. 𝑐. ), ( 3.17 ) 

 
and its eigenenergies are 
 
 ℰ(𝐤) = ±𝑡|𝑓(𝐤)| − 𝑡I3𝑓<(𝐤) − 3 ( 3.18 ) 

 
This dispersion relation is plotted in Fig.  3.2 (b). An asymmetry between 𝜋 and 𝜋∗ can now be 
seen as a result of second-nearest neighbor hopping. 
 The density of states (DOS) of graphene near the Dirac point can be derived from the 
dispersion relation ℰ±(𝐤) = ±ℏ𝑣e|𝐤|. The DOS for graphene, accounting for spin and valley 
degeneracies, can be written as 
 
 

𝐷𝑂𝑆(ℰ) =
1
𝐿<
𝜕𝑁
𝜕ℰ =

𝜕
𝜕ℰ

4𝜋𝑘<

(2𝜋)<	. 
( 3.19 ) 

 
Substituting the expression for 𝑘 in Eq. ( 3.14 ), we obtain the result that the DOS is proportional 
to the energy ℰ near the Dirac point. 
 
 

𝐷𝑂𝑆(ℰ) =
2|ℰ|
𝜋ℏ<𝑣e<

 
( 3.20 ) 

 
This leads to vanishing DOS and quantum capacitance near the Dirac point. This property is 
fundamental to the sensitivity of the Fermi level in graphene to electrostatic gating or chemical 
charge transfer doping, two important elements of a molecule-decorated graphene field-effect 
device. 

To obtain the full DOS away from the Dirac point, we can numerically integrate the tight-
binding band structure in the first Brillouin zone to obtain Fig.  3.3. It can be seen that near the 
Dirac point, the DOS varies linearly with energy. At higher energies, two peaks in the DOS 
known as van Hove singularities are seen. The effect of second-nearest neighbor hopping 
produces a noticeable electron-hole asymmetry in the DOS. 
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Fig.  3.3: Density of state of graphene. (a) Numerically calculated density of state of 
graphene using nearest-neighbor hopping integral 𝑡 ≈ 2.7eV. (b) Numerically calculated 
density of state of graphene using 𝑡 ≈ 2.7eV and second nearest-neighbor hopping integral 
𝑡I ≈ −0.2𝑡. The DOS is skewed with higher weight in the lower band (𝜋). 

 

3.1.2 Graphene Field-effect Devices 
 

In order to study the response of graphene to electric fields and chemical dopants, it is 
useful to incorporate graphene into a field-effect transistor geometry. A schematic of such a 
device is shown in Fig.  3.4, where the graphene is stacked on top of hexagonal boron nitride, a 
2D insulator, which is transferred on top of a SiO2 coated Si wafer. Source-drain current parallel 
to the graphene surface as well as STM tunneling currents can be conducted through metal 
source/drain contacts deposited on the graphene. A gate voltage can be applied to the doped Si 
substrate to change the Fermi level of the graphene through electrostatic gating. 

When a gate voltage is applied to the graphene device, the Si layer and the graphene act 
as the two plates of a capacitor, each hosting equal and opposite charges. The total charge 
density 𝑛 (expressed in units of one electron charge) on the graphene side of the parallel plate 
capacitor is 

 
 

𝑛 = 𝐶(𝑉Æ − 𝑉Ç) = b 𝐷𝑂𝑆(ℰ − ℰÈ)𝑑ℰ =
|ℰe − ℰÈ|<

𝜋ℏ<𝑣e<
	,

ℰg

ℰÉ
 

( 3.21 ) 

 
where ℰe  is the Fermi level, ℰÈ  is the Dirac point energy, 𝐶 is the unit area capacitance and 𝑉Ç 
accounts for any gate voltage offset induced by chemical doping. A typical value of 𝐶 for our 
graphene transistors is 5 × 10�Ç	𝑒$	𝑉$�𝑐𝑚$<. A typical value of the Fermi velocity 𝑣e is 
1.1 × 10Ì	𝑚	𝑠$�. The Fermi level and applied gate voltage are thus simply related by 
 
 ℰe − ℰÈ = 𝑠𝑖𝑔𝑛(𝑉Æ − 𝑉Ç)	ℏ𝑣e3𝜋𝐶|𝑉Æ − 𝑉Ç|	, ( 3.22 ) 

 
enabling the Fermi level (and by extension the carrier density) to be easily controlled by the 
applied gate voltage. 

In the Drude model the carrier density 𝑛 is proportional to the conductivity 𝜎 by 𝜎 =
𝑛𝑒𝜇, and so we expect the conductivity of graphene to be smaller at the Dirac point energy. This 
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means a two-terminal gated graphene device can act like a transistor, since its conductivity is 
gate-tunable. In reality, graphene is far from a Drude metal, since electrons in graphene devices 
scatter in a more complex way, and so the conductivity of graphene is never zero at charge 
neutrality. To describe the full picture of electron transport through graphene, one must analyze 
the mobility 𝜇, and so the scattering time 𝜏 is needed. This will be further discussed in section 
3.3. 

 

3.2 Adsorbates on Graphene 
When adsorbates are placed on the surface of a conducting substrate the previously 

localized electronic wavefunction of the adsorbate bleeds into the conductor, hybridizing with 
the conducting continuum states. Depending on the strength of hybridization, molecules can 
become weakly or strongly coupled to the substrate, resulting in either physisorption or 
chemisorption. In graphene chemisorbed adsorbates that break the sublattice symmetry (such as 
atomic hydrogen) change the symmetry of bonding orbitals in graphene and lead to zero modes 
localized near the defect site.41,49 On the other hand, physisorbed adsorbates mainly act as 
donor/acceptor levels that can host extra charge, such as K and NO2.50,51 These adsorbates induce 
chemical doping on graphene by changing the graphene Fermi level through charge transfer, but 
are otherwise chemically inert, and are easily removed from the surface by heating. In the case of 
F4TCNQ molecules, the lowest unoccupied molecular orbital (LUMO) is so close in energy to 
the graphene Dirac point that they accept the electrons in graphene until either all the molecules 
become negatively charged with an electron or the Fermi level becomes pinned to the LUMO 
level (whichever comes first). 

 

3.2.1 Fermi Level Pinning 
 

One type of Fermi level pinning occurs when a material with a high density of states at its 
Fermi level, such as a metal, is brought into contact with a material with low density of states 

 
Fig.  3.4: A graphene/hBN field-effect transistor. A sheet of graphene is laid on top of 
dielectric layers of hBN and SiO2. A gate voltage can be applied to the silicon substrate to 
electrostatically gate the graphene. Source and drain contacts are used to drive current through 
the device. Adsorbates can be deposited on the graphene and then controlled by the gate 
voltage and source-drain current. 
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and a different Fermi level. When the two materials come into contact, electrons are transferred 
from one material to the other until the Fermi level is equal in both materials. Since the Fermi 
level of the material with high density of states is not easily shifted, the Fermi level of the low 
density of states material changes to match that of the high density of states material. 

To quantify the tendency of the Fermi level ℰe  of a material to shift with charge transfer, 
it is useful to define the quantum capacitance 𝐶¡ which can be written as 

 
 

𝐶¡ =
𝑑𝑄
𝑑𝑉¡

= 𝑒<
𝑑𝑛
𝑑𝜇		, 

( 3.23 ) 

 
where the induced charge is 𝑑𝑄 = −|𝑒|𝑑𝑛 (𝑛 is number of electrons introduced, |𝑒| is the 
magnitude of the electron charge), and the change in the chemical potential is −Ò`

|i|
= 𝑑𝑉¡. In a 

material with high quantum capacitance, more charge is needed to shift the Fermi level. 
Fig.  3.5 shows a schematic of the relevant energies when a material with low density of 

states is brought into contact with a reservoir with high density of states (such as a metal). 
Initially, the reservoir and the low density of state material have different work functions, Φ� and 
Φ<, which represent the energy needed to move an electron at the Fermi level of the materials to 
the vacuum level. The reservoir and the material share the same vacuum level because there is no 
electric field between them. However, when they are brought into contact, charge Δ𝑄 is 
transferred between reservoir and material so that the electrochemical potential of electrons (i.e. 
the Fermi level) becomes equal on both sides. The charge transfer shown in Fig.  3.5 has two 
effects: 1) it raises the chemical potential of electrons and 2) because electrons are charged, it 
raises the electric potential of the material, as indicated by the material’s raised vacuum level. 
The first effect generates a change in the chemical potential 𝛿𝜇¡ = − ÕÖ

|i|�¤
, and the second effect 

generates another change in the chemical potential that can be attributed to the electric field 
𝛿𝜇×i� = − ÕÖ

|i|�ØÙÚ
 which also raises the vacuum level of the material. Here 𝐶×i� is the geometric 

capacitance between the two materials. The total change in Fermi level is thus 
 

 
𝛿𝐸e = 𝛿𝜇¡ + 𝛿𝜇×i� = −

1
|𝑒| 

1
𝐶¡
+

1
𝐶×i�

® 𝛿𝑄 = −
1
|𝑒|

𝛿𝑄
𝐶 		, 

( 3.24 ) 

 
where we have defined 𝐶 as the total effective capacitance, equal to the sum of the geometric and 
quantum capacitance in series. In the case of graphene field effect devices where the parallel 
plates are separated by hundreds of nanometers, typically 𝐶×i� ≪ 	𝐶¡, so 𝐶×i� ≈ 𝐶, and the 
contribution from 𝐶¡ can be ignored. This is why only the geometric capacitance needs to be 
considered when calculating gate-induced charge density in typical solid-state graphene field 
effect devices. On the other hand, in cases where the gate is extremely close to the graphene, 
such as in electrochemical cells where a Helmholtz layer of ions directly contacts the graphene, 
𝐶×i� ≫	𝐶¡ , so 𝐶¡ ≈ 𝐶, and the contribution from 𝐶×i� can be ignored. In these types of devices, 
the quantum capacitance of graphene can be directly measured.52 In this case charge is 
transferred between the reservoir and the material without significantly raising the electric 
potential because of the large geometric capacitance, but the charge transfer does shift the 
chemical potential of the electrons in the graphene. 
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Typically Fermi level pinning is thought of as a process where a metal contact shifts the 
electrochemical potential of an adsorbate system. However, in Chapter 4 and 5 we present a 
“tail-wags-dog” system where the adsorbate density is so high that it shifts the Fermi level of the 
graphene and pins it to a molecular level. This phenomenon underlies the behavior of the 
tunable-density adsorbate system that we have discovered when adsorbates are placed on 
graphene. 

 

 
 Fig.  3.5: Fermi level pinning mechanism. (a) Two materials with different work functions 
are initially spatially separated and share a vacuum level. The left material acts as a reservoir 
of charge, with a significantly higher quantum capacitance than the right material. (b) The two 
materials are brought into contact, which causes the electrochemical potential to equilibrate on 
both sides. Charge transfer causes the electric potential and chemical potential to rise for the 
right material. The rise in the electric versus chemical component of the electrochemical 
potential depends on the ratio of the geometric versus quantum capacitance. 

 

3.2.2 Green’s Functions, LDOS, PDOS, and Hybridization 
 Some important quantities for characterizing the spatial extent and hybridization of 
electronic states for graphene and adsorbates are the local density of states (LDOS) and the 
projected density of states (PDOS). In STM dI/dV measurements are proportional to LDOS, as 
shown previously in chapter 2. LDOS can be measured as a function of the bias voltage between 
tip and sample by monitoring the dI/dV signal as the bias voltage is swept, a technique called 
scanning tunneling spectroscopy (STS). Maps of LDOS on the surface can be produced by 
recording the dI/dV signal while scanning the tip at a fixed bias voltage. The LDOS of a system 
with Hamiltonian 𝐻 and eigenstates |𝑛⟩ and eigenenergies ℰÜ is formally defined as 
 
 LDOS(𝐫,ℰ) =c|⟨𝐫|𝑛⟩|<	

Ü

𝛿(ℰ − ℰÜ)	, ( 3.25 ) 

 
where projection of state |𝑛⟩ onto a position basis |𝐫⟩	is the wavefunction 𝜓Ü(𝐫), and the Dirac 
delta function picks out the probability density of the wavefunctions at energy ℰ. 
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PDOS is closely related to LDOS, but instead of projecting onto the position basis |𝐫⟩, 
another basis state |𝜙⟩ is used. 
 
 PDOS(|𝜙⟩, ℰ) =c|⟨𝜙|𝑛⟩|<	

Ü

𝛿(ℰ − ℰÜ)	, ( 3.26 ) 

 
The state |𝜙⟩ can be chosen to be an unperturbed eigenstate of an impurity atom, before 
hybridization with the substrate orbitals. PDOS(|𝜙⟩, ℰ) then represents the amount of the 
system’s wavefunction probability density that lies in the state |𝜙⟩ at energy ℰ. 
 The total density of states (DOS) can be defined as the LDOS integrated over all space, 
 
 DOS(ℰ) = 	b LDOS(𝐫,ℰ) 	𝑑𝐫	, ( 3.27 ) 

  
A powerful way of modeling the electronic properties of adsorbates on a surface is 

through Green’s function methods, which can be used to describe hybridization of adsorbate 
orbitals with the substrate. This is also used throughout chapters 7 and 8 to calculate scattering 
and electromigration behavior of adsorbates on graphene. 
 A Green’s function is the solution to the linear differential equation 
 
 D	𝐺(𝑥, 𝑠) = 𝛿(𝑥 − 𝑠)	, ( 3.28 ) 

 
where D is a linear differential operator, and 𝐺(𝑥, 𝑠) can be thought of as the response of the 
system evolving under D for an impulse at 𝑥 = 𝑠. Green’s functions are useful for solving 
inhomogeneous linear differential equations such as D	𝑢(𝑥) = 𝑓(𝑥) because the source term 
𝑓(𝑥) can be decomposed into a linear combination of Dirac delta functions 𝛿(𝑥 − 𝑠), enabling 
the solution 𝑢(𝑥) to be written as a linear combination of Green’s functions 𝐺(𝑥, 𝑠), specifically 
 
 𝑢(𝑥) = b𝐺(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠. ( 3.29 ) 

 
However, the Green’s function for a system may not be unique, since adding the homogeneous 
solution 𝑣(𝑥) (where D	𝑣(𝑥) = 0) to a Green’s function also satisfies the original linear 
differential equation. In some cases, it is possible to find a Green’s function that is non-vanishing 
for only 𝑥 ≥ 𝑠, which is called a retarded Green’s function, and another Green’s function that is 
non-vanishing for only 𝑥 ≤ 𝑠, which is called an advanced Green’s function. In scattering 
theory, the retarded Green’s function represents outgoing waves after scattering with a scatterer 
while the advanced Green’s function represents incoming waves before scattering. 
 We can recast the formalism of Green’s functions in terms of quantum states and 
operators for the Schrödinger equation  𝐻è|𝜓⟩ = 𝑖ℏ é

éQ
|𝜓⟩	. For the time-independent Hamiltonian 

𝐻, we define the differential operator 
 
 

𝐷è�(𝑡) = 𝑖ℏ
𝜕
𝜕𝑡 − 𝐻

è. 
( 3.30 ) 
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Let us now define the Green’s operator 𝐺ê(𝑡) which satisfies 
 
 𝐷è�(𝑡)𝐺ê(𝑡) = 𝛿(𝑡)	. ( 3.31 ) 

 
We notice that the time evolution operator 𝑈è(𝑡) = 𝑒$@ìèQ/ℏ satisfies the homogeneous equation 
𝐷è�(𝑡)𝑈è(𝑡) = 0. To solve the inhomogeneous equation, we need a function which produces the 
Dirac delta function upon differentiation, which would be a Heaviside function 𝜃(𝑡), thus we can 
manufacture the Green’s operator 
 
 𝐺êí(𝑡) =

1
𝑖ℏ 𝜃

(𝑡)𝑒$@ìèQ/ℏ					𝑤ℎ𝑒𝑟𝑒					𝜃(𝑡) = 	 ñ1	, 𝑡 > 0
0	, 𝑡 ≤ 0				. 

( 3.32 ) 

 
We can then check that 𝐷è�(𝑡)𝐺êí(𝑡) = 𝑈è(𝑡)𝛿(𝑡) = 𝑈è(0)𝛿(𝑡) = 𝛿(𝑡), satisfying the 
inhomogeneous equation. 𝐺êí(𝑡) defined this way is a retarded Green’s operator. The Green’s 
operator describes how the system evolves with time. However, this is not the only choice of 
function which satisfies ( 3.31 ). Another option is called the advanced Green’s operator, where 
 
 𝐺ê�(𝑡) =

1
−𝑖ℏ 𝜃

(−𝑡)𝑒$@ìèQ/ℏ					𝑤ℎ𝑒𝑟𝑒					𝜃(−𝑡) = 	 ñ0	, 𝑡 > 0
1	, 𝑡 ≤ 0				. 

( 3.33 ) 

 
The Green’s operator describes how the system evolves with time. We are also interested in 
information about the energy of the system, which can be obtained by recasting the Green’s 
operator into the energy domain through a Fourier transform. The retarded Green’s operator as a 
function of energy is 
 
 

𝐺êí(ℰ) = b 𝑒@(ℰh@ó)Q/ℏ𝐺êí(𝑡)	𝑑𝑡 =
1
𝑖ℏ
b 𝑒@(ℰh@ó$ìè)Q/ℏ	𝑑𝑡 =

1
ℰ − 𝐻è + 𝑖𝛼

d

Ç

d

$d
			, 

( 3.34 ) 

 
where a small imaginary term 𝑖𝛼 (𝛼 > 0) was used to make the integral converge. 𝛼 will be 
taken to zero when evaluating functions of 𝐺ê(ℰ). Following similar steps, one can obtain the 
result of the advanced Green’s operator as a function of energy: 
 
 

𝐺ê�(ℰ) = b 𝑒@(ℰ$@ó)Q/ℏ𝐺ê�(𝑡)	𝑑𝑡 =
1
−𝑖ℏ

b 𝑒@(ℰ$@ó$ìè)Q/ℏ	𝑑𝑡 =
1

ℰ − 𝐻è − 𝑖𝛼

Ç

$d

d

$d
			. 

( 3.35 ) 

 
𝐺ê(ℰ) is directly related to the LDOS of the system. To obtain the LDOS, we first express 𝐺êí(ℰ) 
in the basis |𝑛⟩ which are eigenstates of 𝐻è, 
  
 

𝐺ê(ℰ) =c
|𝑛⟩⟨𝑛|

ℰ − ℰÜ + 𝑖𝛼Ü

		, 
( 3.36 ) 
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Note that in the basis |𝑛⟩, 𝐺êí and 𝐺ê� are related by 𝐺ê� = L𝐺êíN
�
, so for simplicity, we will refer 

to 𝐺êí as 𝐺ê and 𝐺ê� as 𝐺ê�. Then projecting the Green’s operator into real space, we can write the 
Green’s function as 
 
 

𝐺(𝐫, ℰ) = ⟨𝐫|𝐺ê(ℰ)|𝐫⟩ =c
⟨𝐫|𝑛⟩⟨𝑛|𝐫⟩
ℰ − ℰÜ + 𝑖𝛼Ü

	

=c|𝜓Ü(𝐫)|< õ
1

ℰ − ℰÜ
− 𝑖

𝛼
(ℰ − ℰÜ)< + 𝛼<

ö
Ü

	. 

( 3.37 ) 

 
We see that the imaginary part of the Green’s function is a Lorentzian. Upon taking the limit 
𝛼 → 0, this term turns into a delta function with a normalization factor of 𝜋, so we can write 
 
 Im{𝐺(𝐫, ℰ)} = −𝜋c|𝜓Ü(𝐫)|<𝛿(ℰ − ℰÜ)

Ü

= −𝜋	LDOS(𝐫,ℰ)	. ( 3.38 ) 

 
An important quantity that appears frequently in theoretical literature is called the spectral 
operator 𝐴û(ℰ) and is defined as: 
 
 𝐴û(ℰ) = −2Im{𝐺(ℰ)} = 𝑖[𝐺(ℰ) − 𝐺�(ℰ)]	, ( 3.39 ) 

 
thus the spectral operator is related to the LDOS with 
 
 LDOS(𝐫, ℰ) =

1
2𝜋

H𝐫G𝐴û(ℰ)G𝐫J	. ( 3.40 ) 

 
Similarly, PDOS is related to the Green’s function by 
 
 Im{𝐺(𝜙, ℰ)} = −𝜋c|⟨𝜙|𝑛⟩|<

Ü

𝛿(ℰ − ℰÜ) = −𝜋	PDOS(𝜙, ℰ)	. ( 3.41 ) 

 
If an adsorbate is placed on a continuum, and the eigenstates of the Hamiltonian are |𝑛⟩, then we 
can also express the expectation value of the Green’s operator in terms of the original 
unhybridized localized state |𝜙⟩ as 
 
 

⟨𝜙|𝐺ê(ℰ)|𝜙⟩ = lim
þ→Ç

c
|⟨𝜙|𝑛⟩|<

ℰ + 𝑖𝛼 − ℰÜÜ

=
1

ℰ − ℰÿ − [Δ(ℰ) + 𝑖Γ(ℰ)]
		, 

( 3.42 ) 

 
where Δ(ℰ) + 𝑖Γ(ℰ) is called the retarded self-energy. The imaginary part of the expectation 
value, and therefore PDOS, can thus be rewritten in terms of the real and imaginary parts of the 
retarded self-energy: 
 



 23 

 
−
1
π Im

{𝐺(𝜙, ℰ)} =
1
𝜋

Γ(ℰ)

"ℰ − ℰÿ − Δ(ℰ)#
<
− Γ(ℰ)<

= PDOS(𝜙, ℰ)		. 
( 3.43 ) 

Here we see that the resonance peak in PDOS is renormalized to around ℰ = ℰÿ + Δ(ℰ), and the 
width of the resonance is renormalized by the imaginary part of the self-energy Γ(ℰ). These are 
the two main effects of hybridization, namely, broadening and shifting the adsorbate energy 
levels. We will later discuss the effects of adsorbate hybridization on transport characteristics in 
graphene in section 3.3.2. 
 

3.2.3 Phase Transitions of Molecular Adsorbates on Surfaces 
 

Phase transitions are ubiquitous in the natural world. Some exhibit dramatic changes in 
structural symmetry, while others show only gradual changes. In the modern classification of 
phase transitions there are two distinct categories: first-order and continuous phase transitions.53 
First order phase transitions exhibit a discontinuity in the first derivative of the free energy with 
respect to some thermodynamic variable, for instance at the phase transition point of ice melting 
into liquid water, the entropy increases discontinuously as a function of temperature as the 
system transforms from an ordered solid into a disordered liquid. A latent heat 𝑄 = 𝑇Δ𝑆 is 
associated with this phase transition, where the heat provided is used to increase the entropy by 
Δ𝑆 at the transition temperature 𝑇. Another characteristic of first-order phase transitions is 
coexistence of phases within the material with clearly defined phase boundaries. Such phase 
transitions include temperature driven transitions (such as water boiling), pressure driven 
transitions (such as ice melting under pressure), magnetic field driven transitions (such as type-I 
superconductors), and charge driven transitions (such as the one described in chapter 5). Charge-
induced first-order phase transitions in few-layer transition metal dichalcogenides have also been 
demonstrated.54 

On the other hand, continuous phase transitions (which include second-order phase 
transitions) have continuous first derivatives of the free energy. These phase transitions do not 
involve latent heat and are thus more gradual. A well-known example is the ferromagnetic 
transition at the Curie temperature. In addition, exotic continuous phase transitions with non-
simultaneous breaking of orientational and translational symmetry can occur in reduced 
dimensions due to strong fluctuations.55 

In discussing phase transitions, it is useful to consider a system and its surrounding 
environment, with which some thermodynamic quantities can be exchanged. Systems that can 
exchange energy with the environment (either in the form of heat or work), but not particles are 
called closed systems. Systems that can exchange both energy and particles with the environment 
are called open systems. In closed systems, four useful energies can be defined for application to 
different scenarios.56 These energies are summarized in Table 3.1. 



 24 

 

 
Table 3.1: Summary of thermodynamic free energies in closed systems. The four different 
energies each apply to different scenarios: isolated systems, isothermic, isobaric, and both 
isothermic and isobaric. 

 
The Gibbs free energy is particularly useful for many physical phase transitions such as 

solid-liquid or liquid-gas transitions. One useful property of the Gibbs free energy is that it tends 
to minimize under constant pressure 𝑝 and temperature 𝑇. This can be shown by considering the 
tendency of the system plus reservoir to maximize its total entropy. If the change in the entropy 
of the system is 𝑑𝑆P¬P and the change in the entropy of the reservoir is 𝑑𝑆&iP, then the increase in 
total entropy is 

 
 𝑑𝑆Q�Q£' = 𝑑𝑆P¬P + 𝑑𝑆&iP			. ( 3.44 ) 

 
Applying the thermodynamic identity in the form of 
 
 𝑑𝑆 =

1
𝑇 𝑑𝑈 +

𝑝
𝑇 𝑑𝑉 −

𝜇
𝑇 𝑑𝑁		, 

( 3.45 ) 

 
and assuming no particles are exchanged between system and reservoir (i.e.	𝑑𝑁 = 0), we can 
express the total entropy in terms of the reservoir’s thermodynamic variables as 
 
 𝑑𝑆Q�Q£' = 𝑑𝑆P¬P +

1
𝑇&iP

𝑑𝑈&iP +
𝑝&iP
𝑇&iP

𝑑𝑉&iP		. 
( 3.46 ) 

 
Since at equilibrium, the temperature and pressure of the system and the reservoir are the same, 
and the gain in the reservoir’s internal energy is equal to the loss in the system’s internal energy  
𝑑𝑈&iP = −𝑑𝑈P¬P , and by the same reasoning 𝑑𝑉&iP = −𝑑𝑉P¬P , we can rewrite the total entropy as 
 
 𝑑𝑆Q�Q£' = −

1
𝑇P¬P

L𝑑𝑈P¬P − 𝑇P¬P𝑑𝑆P¬P + 𝑝P¬P𝑑𝑉P¬PN = −
1
𝑇P¬P

𝑑𝐺P¬P		. 
( 3.47 ) 
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This shows that since the total entropy tends to increase, the Gibbs free energy of the system 
tends to decrease. Equilibrium is reached when the total entropy is maximized, or equivalently, 
when the Gibbs free energy of the system is minimized, i.e. 𝑑𝐺 = 0. This means that given two 
different material phases with Gibbs free energies 𝐺�, 𝐺<, the system tends to choose the phase 
with the lowest Gibbs free energy. On the other hand, if a material is equally stable in either 
phase, then 𝐺� = 𝐺<. This is the condition for finding the phase transition point. The phase 
boundary can be expressed in terms of variables such as pressure and temperature by finding the 
line where the derivatives of the Gibbs free energies are equal to each other, i.e. 𝑑𝐺� = 𝑑𝐺<. This 
yields the Clausius-Clapeyron relation, which describes the slope of the phase boundaries. 

If, however, the system can exchange particles with the reservoir in addition to heat under 
constant temperature and chemical potential, then the relevant free energy that is minimized is 
the grand potential, which is defined as 

 
 Φ = 𝑈 − 𝑇𝑆 − 𝜇𝑁		. ( 3.48 ) 

 
Following the reasoning of ( 3.47 ), we find that 
 
 𝑑𝑆Q�Q£' = 𝑑𝑆P¬P +

1
𝑇&iP

𝑑𝑈&iP −
𝜇&iP
𝑇&iP

𝑑𝑁&iP	

														= −
1
𝑇P¬P

L𝑑𝑈P¬P − 𝑇P¬P𝑑𝑆P¬P − 𝜇P¬P𝑑𝑁P¬PN = −
1
𝑇P¬P

𝑑Φ%(%		, 

( 3.49 ) 

 
so the grand potential tends to minimize in such a system.  

It is instructive to consider the case of a system of molecules that has a charged liquid 
phase as well as an electrically neutral solid (i.e. condensed) phase. In this example the important 
thermodynamic variable is the electron chemical potential of the substrate, which determines the 
molecular phase. The electron chemical potential can be altered by electron exchange with a 
charge reservoir, but the number of molecules remains fixed. This is thus a half-open system (it 
is, in fact, a system that we have explored experimentally as described in chapter 5). In this case, 
the grand potential only includes the chemical potential of particles that can be exchanged with 
the reservoir, which are the electrons, so the grand potential is written as 

 
 Φ = 𝑈 − 𝑇𝑆 − ℰe𝑁i		, ( 3.50 ) 

 
where 𝑁i is the number of electrons in the system, and ℰe  is the chemical potential of the 
electrons. The thermodynamic identity for this system includes the chemical potential for 
molecules in the liquid and condensed phase, 𝜇' and 𝜇) 
 
 𝑑𝑈 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 − 𝑁i𝑑ℰe + 𝜇'𝑑𝑁' + 𝜇)𝑑𝑁) 	, ( 3.51 ) 

 
where 𝑁' is the number of molecules in the isolated phase, and 𝑁) is the number of molecules in 
the condensed phase. Since the total number of molecules is conserved, 𝑑𝑁) = −𝑑𝑁', and we 
find that under conditions of constant temperature, constant volume, and a given number of 
liquid molecules 𝑁', 
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 𝑑Φ(𝑇, 𝑉, 𝑁')
𝑑ℰe

*
�,j,+,

= −𝑁i		. 
( 3.52 ) 

 
In chapter 5, we discuss the observed phase transition between liquid and condensed phase 
molecules using the grand potential formalism, where we show that the phase transition is first 
order. 
 
3.2.4 Solid, Liquid and Gas Phases in Two Dimensions 

Adsorbates on surfaces can self-assemble due to interatomic forces to form solid or liquid 
phases. While a solid is characterized by both orientational and translational order and a clearly 
defined periodicity, liquids generally lack such rigid structure and instead show a shell-like 
structure as depicted in Fig.  3.6. Gases, on the other hand, have completely uncorrelated particle 
distributions. To characterize the structure of different phases, we introduce two quantities which 
summarize the structural distribution of constituent particles: the radial distribution function and 
the structure factor. 

The radial distribution function 𝑔(𝑟) represents the average probability of finding a 
particle at radius 𝑟 with respect to a central particle, and is defined as 

 
 

𝑔(𝑟) = -
𝑁@(𝑟, 𝑟 + 𝑑𝑟)
𝜌2𝜋𝑟𝑑𝑟 .		, 

( 3.53 ) 

 
where 𝑁@(𝑟, 𝑟 + 𝑑𝑟) is the number of particles located within a shell of width 𝑑𝑟 a radius 𝑟 away 
from particle 𝑖. 𝜌 is the average density of particles over the sample area, and the average in 𝑔(𝑟) 
is taken over all possible central particles 𝑖. 
 The radial distribution function 𝑔(𝑟) is actually a reduced case of the pair correlation 
function 𝑔(𝐫�, 𝐫<) for an isotropic system (i.e. one that only depends on 𝐫 = |𝐫� − 𝐫<|), and can 
therefore be written as 𝑔(𝐫). The pair correlation function is the probability of finding particles 
at both 𝐫� and 𝐫<. The structure factor is related to 𝑔(𝐫) by a Fourier transform 
 
 𝑆(𝐪) = 1 + 𝜌b𝑑𝐫	𝑒$@𝐪⋅𝐫𝑔(𝐫)	. ( 3.54 ) 

 
In terms of discrete particle positions, 𝑆(𝐪) is also defined as 
 
 𝑆(𝐪) =

1
𝑁c𝑒$@𝐪⋅(𝐑�$𝐑/)		

@,�

, ( 3.55 ) 

 
where 𝑁 is the number of particles in the sample area, and 𝐑@ and 𝐑� denote pairs of particle 
positions. 
 Fig.  3.7 (a)-(c) show the real space structure as well as 𝑔(𝑟) and 𝑆(𝐪) for a two-
dimensional solid, liquid, and gas. In the solid triangular lattice phase 𝑔(𝑟)  shows crystalline 
peaks and 𝑆(𝐪) reflects the periodicity of the close-packed triangular lattice. In the liquid phase 
(simulated by a Monte Carlo method with Lennard-Jones interparticle potentials) 𝑔(𝑟)  shows 
oscillating peaks of roughly equal distance, reflecting the shell-like structure of liquids. 𝑔(𝑟) also 
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eventually decays to 1, reflecting the loss of long-range correlation. 𝑆(𝐪) here shows oscillations 
and is isotropic. In the gas phase, the particle positions are uncorrelated, and both 𝑔(𝑟) and 𝑆(𝐪) 
(except for the delta function peak at 0) are identically 1 everywhere. 
 In chapter 5, we show that molecular adsorbates with repulsive Coulomb interparticle 
potentials on graphene exhibit liquid-like structure by analyzing their 𝑔(𝑟) and 𝑆(𝐪). 
 

 
Fig.  3.6 Shell-like structure of liquids. The structure of a liquid shows concentric shells of 
particles, but has no long range orientational order. The radial distribution function counts the 
number of particles within 𝑑𝑟 of radius 𝑟, normalized by the average probability of finding a 
particle within the area of the ring. 

 
 

 
Fig.  3.7 Two-dimensional solid, liquid, and gas phases. (a) A close-packed two-
dimensional solid exhibits sharp peaks in the radial distribution function and the structure 
factor. (b) The distribution of particles in a Lennard-Jones liquid shows a shell-like structure in 
the radial distribution function and an isotropic structure factor. (c) The distribution of 
particles in a gas is uncorrelated and its radial distribution function is uniform everywhere. The 
structure factor is also featureless. 
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3.3 Electron Transport and Impurity Scattering in Graphene 
Adsorbates not only produce charge transfer, but they can also act as scatterers for 

electrons in graphene. In this section I will explain how adsorbates influence electron transport in 
graphene. I will first introduce the concept of conductivity in an isotropic conductor from 
Boltzmann transport theory.57 I will then follow the T-matrix formalism for calculating the 
scattering time constant for resonant adsorbates.58,59 These theoretical foundations are the basis 
for the gate-dependent conductivity observed in our molecule-decorated graphene devices, and 
also for molecular electromigration phenomena. 

 

3.3.1 Boltzmann Transport Theory and Conductivity 
 

In the Boltzmann theory of transport, electrons undergo collisions which hinder their 
motion forward. Unlike the Drude model, which assumes a fixed mean-free scattering time 𝜏 
overall, the Boltzmann theory allows for a position, wavevector, and band index-dependent mean 
free time:  𝜏 =	𝜏Ü(𝐫,𝐤), where n is the band index, 𝐫 is the position of the electron, and 𝐤 is its 
wavevector. Collisions drive the distribution of electrons towards local thermodynamic 
equilibrium by obliterating any information about the non-equilibrium distribution function 
𝑔Ü(𝐫, 𝐤, 𝑡) prior to the collision, and by maintaining the local equilibrium distribution function in 
the form of a Fermi-Dirac distribution (with a well-defined local chemical potential 𝜇). 

 
 𝑔ÜÇ(𝐫, 𝐤) =

1
𝑒(ℰ0$`(𝐫))/¿Z�(𝐫) + 1	. 

( 3.56 ) 

 
Since the probability that an electron suffers a collision that changes its wavevector and/or band 
index in time 𝑑𝑡 is 𝑑𝑡/𝜏Ü(𝐫, 𝐤), and the number of electrons which scatter out of the state 
(𝑛, 𝐫, 𝐤) must equal the number of those which scatter into the state in equilibrium, we obtain 
 
 

𝑑𝑔Ü(𝐫, 𝐤, 𝑡) =
𝑑𝑡

𝜏Ü(𝐫, 𝐤)
𝑔ÜÇ(𝐫, 𝐤)	, 

( 3.57 ) 

 
This statement is known as the relaxation-time approximation. Given this assumption, we can 
calculate the non-equilibrium distribution function in the presence of external fields and 
temperature gradients. 
 Let us consider the number of electrons 𝑑𝑁 in a volume element 𝑑𝐫	𝑑𝐤 about (𝐫, 𝐤), 
given the distribution function 𝑔Ü(𝐫, 𝐤, 𝑡). 𝑑𝑁 can be expressed as 
 
 

𝑑𝑁 = 𝑔Ü(𝐫,𝐤, 𝑡) ⋅ 2	
𝑑𝐫	𝑑𝐤
(2𝜋)Ò	,	 

( 3.58 ) 

 
in 𝑑 dimensions and accounting for spin degeneracy. Now let us consider how the 

electrons in 𝑑𝑁 arrived at the volume element 𝑑𝐫	𝑑𝐤 about (𝐫, 𝐤). In order to get to this volume 
element, some electrons must have suffered a collision at time 𝑡′ prior to 𝑡 which transported 
them from 𝑑𝐫′	𝑑𝐤′ about (𝐫(𝑡I), 𝐤(𝑡′)) towards (𝐫(𝑡), 𝐤(𝑡)) deterministically by the 
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semiclassical equations of motion. The number of electrons which emerge from collisions at 
(𝐫(𝑡′),𝐤(𝑡I)) and are transported to (𝐫(𝑡), 𝐤(𝑡)) in this way is 

 
 𝑑𝑡′

𝜏Ü(𝐫(𝑡′), 𝐤(𝑡′))
𝑔ÜÇ(𝐫(𝑡′), 𝐤(𝑡′)) ⋅ 2

𝑑𝐫	𝑑𝐤
(2𝜋)Ò	, 

( 3.59 ) 

 
where we have used Liouville’s theorem to replace 𝑑𝒓′	𝑑𝒌′ with 𝑑𝒓	𝑑𝒌. However, of this 
number of electrons, only some fraction 𝑃Ü(𝐫, 𝐤, 𝑡, 𝑡′) manage to reach (𝐫(𝑡), 𝐤(𝑡)) without 
suffering another collision. Therefore, the total number of electrons 𝑑𝑁 that actually arrive at 
(𝐫(𝑡), 𝐤(𝑡)) is found by integrating all prior collision times 𝑡′, accounting for attrition by further 
collisions, so we find 
 
 

𝑑𝑁 = 2
𝑑𝐫	𝑑𝐤
(2𝜋)Ò 	

b
𝑑𝑡I𝑔ÜÇ(𝐫(𝑡′), 𝐤(𝑡′))𝑃Ü(𝐫,𝐤, 𝑡, 𝑡′)

𝜏Ü(𝐫(𝑡′), 𝐤(𝑡′))
	

Q

$d
, 

( 3.60 ) 

 
Comparing ( 3.60 ) with ( 3.58 ) yields 
 
 

𝑔Ü(𝐫, 𝐤, 𝑡) = b
𝑑𝑡I𝑔ÜÇ(𝐫(𝑡′), 𝐤(𝑡′))𝑃Ü(𝐫, 𝐤, 𝑡, 𝑡′)

𝜏Ü(𝒓(𝑡′), 𝐤(𝑡′))

Q

$d
	. 

( 3.61 ) 

 
For the sake of simpler notation, let us drop the indices 𝐫, 𝐤 and 𝑛, with the understanding that 
they denote a particular state in phase space, for a particular band. To calculate the probability of 
scattering between 𝑡 and 𝑡I, which is	𝑃(𝑡, 𝑡′), one can first consider that the probability of an 
electron suffering a collision between	𝑡′ and 𝑡I + 𝑑𝑡′, which is just 𝑑𝑡′/𝜏(𝑡′). Then the 
probability that an electron survives and continues to be transported to time 𝑡 without a collision 
is [1 − 𝑑𝑡′/𝜏(𝑡′)]𝑃(𝑡, 𝑡I + 𝑑𝑡′), which is equal to 𝑃(𝑡, 𝑡′), 
 
 

𝑃(𝑡, 𝑡I) = 31 −
𝑑𝑡I

𝜏(𝑡I)
4 𝑃(𝑡, 𝑡I + 𝑑𝑡I)	. 

( 3.62 ) 

 
The resulting differential equation from taking 𝑡I → 0 is 
 
 𝜕

𝜕𝑡′𝑃
(𝑡, 𝑡I) =

𝑃(𝑡, 𝑡I)
𝜏(𝑡′) 	. 

( 3.63 ) 

 
The solution of this differential equation is an exponential decay 
 
 

𝑃(𝑡, 𝑡I) = 𝑒
$∫ ÒQ̅

7(Q̅)
v
v� 	. 

( 3.64 ) 

 
If 𝜏 is time-independent (i.e. only depends on 𝐤 through ℰ(𝐤)), such as for isotropic systems, 
𝑃(𝑡, 𝑡I) can be further reduced to 
  
 𝑃(𝑡, 𝑡I) = 𝑒$(Q$Q�)/7(ℰ(𝐤)). ( 3.65 ) 
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Using ( 3.63 ), we can now rewrite ( 3.61 ) as 
 
 

𝑔(𝑡) = b 𝑑𝑡I𝑔Ç(𝑡I)
Q

$d

𝜕
𝜕𝑡′𝑃

(𝑡, 𝑡I)	, 
( 3.66 ) 

 
which upon integration by parts, using the physical constraint 𝑃(𝑡, −∞) = 0 becomes 
 
 

𝑔(𝑡) = 𝑔Ç(𝑡) − b 𝑑𝑡I𝑃(𝑡, 𝑡I)	
𝑑
𝑑𝑡I 𝑔

Ç(𝑡I)
Q

$d
	. 

( 3.67 ) 

 
This means that the non-equilibrium distribution function can be expressed as the equilibrium 
distribution function plus a small correction term. In order to understand how this correction 
term reacts to external driving forces such as electric field, temperature gradient and chemical 
potential gradient, we can consider the form of the total derivative on the equilibrium distribution 
 
 𝑑𝑔Ç(𝑡I)

𝑑𝑡I =
𝜕𝑔Ç

𝜕ℰ 𝛁𝐤ℰ ⋅
𝑑𝐤
𝑑𝑡I +

𝜕𝑔Ç

𝜕𝑇 𝛁𝐫𝑇 ⋅
𝑑𝐫
𝑑𝑡I +	

𝜕𝑔Ç

𝜕𝜇 𝛁𝐫𝜇 ⋅
𝑑𝐫
𝑑𝑡I		. 

( 3.68 ) 

 
Taking derivatives of ( 3.56 ) and using the semiclassical equations of motion, 
 
 𝑑𝐫

𝑑𝑡 = 𝐯(𝐤) =
1
ℏ𝛁𝐤ℰ	, 

( 3.69 ) 

 ℏ
𝑑𝐤
𝑑𝑡 = −𝑒[𝐄+

1
𝑐 𝐯(𝐤) × 𝐇(𝐫, 𝑡)]	, 

( 3.70 ) 

 
and taking the magnetic field to be zero (𝐇 = 0), we find that 
 
 

𝑔(𝑡) = 𝑔Ç(𝑡) + b 𝑑𝑡I𝑃(𝑡, 𝑡I)
𝜕𝑓
𝜕ℰ 𝐯 ⋅ (𝑒𝐄+ 𝛁𝜇 +

ℰ − 𝜇
𝑇 𝛁𝑇)	

Q

$d
, 

( 3.71 ) 

 
where 𝑓 is the Fermi function evaluated at the local temperature and chemical potential. Under 
conditions of no chemical potential gradient or temperature gradient, and using the assumption of 
time-independent 𝜏 in ( 3.65 ), we arrive at the non-equilibrium distribution function of DC 
electrical transport in a conductor 
 
 

𝑔(𝐤) = 𝑔Ç(𝐤) − 𝑒𝐄 ⋅ 𝐯(𝐤)𝜏Lℰ(𝐤)N
𝜕𝑓
𝜕ℰ		,	 

( 3.72 ) 

 
The Fermi surface of the non-equilibrium distribution function 𝑔(𝐤) under an externally 

applied electric field 𝐄 is visualized in Fig.  3.8. For both hole-like and electron-like carriers, the 
Fermi surface is seen to shift uniformly in the opposite direction of the applied electric field. 
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Fig.  3.8 Fermi surface shift under an externally applied electric field. The Fermi surface 
of electron- and hole-doped graphene near the K point is shown. The red circles indicate the 
Fermi surfaces under equilibrium conditions, without applying an electric field. The green 
circles indicate the shifted Fermi surfaces due to an externally applied electric field. 

 
To calculate the conductivity in a single band, we first express the current density 𝐣 as the 

number of electrons with momentum	𝐤 multiplied by their velocity and integrated over 
momentum space:  

 
 

𝐣 = −𝑒b2
𝑑𝐤

(2𝜋)Ò 𝐯
(𝐤)𝑔(𝐤)	. 

( 3.73 ) 

 
Arranged into the form of 𝐣 = 𝛔𝐄, we see that the conductivity tensor for band 𝑛 is 
 
 

𝛔Ü = 𝑒< b2
𝑑𝐤

(2𝜋)Ò 𝜏Ü
LℰÜ(𝐤)N𝐯Ü(𝐤)𝐯Ü(𝐤) �−

𝜕𝑓
𝜕ℰ�*ℰ>ℰ0(𝐤)

	, 
( 3.74 ) 

 
so that the total conductivity tensor is 
 
 𝛔 =c𝛔Ü		

𝒏

. ( 3.75 ) 

 
The DC conductivity in the direction parallel to the current is then 
 
 

𝜎¯¯ = 𝑒<cb
𝑑<𝑘
2𝜋< 𝜏Ü

LℰÜ(𝐤)N𝑣Ü¿,¯< �−
𝜕𝑓
𝜕ℰ�*ℰ>ℰ0(𝐤)

			
𝒏

, 
( 3.76 ) 

 
where 𝑣Ü¿,¯ denotes the component of the band velocity parallel to the current direction. 
Furthermore, we can make the extra assumption that the band structure is isotropic near the Dirac 
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point for low adsorbate densities, so that we can substitute 𝑣Ü¿,¯ = 𝑣Üe cos(𝜃), where 𝑣Üe is the 
isotropic Fermi velocity of band 𝑛 and 𝜃 is the angle between the current and the band velocity. 
The isotropic assumption also leads to the property that the scattering time 𝜏Ü only depends on 𝐤 
through ℰÜ(𝐤), and not on 𝐤 explicitly. In addition, since 𝜕𝑓/𝜕ℰ is only non-zero in an interval 
of order 𝑘)𝑇 around the Fermi level, at zero temperature, −𝜕𝑓/𝜕ℰ reduces to the Dirac delta 
function, so that we can further simplify the DC conductivity to 
 
 

𝜎¯¯ =
𝑒<

2𝜋<c𝜏Ü(ℰe)b𝑣Üe< cos<(𝜃) 𝑑𝜃	𝛿Lℰ − ℰÜ(𝑘)N	𝑘	𝑑𝑘			
𝒏

	

								=
𝑒<

2𝜋c𝜏Ü(ℰe)𝑣Üe< b𝑘𝛿Lℰ − ℰÜ(𝑘)N𝑑𝑘		
𝒏

	

								=
𝑒<

2𝜋c𝜏Ü(ℰe)𝑣Üe< ⋅
𝑘Üe
ℏ𝑣Üe

		
𝒏

		

								=
2𝑒<

ℎ c𝑣Üe𝑘Üe𝜏Ü(ℰe)		
𝒏

. 

( 3.77 ) 

 
In order to obtain the conductivity of graphene in the presence of scattering impurities, it remains 
to calculate the scattering time constant 𝜏 as a function of the Fermi level.  
 

3.3.2 Charged Impurity Scattering in Graphene 
 

Adsorbates on a conductor’s surface not only provide additional energy levels for 
electrons to hop into, but can also induce potentials that scatter incoming electrons. These 
processes change the conductivity of the material. In order to understand the effects of 
hybridization on the conductive substrate, we can employ Green’s function methods to calculate 
the scattering time constant, and thereby model the conductivity of the system.58 

A simple but crude framework to describe an adsorbate-metallic continuum system with a 
very localized adsorbate-induced potential is the Fano-Anderson model. In this model, a 
localized impurity state |𝜙⟩ with unhybridized energy ℰ@ is brought into contact with a host atom 
𝑛 in the metal with states |𝑛⟩. 𝛾 is the hopping strength from the adsorbate to the host atom. The 
Hamiltonian of the system can then be written as 

 
 𝐻 = −𝑡 c 𝑐'

�𝑐A + ℰ@𝑎�𝑎 + 𝛾(𝑐Ü
�𝑎 +	𝑎�𝑐Ü)

⟨',A⟩

			

= 	−𝑡 c|𝑙⟩⟨𝑚| + ℰ@|𝜙⟩⟨𝜙| + 𝛾|𝑛⟩⟨𝜙| + 𝛾|𝜙⟩⟨𝑛|
⟨',A⟩

. 

( 3.78 ) 

 
Here 𝑎 (or 𝑎�) annihilates (or creates) an electron in the local impurity state, 𝑐' or 𝑐'

� annihilates 
and creates an electron in metal atom 𝑙 while 𝑐Ü or 𝑐Ü

� annihilates and creates an electron in the 
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host metal atom. By writing the electron wavefunction as a linear combination of atomic orbitals 
|Ψ⟩ = ∑ 𝜓'|𝑙⟩ + 𝜑|𝜙⟩' , and projecting the Schrödinger equation onto the impurity state ⟨𝜙|, we 
can write 
 
 ⟨𝜙|ℰ − 𝐻|Ψ⟩ = 0	, ( 3.79 ) 

 
This expression can be used to relate the amplitude 𝜑 to the other amplitudes 𝜓', specifically, the 
non-vanishing cross terms yield: 
 
 𝜑 =

𝛾
ℰ − ℰ@

𝜓Ü	, ( 3.80 ) 

 
where 𝜓Ü is the wavefunction amplitude on the host atom. This allows us to eliminate the 
amplitude 𝜑 by writing a hybridized state 
 
 |𝜉⟩ = 𝜓Ü õ|𝑛⟩ +

𝛾
ℰ − ℰ@

|𝜙⟩	ö	. ( 3.81 ) 

 
If we want to express 𝐻|𝜉⟩ in terms of an effective potential on the carbon site, then 
  
 

𝑉 = ⟨𝜉|𝐻|𝜉⟩ =
𝛾<

ℰ − ℰ@
		, 

( 3.82 ) 

 
and the Hamiltonian can be reduced to 
 
 

𝐻G = −𝑡 c 𝑐'
�𝑐A + 𝑉𝑐Ü

�𝑐Ü
⟨',A⟩

	 ,where	𝑉 = 	
𝛾<

ℰ − ℰ@
 

( 3.83 ) 

 
and the problem of electrons scattering in the impurity-graphene system is reduced to a problem 
of electron scattering in an effective potential 𝑉 induced by the adsorbate. 
 Electrons scattering in a potential can be treated with the formalism of Green’s functions. 
The Hamiltonian in Eq. ( 3.83 ) can be seen as the sum of two parts, an unperturbed Hamiltonian 
of electrons in the conductor 𝐻èÇ = −𝑡∑ 𝑐'

�𝑐A⟨',A⟩  and the perturbing self-energy imposed by the 
impurity on the host atom site 𝑉ê = 𝑉𝑐Ü

�𝑐Ü.  With these two parts, the full Green’s operator can be 
defined as 
 
 𝐺ê(ℰ) = Lℰ − 𝐻èÇ − 𝑉ê + 𝑖𝛼N

$�
		, ( 3.84 ) 

 
and the unperturbed Green’s operator can be defined as 
 
 𝐺êÇ(ℰ) = Lℰ − 𝐻èÇ + 𝑖𝛼N

$�
		. ( 3.85 ) 
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The full Green’s operator can actually be expressed in terms of the unperturbed Green’s operator 
and the perturbing potential by writing 
 
 𝐺ê(ℰ) = Lℰ − 𝐻èÇ − 𝑉ê + 𝑖𝛼N

$�

= 		 "ℰ − 𝐻èÇ + 𝑖𝛼#
$� K1 − 𝑉êLℰ − 𝐻èÇ + 𝑖𝛼N

$�L
$�
	

											= 𝐺êÇL1 − 𝑉ê𝐺êÇN
$�

 . 
 

( 3.86 ) 

This can be further expanded to yield  
 
 𝐺ê(ℰ) = 𝐺êÇL1 − 𝑉ê𝐺êÇN

$�
= 	𝐺êÇ + 𝐺êÇ𝑉ê𝐺êÇ + 𝐺êÇ𝑉ê𝐺êÇ𝑉ê𝐺êÇ +⋯	

																																																															= 𝐺êÇ + 𝐺êÇL𝑉ê + 𝑉ê𝐺êÇ𝑉ê +⋯ N𝐺êÇ 

												= 𝐺êÇ + 𝐺êÇ𝑇ê𝐺êÇ			, 

( 3.87 ) 

 
where the T-matrix is defined as the series sum 𝑉ê + 𝑉ê𝐺êÇ𝑉ê +⋯, whose terms can be collected 
and re-expressed as 
 
 𝑇ê(ℰ) = L1 − 𝑉ê𝐺êÇN

$�
𝑉ê			. ( 3.88 ) 

 
If we define the local unperturbed Green’s function 𝑔Ç(ℰ) = 𝐺êÇ(𝐤, ℰ) = ∑ (ℰ − ℰ¿ + 𝑖𝛼)$�𝐤 , 
then the resulting T-matrix can be reduced to 
 
 

⟨𝐤I|𝑇|𝐤⟩ ≡ 𝑇(ℰ) =
𝛾<

ℰ − ℰ@ − 𝛾<𝑔Ç(ℰ)
			. 

( 3.89 ) 

 
Assuming the conductivity is isotropic, as in the case of graphene due to C6 symmetry, the 
structure of the T-matrix does not depend explicitly on the incoming and outgoing wavevectors 𝐤 
and 𝐤I, but only on 𝐤 and 𝐤I through the energy of the electrons ℰ(𝐤). The T-matrix is important 
because it can be used to calculate the probability of an electron scattering from 𝐤 to 𝐤I, and is 
thus proportional to the scattering amplitude	𝑓(𝐤′, 𝐤): 
 
 𝑓(𝐤′, 𝐤) = −

𝑚
2𝜋ℏ<

H𝐤′G𝑇ê(ℰ)G𝐤	J	. ( 3.90 ) 

 
The transition rate is then given by Fermi’s golden rule: 
 
 
 𝜏$� =

2𝜋
ℏ 𝑛@|𝑇(ℰ)|<𝜈Ç(ℰ)			,	

(3. 91) 

 
where 𝑛@ is the density of impurities, and 𝜈Ç(ℰ) is the local density of states. For graphene, 
𝜈Ç(ℰ) is modeled by 
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𝜈Ç(ℰ) =
|ℰ|
𝐷< Θ

(𝐷 − |ℰ|)	, 
( 3.92 ) 

 
where Θ is the Heaviside function, and 𝐷 is a high energy cutoff ~6	𝑒𝑉, such that there is an 
overall normalization of one electron per carbon atom: ∫ 𝜈Ç(ℰ) = 1È

$È . Knowledge of 𝜈Ç(ℰ) 
actually fully defines 𝑔Ç(ℰ), and therefore	𝑇(ℰ) and  𝜏𝐤$�. This is because 𝑔Ç(ℰ) is related to 
𝜈Ç(ℰ) by 
 
 𝑔Ç(ℰ) = 𝒫c

1
ℰ − ℰ𝐤𝐤

− 𝑖𝜋c𝛿(ℰ − ℰ𝐤)
𝐤

		 

											= 𝒫b
𝜈Ç(ℰI)
ℰ − ℰI

d

$d
𝑑ℰI − 𝑖𝜋𝜈Ç(ℰ), 

( 3.93 ) 

 
where 𝒫 denotes the Cauchy principal value. For graphene, 𝑔Ç(ℰ) can thus be re-expressed as 
 
 

𝑔Ç(ℰ) =
ℰ
𝐷< ln

S
ℰ<

𝐷< − ℰ<
S− 𝑖𝜋

|ℰ|
𝐷< Θ

(𝐷 − |ℰ|)	. 
( 3.94 ) 

 
This result can be plugged back into ( 3.89 ) to calculate 𝑇(ℰ), which can then be used to 
determine the scattering time constant 𝜏 in (3. 91), which yields the conductivity in graphene 
 
 

𝜎×(ℰ) =
2𝑒<

ℎ
(2𝜋𝑛@|𝑇(ℰ)/𝐷|<)$�	. 

( 3.95 ) 

 
The result of this expression is plotted in Fig.  3.9. One can observe that scattering with 
impurities produces asymmetric conductivities in graphene above and below the Dirac point. In 
particular, when the impurity resonance is above the Dirac point, the conductance is suppressed 
in the electron band and enhanced in the hole band. The opposite trend is predicted when the 
impurity resonance is below the Dirac point. 

In contrast to the case of a constant scattering time, which predicts that conductivity 
varies linearly with carrier concentration in graphene, the Fano-Anderson model predicts a 
sublinear conductivity. In addition, it also predicts a strong asymmetry in electron and hole 
conductivity for orbital energies more than 100 meV away from the Dirac point energy. These 
predictions have both been observed in potassium-doped graphene samples.60,61 Since potassium 
energy levels are far away from the graphene Dirac point energy and thus do not directly 
contribute to the density of states at the Fermi level, no atomic orbital resonance is directly seen 
in the conductance curve. However, it is also possible for an adsorbate to change the 
conductivity of graphene by directly contributing its orbital to the density of states at the Fermi 
level, in which case contributions from each hybridized band will need to be summed up in 
( 3.77 ). 
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Fig.  3.9 Graphene conductance in Boltzmann transport. The conductance of graphene is 
plotted as a function of carrier concentration for different impurities with resonance energies  
0 eV, 0.2 eV, 0.4 eV, 0.8 eV, and 1.6 eV. The impurity density 𝑛@ = 0.06%, and hybridization 
energy 𝛾 = 5.2 eV. A significant asymmetry can be seen in the electron and hole-bands. 
 

 
3.3.3 Resonant Impurity Scattering in Graphene 
 

The model above does not account for impurity band formation at high impurity 
concentrations. To take this effect into account, we employ a slightly more sophisticated model 
that couples an impurity level to a continuum of graphene Dirac band states in a periodic 
Anderson model, where impurities adsorb on only one of the two sublattices in a periodic array. 
The impurities themselves form a superlattice, and impurity levels hybridize with graphene Dirac 
bands to form impurity bands. Here we assume the impurity level hybridizes with the lower 
Dirac band, as observed in the case of F4TCNQ molecules (see chapter 7). The model 
Hamiltonian of such a system can be written as 

 
 𝐻𝐤 = −ℏ𝑘𝑣e(𝑐U,𝐤

� 𝑐U,𝒌 + 𝑐U�,𝒌
� 𝑐U�,𝒌) + ℰ@𝑎@

�𝑎@	

																+ΔU(𝐤)	𝑎@
�𝑐U,𝒌 + ΔU�(𝐤)	𝑎@

�𝑐U�,𝒌 + 𝐻. 𝑐.		, 

( 3.96 ) 

 
where 𝑎@

� and 𝑎@ destroys and creates a state |𝜓V(𝐤)⟩ in the impurity band, 𝑐U,¿
�  and 𝑐U,¿  destroys 

and creates a state G𝜓U,$(𝐤)J in the K band of graphene, and 𝑐U�,¿
�  and 𝑐U�,¿ destroys and creates 

a state G𝜓U�,$(𝐤)J in the K’ band. ℰ@ is the impurity energy. These states can also be written in 
the basis of localized states on the impurity |𝜙V𝐑⟩	and localized states on the A/B sublattices, 
G𝜒U,�(𝐤)J and G𝜒U,)(𝐤)J with 
 
 |𝜓V(𝐤)⟩ =

1
√𝑁

c𝑒@𝐤⋅𝐑
𝐑

	 |𝜙V𝐑⟩	, 
( 3.97 ) 
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and 
 G𝜓U,$(𝐤)J =

1
√2

[𝑒$
@½𝐤
< G𝜒U,�(𝐤)J − 𝑒

@½𝐤
< G𝜒U,)(𝐤)J]		, 

( 3.98 ) 

 G𝜓U�,$(𝐤)J =
1
√2

[𝑒
@½𝐤
< G𝜒U,�(𝐤)J − 𝑒

$@½𝐤< G𝜒U,)(𝐤)J]		, 
( 3.99 ) 

 
Where 
 
 G𝜒U,�(𝐤)J =

1
√𝑁I

c𝑒@𝐤⋅𝐑�

𝐑�
	|𝜙𝐑��⟩	, 

( 3.100 ) 

 
And where 𝐑 is a sum over the 𝑁 × 𝑁 supercell lattice vectors, 𝐑I is a sum over the 𝑁′ × 𝑁′ 
primitive cell lattice vectors of graphene, and 𝑁 is a multiple of 3, such that the K and K’ points 
of the graphene Brillouin zone maps to the origin of the supercell. 𝜃𝐤 is the angle of 𝐤 with 
respect to the real axis. 

The hybridization Hamiltonian couples a state on the A sublattice to a state on the 
impurity and can be expressed as 

 
 𝐻X¬Y = 𝑉c𝑎@𝐑

� 𝑎@�7>Ç
𝐑

+ 𝐻. 𝑐.		, ( 3.101 ) 

 
where 𝜏 is the vector that points from the origin of the supercell to the origin of the various 
primitive cells of graphene within the supercell. To obtain the off-diagonal term Δ(𝐤) which 
couples the impurity and graphene bands, we evaluate the term  ⟨𝜓V(𝐤)|𝐻X¬YG𝜓U,$(𝐤)J, which 
yields 
 
 ΔU(𝐤) = ⟨𝜓V(𝐤)|𝐻X¬YG𝜓U,$(𝐤)J =

𝑉
√2𝑁

𝑒
@½𝐤
< 		. ( 3.102 ) 

 
Similarly, we also find that 
 
 ΔU�(𝐤) = ⟨𝜓V(𝐤)|𝐻X¬YG𝜓U�,$(𝐤)J =

𝑉
√2𝑁

𝑒$
@½𝐤
< 		, ( 3.103 ) 

 
so that ΔU�(𝐤) = ΔU∗ (𝐤), so the Hamiltonian takes the form 
 
 

𝐻𝐤 = Z
ℰ@ Δ(𝐤) Δ∗(𝐤)

Δ∗(𝐤) −ℏ𝑘𝑣e 0
Δ(𝐤) 0 −ℏ𝑘𝑣e

	[	. 
( 3.104 ) 

 
Diagonalizing this Hamiltonian yields the characteristic equation 
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 (−ℏ𝑘𝑣e − ℰÜ¿)[(ℰ@ − ℰÜ¿)(−ℏ𝑘𝑣e − ℰÜ¿) − 2|Δ(𝐤)|<] = 0. ( 3.105 ) 
This shows that one linear band is unaffected by the impurity and does not hybridize at all. The 
unaffected linear band is the antisymmetric sum of the bands from the K and K’ points. We also 
find that the dispersion is isotropic and only depends on 𝑘, since |Δ(𝐤)|< = 𝑉</(2𝑁<). The 
remaining eigenvalues can be explicitly solved: 
 
 

ℰÜ¿ =
ℰ@ − ℏ𝑘𝑣e

2 −
1
2
ª(ℰ@ + ℏ𝑘𝑣e)< +

4𝑉<

𝑁< 		. 
( 3.106 ) 

 
The band structure of this system and its corresponding density of states is plotted in Fig.  3.10. 
The density of states shows the impurity resonance close to ℰ@, which exhibits a characteristic 
Fano line shape with higher density of states closer to the Dirac point energy. 
 

 
Fig.  3.10 Hybridized graphene impurity bands in the continuum model. (a) Band 
structure of a periodic lattice of impurities on graphene near the K point. The impurity energy 
is set to -0.5 eV relative to the graphene Dirac point. The resulting band structure shows two 
hybridized impurity bands (red and green) and unhybridized graphene Dirac bands (blue). (b) 
The resulting density of states from the band structure shown in (a) is plotted. The density of 
states of the upper impurity band is plotted in red, and the density of state of the lower 
impurity band is plotted in green. The blue curve shows the total density of states of the 
system, including unhybridized graphene density of states. Calculations done by J. Lischner. 

 
Assuming a constant scattering time 𝜏 without dependence on energy or band index, we 

can sum up contributions from each band and calculate the conductivity following ( 3.77 ). We 
thus arrive at a crude model of the conductivity as a function of Fermi level and gate voltage. 
The calculated conductivity from such a band structure is plotted in Fig.  3.11 (a). When the 
conductivity is plotted as a function of Fermi level, a pronounced dip is seen at the energy of the 
molecular resonance, in addition to the linearly varying background conductivity of the graphene 
Dirac bands. The conductivity of graphene is reduced when the Fermi level is close to the 
molecular orbital energy due to electrons becoming trapped in the molecular orbitals. 
Furthermore, at high molecular densities, the molecular orbitals contribute a significant density 
of states to the system as well, which results in a Fermi level pinning effect. As electrons are 
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added to the system through gating, instead of raising the Fermi level, they fill in empty 
molecular orbitals at energy of the DOS peak. As a result, the Fermi level does not change for a 
range of gate voltages. In this regime, the conductivity also remains roughly constant. The 
conductivity of molecule-decorated graphene is plotted as a function of applied gate voltage in 
Fig.  3.11 (b). A plateau in conductivity is observed whose range in gate voltage varies linearly 
with the surface molecule concentration. This model describes the basic phenomenology of gate-
dependent conductance measurements of F4TCNQ decorated-graphene devices presented in 
chapter 7. 
 

 
Fig.  3.11 Conductivity of impurity-decorated Graphene. The conductivity of a periodic 
lattice of impurities simulating F4TCNQ on graphene is plotted in (a) as a function of Fermi 
level, and in (b) as a function of applied gate voltage. The impurity energy is set to -0.14 eV 
relative to the graphene Dirac point. The red, green, and blue curves correspond to a molecular 
density of 1.2 × 10�<, 2.1× 10�< and 4.3× 10�< molecules cm$<, respectively. The red, green, 
and blue vertical lines correspond to the gate voltage used to induce the molecular density, 
which are respectively -12.6V, 4.7V, and 48.8V, given a device capacitance of 5× 10�Ç 
electron charges cm$<𝑉$� (see chapter 7 for additional details, calculations by J. Lischner).  

 

3.4 Diffusion and Electromigration of Surface Adsorbates 
Diffusion and electromigration of surface adsorbates are two thermally activated 

processes that are important for dynamical changes in adsorbate-decorated graphene. The 
background theory for these topics are introduced in the following sections, whereas our specific 
experiments in these areas will be the focus of later chapters 6 and 8. 
 
3.4.1 Brownian Diffusion 

Brownian diffusion is a simple model that describes thermally activated motion of 
adsorbates on a surface. In one-dimensional Brownian diffusion, the probability of finding a 
particle at position 𝑥 is given by the probability density function (PDF) 

 
 

𝑝(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒$

(¯$¯\)t
]ÈQ 			, 

( 3.107 ) 
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where 𝐷 is the diffusion constant, 𝑥Ç is the initial position of the particle, and 𝑡 is the time 
passed. This “spreading Gaussian” PDF is a solution of the diffusion equation 
 
 𝜕𝑝(𝑥, 𝑡|𝑥Ç)

𝜕𝑡 = 𝐷
𝜕<𝑝(𝑥, 𝑡|𝑥Ç)

𝜕𝑥< 		, 
( 3.108 ) 

 
where 𝑝(𝑥, 𝑡|𝑥Ç) is the probability of finding the particle at position 𝑥 at time 𝑡, given that it 
started out at position 𝑥Ç at 𝑡 = 0 with the initial condition 𝑝(𝑥Ç, 𝑡 = 0|𝑥Ç) = 𝛿(𝑥 − 𝑥Ç). Since 
this PDF is a Gaussian function with the expectation value ⟨𝑥 − 𝑥Ç⟩ = 0, so on average the 
particle is still centered on its original position. However, the expectation value ⟨|𝑥 − 𝑥Ç|<⟩ is 
equal to the variance of the Gaussian, which is 𝜎 = 2𝐷𝑡. This means that, although on average 
the probability of finding the particle is still centered around its original position, its mean 
squared displacement (MSD) is proportional to the time elapsed. In d-dimensions, these 
properties hold true since the particle position in each coordinate is uncorrelated, so the MSD can 
be written as 
 
 ⟨|𝐫 − 𝐫Ç|<⟩ = ⟨Δ𝐫<⟩ = 2𝑑𝐷𝑡	. ( 3.109 ) 

 
By keeping track of the MSD of particles as a function of time, we can extract the diffusion 
constant 𝐷. 
 In the case of tracer diffusion (i.e. when particle concentrations are low and particles do 
not impede each other’s motion), the MSD can also be written as a function of the hopping 
frequency 𝜈, elapsed time 𝑡, and the step length 𝑎. By definition, the MSD after 𝑛 steps is 
 
 ⟨Δ𝐫Ü<⟩ = ⟨(𝐫Ü$� + 𝛅)<⟩		, ( 3.110 ) 

 
where 𝛅 is the displacement at step 𝑛, and 𝐫Ü$� is the displacement after 𝑛 − 1 steps. The 
average is taken over all adatoms. Expanding the terms inside the average, we obtain 
 
 ⟨Δ𝐫Ü<⟩ = ⟨𝐫Ü$�< ⟩ + ⟨2𝐫Ü$�𝛅⟩ + ⟨𝛅<⟩		. ( 3.111 ) 

 
The term ⟨2𝐫Ü$�𝛅⟩ averages to zero because 𝛅 is uncorrelated with the previous history of 
displacements, thus the MSD can be expressed recursively as 
 
 ⟨Δ𝐫Ü<⟩ = ⟨𝐫Ü$�< ⟩ + ⟨𝛅<⟩	

											= ⟨𝐫Ü$<< ⟩ + ⟨𝛅<⟩ + ⟨𝛅<⟩	

											= 𝑛⟨𝛅<⟩																											. 

( 3.112 ) 

 
Since the number of steps taken is just the hopping frequency multiplied by the elapsed time and 
the expectation value ⟨𝛅<⟩ = 𝑎< (where 𝑎 is the isotropic step length), we can express the MSD 
as 
 
 ⟨Δ𝐫<⟩ = 𝜈𝑎<𝑡	. ( 3.113 ) 
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Since adsorbate hopping from site to site is a thermally activated process which requires 
surmounting of a diffusion barrier 𝐸£, we expect the hopping frequency to have a Boltzmann 
factor: 𝜈 = 𝜈Çexp	(−𝐸£/𝑘Y𝑇), where 𝜈Ç is the oscillation frequency of the adsorbate in the 
potential well of the adsorption site (i.e. the “attempt” frequency). Combining ( 3.109 ) and 
( 3.113 ), we therefore obtain an expression for the diffusion constant in two dimensions, which 
allows us to extract 𝐸£  and 𝜈Ç by fitting experimentally observed values of 𝐷 as a function of 
temperature: 
 
 

𝐷 =
𝑎<𝜈Ç
4 𝑒$

`¥
¿Z�		. 

( 3.114 ) 

 
This simple model forms the basis of our analysis of gate-dependent molecular diffusion 
presented in chapter 6. 
 
3.4.2 Electromigration 
 

Electromigration is a phenomenon where impurities or adsorbates in a conductor diffuse 
in response to an electrical current. Electromigration is an important concern in the design of 
interconnects in integrated circuits because as metal wires are made ever smaller, 
electromigration of constituent atoms is a main source of failure in microelectronics. Although 
electromigration of bulk materials has been observed at the microscale and nanoscale,23,62 no 
previous work has ever measured the electromigration force at the single-impurity level. 

The electromigration force is typically discussed as having two separate components, the 
direct force (𝐅È) and the wind force (𝐅b): 𝐅'c'de = 𝐅È + 𝐅b. The direct force is the force applied 
by the external electric field on the bare ion of the electromigrating atom (with valence 𝑍) and 
can thus be straightforwardly expressed as 𝐅È = 𝑍𝑒𝐄. The wind force, on the other hand, is the 
force applied on the electromigrating atom by impinging electrons scattering off the atom. Since 
the wind force involves quantum mechanical scattering of electrons, it is much more complicated 
to calculate. To calculate the quantum mechanical expectation value of force ⟨𝐅⟩ on an 
electromigrating ion core, Ehrenfest’s theorem can be used to evaluate either the momentum 
change of the electrons or the ions: ⟨𝐅g⟩ =

Ò⟨𝐏⟩
ÒQ

= −Ò⟨𝐩⟩
ÒQ

, where 𝐏 is the momentum operator of 
the ion (𝐏 = −𝑖ℏ∇𝐑), and 𝐩 is the momentum operator of incoming electrons (𝐩 = −𝑖ℏ∇𝐫). 

We will first consider the momentum change of the electrons during scattering. In a free 
electron gas scattering off a long-ranged potential, the total momentum change of an electron due 
to scattering is calculated by summing over all pairs of allowed initial and final states with 
momentum 𝐤 and 𝐤I. The wind force can then be expressed as 

 
 
 

⟨𝐅b⟩ = −cℏ(𝐤I − 𝐤)Γ¿�¿
¿,¿�

			,	 (3. 115) 

 
where the transition rate is given by Fermi’s golden rule: 
 
 
 Γ¿�¿ =

2𝜋
ℏ
G𝑈G¿�¿G

<[1 − 𝑔(𝐤I)]𝑔(𝐤)𝛿(ℰ¿� 	− ℰ¿)			.	
(3. 116) 
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Here 𝑈G¿�¿  is the transition matrix element ⟨𝑘I|𝑈G|𝑘⟩, where 𝑈G is the screened interaction potential 
between the ion core and electrons. 𝑔(𝐤) is the steady-state electron distribution function 
obtained in ( 3.72 ). We have also assumed only elastic scattering is allowed. However, the 
ballistic scattering model just described does not account for band structure effects. In a solid, 
electrons are not in eigenstates of the momentum operator 𝐩, but are instead in Bloch states, 
which are a sum of plane waves with crystal momenta 𝐤 + 𝐆 (𝐆  is a reciprocal lattice vector), so 
a change in the crystal momentum cannot be directly associated with the change in total 
momentum if significant Umklapp scattering occurs. Nevertheless, if the potential is long-ranged 
enough (varying on scales larger than the electron wavelength), the ballistic scattering model can 
still be applied in the semiclassical limit. 

In order to apply the semiclassical model to Bloch states, several assumptions need to be 
made: (1) since Bloch wavefunctions 𝜓Ü,𝐤 and 𝜓Ü,𝐤h𝐆 are completely equivalent ways of 
describing the same electron state, the wavevector 𝐤 is defined only in the first Brillouin zone. 
(2) no “interband transitions” are allowed, so the band index n is a constant throughout the 
electron’s motion. (3) electrons behave like wavepackets with a reasonably well-defined 
momentum	𝐤 having a spread of wavevectors Δ𝐤 such that 𝐤I − 𝐤 reasonably describes the 
momentum change of the scattered electron, and hence the usual classical equations of motion 
( 3.69 ) and ( 3.70 ) are obeyed. Here the band structure only serves to dictate the dispersion 
relation ℰ(𝐤) and no other information about the periodic potential of ions is known. This 
approach has been taken by Solenov et al. to predict the electromigration force in a poorly 
screened environment such as graphene, where Coulomb potentials from adsorbates can be long-
ranged.63,64 
 One interesting consequence of scattering in the semiclassical limit is the concept of a 
hole wind when the Fermi level is near the top of a valence band. To understand how an electron 
hole can transfer momentum to a scatterer, one must first understand how electrons and holes 
move in an applied electric field. When an electric field is applied to a material with a hole-like 
Fermi surface whose cross section along the electric field direction is shown in Fig.  3.12(a), the 
Fermi surface is shifted opposite to the direction of the electric field (i.e. to the right), which 
results in an imbalance of electrons with right-pointing and left-pointing crystal momentum. The 
total crystal momentum of the electrons is defined as the sum of all filled electron state 
momenta: 𝐩k'de = Σ	ℏ𝐤i,A@''iÒ. Under the left-pointing electric field shown in Fig.  3.12, there 
are more filled electron states with momenta pointing to the left than those with momenta 
pointing to the right, therefore the total crystal momentum is pointing towards the left, even 
though on average the electrons are moving towards the right (since there are more electrons on 
the band with right-going velocity 𝐯(𝐤) = �

ℏ
𝛁𝐤ℰ). If scattering is limited to wavevectors within 

the first Brillouin zone, one can see that states with larger left-pointing momenta scatter to the 
right in momentum space with a change in momentum ℏΔ𝐤, which results in a momentum 
transfer to the scatterer −ℏΔ𝐤 that points to the left. By the semiclassical equation of motion, 
∑ ℏ Ò𝐤

ÒQ𝐤 = 𝐅i , this change in momentum generates a corresponding force 𝐅P)£Q = −𝐅i acting on 
the scatterer, which also points to the left. An equivalent picture is to consider the charge carriers 
as positively-charged holes which carry the opposite momentum of empty electron states. The 
total momentum can be calculated by summing 𝐩 = Σ	ℏ𝐤X,A@''iÒ = Σ − ℏ𝐤i,iAmQ¬ . In this 
picture, there are more holes with left-pointing momenta than those with right-pointing 
momenta, thus the total crystal momentum is also pointing to the left. The corresponding total 
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momentum transfer to the scatterer is thus also pointing to the left. Since the direction of the 
resulting force is in the same direction as the direction of motion for holes, such a force is known 
as a hole wind force. 

The hole wind force has been experimentally observed to migrate interstitial atoms such 
as carbon, nitrogen and hydrogen in metallic wires along the electric current direction.65,66 In 
addition, by varying the transition metals used as the host conductor, it has been shown that the 
direction of electromigration can be switched between electron- and hole-directions as carriers 
are switched from electrons to holes.65,66 This shows that the semiclassical model of holes can be 
useful for explaining electromigration in some cases. However, if scattering wavevectors beyond 
the first Brillouin zone are allowed, the intuitive scattering picture for the hole wind force 
quickly breaks down. In order to rigorously justify the electromigration force in the regime 
where the spatial variation of the potential is comparable to the electron wavelength, a fully 
quantum mechanical treatment is needed. 

 

 
Fig.  3.12 Hole wind arising from imbalance of states with left- and right-pointing 
momenta. A left-pointing electric field results in a shift of the Fermi surface to the right, 
which causes an increase of filled -k electron states and a decrease of filled +k electron states. 
The resulting net momentum points to the left. Upon scattering, this momentum is transferred 
to the scatterer, which generates a left-pointing force. An equivalent picture is to think of the 
momentum carried by holes (absence of electrons). There are also more -k hole states than +k 
hole states, which results in a net momentum pointing to the left. 
 

 The inadequacy of the semiclassical model is especially apparent in complex extended 
scatterers composed of many atoms, such as F4TCNQ where inter-atomic distances within the 
molecular scatterers are comparable to the lattice constant of graphene, which means that the 
scattering potential has strong components at the Brillouin zone boundary. Since the Fermi 
surface of charge neutral graphene is also near the Brillouin zone boundary, this means that the 
potential is not varying slowly enough compared to electron wavelengths in graphene, thus 
strong Umklapp scattering is expected. These processes scatter electron states far outside the first 
Brillouin zone, resulting in large and complicated momentum changes, thus the semiclassical 
model cannot be directly applied. 
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Furthermore, many-body effects complicate evaluation of scattering matrix elements.63 
An important many-body effect to consider in electromigration is the Landauer dipole,67 which 
arises from electrons piling up in the material around the scatterer, and which induces screening 
charges around the scatterer. Because of these effects, it is often more useful to consider the 
quantum mechanical expectation value of the ion’s momentum change Ò⟨𝐏⟩

ÒQ
 rather than the 

electron’s momentum change (as shown above). The theory of electromigration described in the 
following section takes this alternative perspective and describes the model presented by 
Sorbello,68 as well as the implementation of the wind force calculation by Bevan et al. with non-
equilibrium Green’s function methods.69,70 
 Here we consider the many-body Hamiltonian ℋ of an adatom-conductor system where 
the adatom is located at position 𝐑, and an external electric field 𝐄 is applied to the system. The 
total Hamiltonian can be written as: 
 
 
 

ℋ =c𝑒𝐫@	 ∙ 𝐄
@

− 𝑍𝑒𝐑	 ∙ 𝐄 +𝐻i'$i' +𝐻@�Ü$@�Ü + 𝑣i'$@�Ü			,	 (3. 117) 

 
where 𝐫@ is the position operator of the i-th electron, 𝑍 is the valence of the electromigrating 
adatom, 𝐻i'$i' is the electron-electron interaction Hamiltonian without electron-ion interaction, 
𝐻@�Ü$@�Ü is the ion-ion interaction Hamiltonian without the electron-ion interaction, and 𝑣i'$@�Ü 
is the electron-ion interaction potential. By treating the ion as a very massive classical object (in 
the spirit of the Born-Oppenheimer approximation) we can make some simplifications. Since 
ions are now immobile classical objects, the ionic wavefunction is not considered and 𝐑 becomes 
a classical parameter instead of an operator. The basis states of the Hamiltonian are now only 
eigenstates of the conduction electrons. The quantum mechanical force on the ion given the 
many-body electron wavefunction can then be expressed using the Ehrenfest theorem as:  
 
 ⟨𝐅⟩ =

𝑑⟨𝐏⟩
𝑑𝑡 	

							=
1
𝑖ℏ
⟨[𝐏,ℋ]⟩			

							= −⟨∇𝐑ℋ⟩	, 

( 3.118 ) 

 
where we have used the momentum operator of the ion 𝐏 = −𝑖ℏ∇𝐑. Applying the momentum 
operator to the Hamiltonian now yields: 
 
 
 

⟨𝐅⟩ = 𝑍𝑒𝐄− ⟨∇𝐑𝑣i'$@�Ü⟩			.	 ( 3.119) 

The first term may be identified as the “direct force” (𝐅𝐃) on the electromigrating adatom, which 
describes the force experienced by the bare adatom ion core when an electric field 𝐄 is applied. 
The second term is identified as the “wind force” (𝐅𝐖), which describes the force experienced by 
the adatom due to interaction with the non-equilibrium conduction electron charge density 
around it. 
 To evaluate the wind force 𝐅𝐖 in the low-field regime, the Kubo linear-response 
formalism can be applied to obtain the simple result71: 
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⟨𝐅𝐖⟩ = −c[𝑔(𝐤)
𝐤

− 𝑔Ç(𝐤)]⟨𝜓𝐤|∇𝐑𝑣(|𝐫 − 𝐑|)|𝜓𝐤⟩	,	 (3.120) 

where 𝑔(𝐤) − 𝑔Ç(𝐤) is the difference between the non-equilibrium and equilibrium electron 
distribution function as defined in Eq. ( 3.72 ) (for brevity 𝑣i'$@�Ü is represented by 𝑣). 
Converting this expression to the real-space basis yields a readily interpretable result: 
 
 
 ⟨𝐅𝐖⟩ = −b𝛿𝜌(𝐫)∇𝐑𝑣(|𝐫 − 𝐑|) 𝑑𝐫.	

(3.121) 

 
The term in the integrand is just the force applied on the induced charge density change 𝛿𝜌 by 
the electric field of the adatom core: 𝐄 = −∇𝐫𝑣 = ∇𝐑𝑣(|𝐫 − 𝐑|) = ∇𝐑 ¹−

i
|𝐫$𝐑|

º = i
|𝐫$𝐑|

	(𝐫 − 𝐑). 
The opposite of this force is thus the force applied on the adatom core due to the induced charge 
density change 𝛿𝜌, which is the wind force. Experimentally, the wind force is usually found to 
be an order of magnitude greater than the direct force, and usually pushes impurities in the 
direction of electron flow.23 In order to explain these characteristics of the wind force it is 
necessary to describe the charge distribution around the scatterer (𝛿𝜌(𝐫)). 

Although 𝛿𝜌 is complex, anisotropic, and depends on the adatom location with respect to 
the surface unit cell, it can be qualitatively described by the Landauer model of ballistic 
transport.72 In this model incoming electrons are reflected by a scatterer (an impurity) which 
causes an imbalance in forward and backward going electron distributions. This imbalance in 
electron distributions is schematically represented in Fig.  3.13. For simplicity we assume the 
device has ideal ballistic contacts where electrons transmit freely from the contacts to the 
conductive channel material. The electrochemical potential of electrons (Fermi level) 𝜇V , 𝜇í  are 
well-defined in the left and right contacts, respectively. Near the impurity, however, the electron 
distributions are in a highly non-equilibrium state. To the immediate left of the impurity, right-
going electrons with momentum +𝑘 arrive from the left contact with perfect transmission. They 
reflect from the impurity with probability 1 − 𝑇, which then populate the states with momentum 
−𝑘. To the immediate right of the impurity, electrons with momentum +𝑘 transmit through the 
impurity with probability 𝑇, populating the right-going states. The left-going states with 
momentum −𝑘 are occupied by electrons coming from the right contact. It can be seen that a 
sharp drop-off in the quasi-Fermi level (defined as the average of the electrochemical potentials 
of the +𝑘 and −𝑘 states) occurs around the impurity. The remainder of the electrochemical 
potential drop-off occurs at the contacts and corresponds to the contact resistance of ℎ/2𝑒< of a 
perfect ballistic channel. 
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Fig.  3.13 Schematic of electron scattering in the Landauer transport model. Electrons 
arriving from the left contact transmit with probability 𝑇 through the scattering impurity and 
reflect with probability 1 − 𝑇. This causes a highly non-equilibrium distribution function 
around the impurity and results in a sharp drop-off of the electrochemical potential near the 
impurity. 

  
While the drop-off in electrochemical potential is abrupt near the impurity, the 

electrostatic potential follows a much smoother curve due to the finite screening length in the 
conductor. As a result, the conduction band bottom does not vary congruently with the 
electrochemical potential, which causes a pileup of charge around the impurity forming a 
mesoscopic dipole known as the “residual resistivity dipole” (RRD), or the Landauer dipole 
(shown in Fig.  3.14 (a)). Landauer first analyzed the local transport field generated by a scatterer 
in his well-known paper in 1957.67 Landauer found that negative charge accumulates on the 
upwind side of oncoming electrons, while positive charge accumulates on the downwind side. 
This produces a dipole field 𝐄Ò@m which accelerates electrons around the scatterer, enabling 
electrons to traverse the scattering region. Landauer’s analysis of microscopic scattering 
processes provides an important connection to the macroscopic concept of Ohm’s law because 
the RRD establishes the field necessary to define a local resistivity, 𝐄Ò@m/𝐉 = 𝜌. One should note 
that the direction of the RRD actually reduces the magnitude of the overall wind force on a 
positive impurity ion core. To explain why the positive impurity ion core is pushed along the 
direction of electron flow, one must additionally consider the local polarization of the scattering 
impurity. Taking a closer look at bound electrons of the impurity, one finds that they form a 
dipole opposite to the direction of the RRD, which can be interpreted as a screening response of 
the valence electrons of the impurity to the RRD. The resulting dipole formed on the impurity 
itself is much closer to the impurity ion core than the RRD (as indicated by the charges on the 
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adatom itself in Fig.  3.14), and thus exerts a stronger force on the impurity. Since this localized 
dipole is opposite in direction to the RRD, the net force pushes the impurity in the direction of 
electron flow. The self-consistently calculated charge density distribution can thus be used to 
calculate the total wind force. 

 
3.4.3 Non-equilibrium Green’s Function (NEGF) Calculations in 

Electromigration 
The charge distribution around a scatterer during electromigration can be extremely 

complex and depends on the specific position of the scatterer on the conducting material, as well 
as electronic structure of the conducting material and scatterer itself. In addition, while 
conventional DFT methods are useful for treating finite or periodic systems, real devices are 
open systems where electrons are exchanged with semi-infinite leads with well-defined 
electrochemical potentials. Consequently, in order to calculate the charge distribution under 
current flow, NEGF methods are often used. The two-contact configuration of NEGF presented 
here is described by Datta72 and used in Bevan’s treatment of the electromigration force.70 

To introduce the NEGF method, we start by writing down the retarded Green’s function 
for a known Hamiltonian 𝐻 of a finite system in the basis of a set of orthogonal atomic orbitals: 

 
 
 

𝐺 = [(𝐸 + 𝑖𝛼)𝑆 − 𝐻]$�	,	 (3.122) 

where 𝑆 is the overlap matrix between atomic basis functions. Now suppose the system were 
contacted by one infinite lead, where orbital 𝑝@ in the lead 𝑝 is connected to orbital 𝑖 in the 

 
Fig.  3.14 Origin of the Landauer resistivity dipole. (a) Schematic of local variation of the 
electrochemical potential, conduction band edge (electric potential), and charge accumulation 
around the residual resistivity dipole. Schematic adapted from [72]. (b) Schematic of the 
charge distribution surrounding an electromigrating adatom. The RRD exists mainly in the 
conductive substrate, while bound electrons in the adatom form an opposite local dipole. 
Figure adapted from [69]. 
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conductor 𝐶. The Green’s function can now be broken down into submatrices representing the 
contact and the material:  
 
 
 õ

𝐺m 𝐺m�
𝐺�m 𝐺�

ö = 3
(𝐸 + 𝑖𝛼)𝑆m −𝐻m 𝜏m

𝜏m
� (𝐸 + 𝑖𝛼)𝑆� − 𝐻�

4
$�

		,	
( 3.123) 

 
where 𝐻m is the Hamiltonian of the lead, 𝐻�  is the Hamiltonian of the conductor, and 𝑆m, 𝑆�  are 
the overlap matrix between atomic basis functions in the lead and conductor, respectively. 𝜏m is 
the coupling matrix between orbitals in the lead and orbitals in the conductor (which is only non-
zero for adjacent pairs (𝑝@ , 𝑖)). Since there are an infinite number of orbitals in the lead, ( 3.123) 
is an infinite dimensional matrix. However, we really only care about states within the finite 
conductor, so we would like to obtain the finite dimensional Green’s function 𝐺� . To do this, we 
multiply the left and right hand side of ( 3.123) to obtain the identity matrix, which yields two 
equations: 
 
 
 

"(𝐸 + 𝑖𝛼)𝑆s − 𝐻m#𝐺m� + 𝜏m𝐺� = 0	,	 (3.124) 

 
And 
 
 
 

[(𝐸 + 𝑖𝛼)𝑆� − 𝐻�]𝐺� + 𝜏m
�𝐺m� = 𝐼	.	 (3.125) 

Solving for 𝐺� , we obtain the expression 
 
 
 

𝐺� = "(𝐸 + 𝑖𝛼)𝑆� − 𝐻� − 𝜏m
�𝑔mí𝜏m#

$�
	,	 (3.126) 

 
where 𝑔mí = "(𝐸 + 𝑖𝛼)𝑆m − 𝐻m#

$�
. Since 𝜏m is only non-zero for orbitals adjacent to each other 

at the interface between the contact and the conductor, the element "𝜏m
�𝑔mí𝜏m#@� = 𝑡<𝑔míL𝑝@, 𝑝�N =

Σm(𝑖, 𝑗), where Σm is defined as the self-energy of contact p. The Green’s function for an isolated 
lead 𝑔mí	can be solved analytically, thus reducing an infinite-dimensional matrix inversion 
problem to a finite one. The resulting Green’s function for the conductor with left and right 
contacts is thus 
 
 
 

𝐺 = [(𝐸 + 𝑖𝛼)𝑆� − 𝐻� − ΣV − Σí]$�	,	 (3.127) 

where the DFT time-independent electronic Hamiltonian of the conductor 𝐻�  can be written 
explicitly as 
 
 
 𝐻� = −

1
2∇

< + 𝑉Ü'
mP + 𝑉+� + 𝛿𝑉ì + 𝑉u�	,	 (3.128) 
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where  𝑉Ü'
mP is the non-local pseudopotential term, 𝑉+�  is the sum of all screened neutral atom 

potentials, 𝛿𝑉ì is the self-consistent Hartree term, and 𝑉u�  is the exchange-correlation term.70 
The obtained Green’s function can then be used to calculate the charge density through 
 
 

 

Δ𝜌 = Δ𝜌V + Δ𝜌í	

							= 	cv𝜓¿,P
(V)v

<
L𝑓V − 𝑓i¡N + v𝜓¿,P

(í)v
<
L𝑓í − 𝑓i¡N	

¿,P

	

							= b {𝐺Γw𝐺�L𝑓V − 𝑓i¡N − 𝐺Γx𝐺�L𝑓í − 𝑓i¡N}
d

$d

𝑑𝐸
𝜋 ,	

(3.129) 

 
where  Δ𝜌V  and Δ𝜌í  represent the non-equilibrium charge density induced by scattering, which 
can be expressed as a sum of the density of states coming from the 𝐿 or 𝑅 electrodes |𝜓¿,P

(V,í)|< 
multiplied by their occupation 𝑓V,í = 1/(1 + 𝑒(`$`z,{)/¿Z�) relative to the equilibrium 
occupation 𝑓i¡ . Here 𝜇V,í refers to the electrochemical potential of the left and right electrodes, 
which are set unequal under non-equilibrium conditions. We then define Γw,x = 𝑖(Σw,x − Σw,x�), 
which enables us to express the density of state in terms of the spectral function as |𝜓¿,P

(V,í)|< =
�
<³
𝐴(V,í) = �

<³
𝐺Γw,x𝐺�. Accounting for the spin degeneracy, this yields the final expression in 

(3.129). Therefore, by evaluating the Green’s function, we can obtain the current-induced charge 
distribution Δ𝜌, which allows us to calculate the wind force by (3.121). 
 
3.4.4 Experimental Measurement of Electromigration Force 
 

Although the electromigration force has been estimated for mesoscopic objects in a 
variety of conducting systems, including metal clusters on carbon nanotubes,62 silver islands on 
silver thin films,23 and metal clusters on graphene73, electromigration of single isolated 
adsorbates has never been resolved at the atomic scale. The results presented in chapter 8 are the 
first studies of single-molecule resolved electromigration. By using F4TCNQ molecules 
deposited on a graphene FET at T=4K, we are able to track electromigration of single molecules 
as electric current pushes them across the surface. 

In most existing experimental studies, the electromigrating object is found to move along 
the direction of electron flow, with the wind force estimated to be typically 10~1000 greater in 
magnitude than the direct force.23 In the literature of experimental electromigration studies, a 
quantity known as the effective valence 𝑍∗ is often used to characterize the total electromigration 
force, where 𝑍∗ is defined as  

 
 
 𝑍∗ =

𝐹Q�Q£'
𝑒𝐸 			,	 ( 3.130 ) 

 
where 𝐹Q�Q£' is the total electromigration force, 𝑒 is the electron charge, and 𝐸 is the local in-
plane electric field which drives the electromigration. In other words, 𝑍∗ describes the response 
of an electromigrating object moving in an in-plane electric field as if it were an object carrying 
charge 𝑍∗𝑒. Since the direct force is just 𝐅È = 𝑍𝑒𝐄 and the total force is the sum of direct and 
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wind forces, 𝑍∗𝑒𝐄 = 𝐅È + 𝐅b, the wind force can then be expressed as 𝐅b = (𝑍∗ − 𝑍)𝑒𝐄. The 
ratio of wind to direct force is then 𝐅}

𝐅É
= 𝑍∗/𝑍 − 1. Since the wind force is typically several 

orders of magnitude larger than the direct force, |𝑍∗| is also typically much larger than |𝑍|. 
 To estimate the total force 𝐹Q�Q£', we make use of the Einstein relation to relate the 
mobility 𝜇 (and 𝐹Q�Q£') to the diffusion constant 𝐷 
 
 
 𝜇 =

𝑣Ò
𝐹Q�Q£'

=
𝐷
𝑘Y𝑇

	,	 ( 3.131 ) 

 
where 𝑣Ò is the drift velocity of the migrating object, and 𝑇 is the temperature, thus by 
measuring the average drift velocity and diffusion constants of adsorbed molecules across the 
conductor, one can measure the total electromigration force (𝐹Q�Q£' = 𝑘𝑇𝑣Ò/𝐷). Using the 
average in-plane electric field measured by scanning tunneling potentiometry during current 
flow, one can then estimate the effective valence 𝑍∗ (𝐹Q�Q£' = 𝑍∗𝑒𝐸), and thus infer the value of 
the wind force (𝐹b = (𝑍∗ − 𝑍)𝑒𝐸). 
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4 Gate-tunable Molecular Concentration on a 

Graphene FET 
In surface science adsorbates such as alkali atoms and molecules are commonly deposited 

onto surfaces in vacuum to induce chemical doping through charge transfer. However, once 
deposited, the spatial arrangement of adsorbates cannot be reversibly tuned because there is 
typically a large energy difference between donor/acceptor levels and the Fermi level of the 
substrate, which causes permanent charge transfer and stabilizes the surface adsorbate 
configuration. 

In this chapter I will discuss a system where molecular orbital levels are close enough in 
energy to the substrate Fermi level for electrostatic gating to change the molecular charge state. 
Application of an external out-of-plane electric field causes molecules to become charged and 
change their surface concentration in response to the external field. This process is imaged on a 
gate-tunable graphene field-effect transistor (FET) using STM. The gate-tunable molecular 
concentration is explained by a dynamical molecular rearrangement process that reduces total 
electronic energy by maintaining Fermi level pinning in the device substrate. The molecular 
surface concentration is fully determined by the device back-gate voltage, its geometric 
capacitance, and the energy difference between the graphene Dirac point and the molecular 
LUMO level. The content here is based on our published paper: F. Liou et al., “Imaging 
Reconfigurable Molecular Concentration on a Graphene Field-Effect Transistor”, Nano Lett. 21, 
20, 8770–8776 (2021).34 

 
4.1 Introduction 

One important way in which adsorbates modify surfaces is by inducing localized 
electronic defect states that trap electrons and cause Fermi level pinning.74–77 Typically, Fermi 
level pinning is considered a “one-way” process where defects may change the location of 
electrons (i.e., by trapping them) but electrons do not change the location of defects. Here we 
reverse this idea by implementing a condensed matter system where defect concentration can be 
continuously and reversibly tuned by adding or removing electrons from the system. We observe 
this unique behavior for F4TCNQ molecules adsorbed onto the surface of a graphene field-effect 
transistor (FET). When a voltage is applied to the back-gate of such a device under proper 
conditions then the resulting electric field is not screened by the graphene Dirac band electrons, 
but is rather unexpectedly screened by ionized molecules that mechanically rearrange themselves 
on the device surface. The devices in which this occurs are not electrochemical cells17,78,79  
attached to some external reservoir of material. Instead they are composed of ultraclean 
monolayers of graphene on hBN that are dosed with a submonolayer molecular coverage and 
then held at cryogenic temperature in ultrahigh vacuum (UHV). The adsorbate rearrangement 
process observed on our devices arises from a physical mechanism whereby adsorbate-induced 
Fermi level pinning helps to minimize graphene Dirac band electronic energy. The energetics of 
Fermi level pinning in this 2D system is so strongly tied to the adsorbate arrangement that it 
allows reversible, mechanical alteration of the surface defect concentration by adding or 
removing electrons using the FET back-gate.  
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This behavior arises due to the proximity in energy of the F4TCNQ lowest unoccupied 
molecular orbital (LUMO) to the graphene Dirac point.26,80–83  The resulting high electron 
affinity of F4TCNQ on graphene has been exploited previously to p-dope graphene.84,85 STM 
measurements have also shown that charge flows easily into and out of F4TCNQ molecules on 
graphene.5,26,81,86 No previous studies, however, have demonstrated reversible control over the 
geometric arrangement of F4TCNQ adsorbates on graphene.   

The strategy here will be to first explain the experimental procedure by which we control 
the surface concentration of F4TCNQ molecules on a graphene FET via electrical signals sent to 
the device. This technique has enabled us to discover that the F4TCNQ surface concentration on 
graphene FETs varies linearly with applied gate voltage. We have characterized this unexpected 
behavior by performing STM spectroscopy on molecule-decorated graphene devices for different 
molecular coverages. These measurements allow us to establish a connection between gate-
dependent molecular surface concentration and Fermi level pinning in graphene FETs. We have 
distilled these observations into a simple theoretical model that connects the energetics of 
graphene electrons to the geometric arrangement of surface adsorbates, and which allows us to 
predict molecular surface concentration for any given back-gate voltage. The connection 
established here between molecular electronic structure and molecular surface concentration 
provides a new technique for quantitatively determining molecular energy levels by simply 
counting the number of molecules on a clean graphene surface. 

 

4.2 Methods 
Our technique for reversibly changing molecular concentration on graphene devices starts 

with the deposition of a submonolayer coverage of F4TCNQ molecules onto a clean 
graphene/hBN FET held at room temperature in UHV. We then cool the molecule-decorated 
device down to 4.5 K without breaking vacuum, at which point the molecules can be stably 
imaged by our STM. In order to set the molecular surface concentration to a desired value, a set-
voltage (𝑉Æ$PiQ) is applied to the device back-gate while a source-drain current (𝐼�È) is 
simultaneously passed through the graphene as sketched in Fig.  4.1 (𝐼�È  provides thermal energy 
to facilitate molecular diffusion). The molecules freeze in place as soon as 𝐼�È  is set to zero, 
resulting in a well-defined and reversible surface concentration that is determined by 𝑉Æ$PiQ. 
After the molecules are frozen in place, the gate voltage is set to zero for STM imaging. 

 
4.3 Results 

The resulting control over molecular surface concentration can be seen in the differently 
prepared molecular concentrations shown in Fig.  4.2 (a)-(f) (all measured at the same spot on 
the surface). At a high set-voltage of 𝑉Æ$PiQ= 60 V the resulting molecular surface concentration 
is correspondingly high (𝑛~	 = 6 x 1012 cm-2) and the roughly evenly-spaced molecular 
distribution suggests that the molecules are charged during the surface concentration-setting 
process and repel each other (Fig.  4.2 (a)). As 𝑉Æ$PiQ is reduced, the resulting molecular 
concentration correspondingly reduces (Fig.  4.2 (b)-(f)). A plot of molecule surface 
concentration vs. 𝑉Æ$PiQ (Fig.  4.2 (g)) shows that the molecular concentration is almost perfectly 
linear over the gate-voltage range -10 V < 𝑉Æ$PiQ < 60 V and remains nearly zero for 𝑉Æ$PiQ< -10 
V. The gate-tunable molecular concentration is observed to be non-hysteretic since the forward 
sweep and backward sweep data lie almost perfectly on top of each other. The molecular 
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concentration within our STM field of view is thus precisely and reversibly controlled by tuning 
the graphene FET electrical device parameters. 

 

 

Fig.  4.1 Controlling molecular concentration on a graphene field-effect transistor (a) 
Sketch representing the F4TCNQ molecular configuration (red balls) in the “as grown” state 
after thermal evaporation onto a graphene FET. A representative circuit shows the biases 
applied to the device. (b) Application of a back-gate voltage, 𝑉Æ$PiQ, to the FET while 
simultaneously flowing a source-drain current ISD through the graphene causes the molecules 
to diffuse out onto the graphene surface. Typical values of 𝑉Æ$PiQ range from -60 V to 60 V. 
Typical values of 𝑉�È  used for changing the molecular concentration range from 2V to 6V, and 
typical 𝐼�È	values range from 0.5 mA to 2 mA. (c) When the source-drain current is turned off 
the device cools and the molecules freeze in place. The gate voltage 𝑉Æ  is then returned to 0 V 
and a sample bias (relative to the tip) of 𝑉�  = 2 V with current setpoint of 2 pA can then be 
used for stably scanning the molecules. 

 
 

 
Fig.  4.2 Tuning molecular concentration by using FET gate voltage (a)-(f) STM 
topographs of the same area on the surface of a graphene field-effect transistor after tuning the 
molecular surface concentration with different values of gate set-voltage over the range -12 V 
< 𝑉Æ$PiQ< 60 V. (g) Measured molecular concentration as a function of 𝑉Æ$PiQ.  No hysteresis 
is observed for forward and backward sweeps. The dashed line shows a theoretical fit to the 
data using Eq. ( 4.5 ). 

 
The molecular concentration across the entire device surface, however, cannot be 

completely uniform since the molecules have to go somewhere when their concentration is 
reduced and come back from somewhere when their concentration is increased, and this 



 54 

“somewhere” cannot have the same concentration as the STM field of view seen in Fig.  4.2. 
However, the process described above for setting the molecular surface concentration is 
surprisingly robust and can be observed over a majority of the surface area that we have scanned 
(~80 %) on multiple devices. This observation suggests that there are regions of the surface act 
as local reservoirs that store F4TCNQ molecules in a compact, condensed phase, as will later be 
shown in the chapter 5. F4TCNQ molecules must flow in and out of these condensation regions 
(due to electrostatic potential inhomogeneities) to enable the precise concentration control that 
we observe over a large majority of the surface.  

The fact that we observe no significant decrease in molecule concentration over multiple 
cycles of density changing operations suggests that the molecular storage and release process is 
fully reversible. To explain why molecules aggregate in a condensed phase we hypothesize that a 
highly negative gate voltage draws electrons out of the device and thus removes charge from the 
molecules. This reduces repulsive Coulomb interactions between them, thereby causing 
attractive intermolecular forces (such as van der Waals) to become more dominant. Weak 
molecule-substrate interactions allow the molecules to diffuse easily to defective regions where 
they can be captured. 

In order to understand the microscopic mechanism that underlies the process of tuning 
molecular surface concentration we must understand how charge readjusts itself in a graphene 
device decorated by mobile, charge-tunable molecules as the gate voltage is changed. Here the 
molecule-decorated graphene forms one side of a capacitor while the back-gate electrode forms 
the other, and so the total charge that flows to the molecule/graphene system can be determined 
straightforwardly from the device capacitance and applied gate-voltage (𝑄� 	= 	−𝑉Æ$PiQ	𝐶�). 
Electrons transferred to the graphene side of the capacitor can either occupy graphene Dirac 
fermion band states or, alternatively, the LUMO states of the adsorbed molecules. To clarify how 
charge is distributed between these two choices we performed STM spectroscopy directly on 
adsorbed F4TCNQ molecules as well as on bare graphene patches between the molecules for 
different applied gate-voltages and different molecular concentrations. This enabled us to track 
the energetic alignment of the F4TCNQ LUMO energy (𝐸V) and the graphene Dirac point energy 
(𝐸È) with respect to the graphene Fermi level (𝐸e), thus providing snapshots of how charge in the 
device is distributed under different conditions. Our observations in this regard provide the basis 
for a simple model that quantitatively predicts gate-tunable molecular surface concentration. 

We first describe the negative gate-voltage regime, 𝑉Æ  < -10 V, where the electronic 
configuration of the molecule/graphene system is qualitatively represented by the sketch in the 
inset to Fig.  4.3 (c). Here the graphene is p-doped since 𝐸e  lies below 𝐸È . The molecular LUMO 
level, EL, lies below ED but remains unfilled by electrons since it is still higher than 𝐸e . 
Experimental evidence for this type of electronic behavior is seen in the “on-molecule” and “off-
molecule” 𝑑𝐼/𝑑𝑉� spectra of Fig.  4.3 (a) and (b), where 𝑉� is the sample bias of the tunnel 
junction (all 𝑑𝐼/𝑑𝑉� spectra shown in Fig.  4.3 were acquired after “freezing” the molecules by 
setting 𝐼�È  to zero -- spectroscopy was never acquired under “diffusive” conditions where 𝐼�È  ≠ 
0). Molecular spectra are only shown for 𝑉� > 0 since negative 𝑉� induced tip electric fields that 
caused the molecules to charge and adsorb onto the tip. The top curve in Fig.  4.3 (a) shows an 
on-molecule 𝑑𝐼/𝑑𝑉� spectrum measured with the STM tip held above the center of an F4TCNQ 
molecule for a gate-voltage of 𝑉Æ  = -60 V and a fixed molecular surface concentration of 𝑛~= 
0.8 x 1012 cm-2 (see inset). The F4TCNQ LUMO level (arrow) sits at a sample bias of 𝑉�  ≈ 0.2 V 
above the Fermi energy (which is at 𝑉� = 0). The precise energy position of the LUMO is 
determined following the protocol of ref. [26] after accounting for known inelastic tunneling 



 55 

effects.26,87,88 We note that the each LUMO arrow is shifted slightly to the left of the spectrum 
maximum due to a 35 meV phonon mode (found by fitting high-resolution STS measurements as 
described in ref.[26]) that broadens the LUMO peak26 and results in the LUMO energy being 
lower than the apparent maximum by ~35 meV. A previously reported satellite peak due to a 183 
meV phonon mode is also visible at 𝑉�  ≈ 0.4 V.26 

 

 
Fig.  4.3 STM spectroscopy of F4TCNQ-decorated graphene field-effect transistor (a) 
𝑑𝐼/𝑑𝑉� spectra measured while holding the STM tip directly above an F4TCNQ molecule for a 
molecular concentration of 0.8 x 1012 cm-2 at the surface of a graphene FET (-60 V < VG < -10 
V). Energy location of the lowest unoccupied molecular orbital (𝐸V) is marked.  Inset shows a 
representative image of the surface at this molecular concentration. (b) 𝑑𝐼/𝑑𝑉� spectra 
measured while holding the STM tip over bare patches of graphene ~100 Å away from nearby 
F4TCNQ molecules for the same surface conditions measured in (a) (-60 V < VG < 60 V, nM = 
0.8 x 1012 cm-2). Graphene Dirac point energy (𝐸È) is marked. Spectroscopy parameters: Isetpoint 
= 50 pA, Vsetpoint = 1 V on graphene, Isetpoint = 10 pA, Vsetpoint = 1 V on molecule. (c) Gate-
voltage dependence of the Dirac point energy relative to the molecular LUMO energy (𝐸È −
𝐸V) for molecular concentration 𝑛~ = 0.8 x 1012 cm-2 . Inset shows a simplified representation 
of the electronic structure of F4TCNQ molecules on graphene for large negative gate voltages 
(𝐸e  = Fermi energy). 
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The top curve in Fig.  4.3 (b) shows an off-molecule 𝑑𝐼/𝑑𝑉� spectrum taken with the 
STM tip held over a bare patch of graphene ~100 Å away from any F4TCNQ molecules for the 
same gate-voltage and molecular concentration used for the top curve of Fig.  4.3 (a). A 
depression in 𝑑𝐼/𝑑𝑉� over the range -60 mV < 𝑉� < 60 mV can be seen that is known to occur 
due to phonon inelastic tunneling effects,89 while another depression is seen at 𝑉� ≈ 0.35 V that 
marks the location of the graphene Dirac point (𝐸È).89,90 The precise value of 𝐸È  is found by 
fitting the 𝑑𝐼/𝑑𝑉� spectra using the protocol outlined in Appendix B. The Dirac point is seen to 
fall in energy as the gate voltage is increased, causing the graphene to transition from being hole-
doped (𝐸È  > 𝐸e) to being electron-doped (𝐸È  < 𝐸e) at 𝑉Æ  ≈ 20 V for this molecular surface 
concentration (nM = 0.8 x 1012 cm-2). 𝐸È  (from Fig.  4.3 (b)) is observed to lie above 𝐸V  (from 
Fig.  4.3 (a)) by ~150 mV for negative gate voltages, and both quantities shift downward in 
energy together as the gate voltage is increased from 𝑉Æ  = -60 V to -10 V (Fig.  4.3 (c)). Such 
behavior is expected as 𝐸e  “rises” with increased gate voltage in the band structure shown in the 
inset to Fig.  4.3 (c). 

When 𝑉Æ  is raised above -10 V the molecules become charged, causing them to enter a 
new physical regime. The transition toward this regime can be seen in the gate-dependence of 
𝐸V , which falls towards EF with increasing 𝑉Æ  in Fig.  4.3 (a). Another signature that the 
molecules become charged (i.e., that the LUMO becomes filled) is that they become 
mechanically unstable during STS measurement when 𝑉Æ  is raised above -10V. Negatively 
charged molecules are observed to escape from under the STM tip during spectroscopy 
measurements, making it impossible to obtain reproducible “on-molecule” spectroscopy for 𝑉Æ  > 
-10 V. Interestingly, this critical gate-voltage value coincides with the 𝑉Æ$PiQ value at which the 
molecular concentration begins to rise from near zero (for increasing 𝑉Æ$PiQ), showing that the 
appearance of molecules on the device surface is correlated with their charge state. Another 
indication of charged molecular behavior is the spatially uniform intermolecular separation, a 
signature of intermolecular repulsion. 

 
4.4 Discussion 

In order to better understand the charged molecular regime we investigated how changing 
the molecular surface concentration affects the way electrons fill up graphene states during 
electrostatic gating. This was accomplished by inspecting the gate-dependence of 𝐸È  for 
different fixed molecular concentrations. Such measurements reveal charge transfer to F4TCNQ 
LUMO levels and how this leads to Fermi-level pinning. To see this, we first set the molecular 
concentration to a desired value (as shown in Fig.  4.5 (a)) and then measured the gate-voltage 
dependence of 𝐸È  (Fig.  4.5 (b)) using off-molecule 𝑑𝐼/𝑑𝑉� spectra via the procedure described 
above for Fig.  4.3 (b). For a pristine graphene capacitor, 𝐸È  is expected to move smoothly down 
in energy with increasing 𝑉Æ  according to the well-known expression89: 

 
 
 

𝐸È(𝑉Æ) = −𝑠𝑔𝑛(𝑉Æ)ℏ𝑣e3𝜋𝐶|𝑉Æ − 𝑉Ç|	 ( 4.1 ) 

where 𝑣e = 	1.1	x	10Ì	m/s is the electron Fermi velocity in graphene, 𝐶 is the unit area 
capacitance of the device and 𝑉Ç reflects background doping. By fitting Eq. ( 4.1 ) to the gate-
dependent Dirac point energy of our device before depositing molecules we are able to extract 
the capacitance between the graphene and the back-gate electrode: 𝐶 = (7.8± 0.2) ×
10�Ç𝑐𝑚$<𝑉$� (Fig.  4.4).  
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Fig.  4.4 Gate-dependence of the graphene Dirac point energy before molecule 
deposition. The absolute value of the Dirac point energy relative to the Fermi level is plotted 
as a function of gate voltage for our pristine graphene device and shows good agreement with 
Eq. ( 4.1 ). A capacitance of (7.8± 0.2) × 10�Ç𝑐𝑚$<𝑉$� is extracted from the fit. 

 
 For nonzero molecular concentrations, however, the 𝐸È  vs. 𝑉Æ  curve deviates from Eq. 
( 4.1 ) and forms a “pinning” plateau at ~140 meV above 𝐸e , with the width of the plateau 
increasing with increased molecular surface surface concentration (Fig.  4.5 (b)). The start of the 
plateau (for increasing 𝑉Æ) coincides with the gate voltage value where the molecular LUMO 
begins to fall under 𝐸e , thus allowing us to associate the plateau with the charging of F4TCNQ 
molecules. The value of 𝐸È  at the plateau (~140 meV above 𝐸e) is very close to the energy 
difference observed between 𝐸È  and 𝐸V  in Fig.  4.3 (c), providing evidence that the Fermi level is 
pinned to the molecular LUMO level 140 meV below 𝐸È . This interpretation is quantitatively 
supported by the increased width of the pinned region (in 𝑉Æ) as molecular concentration is 
increased (i.e., since higher molecular concentrations can store more charge). For example, the 
𝐸È  plateau at a fixed molecular concentration of 4.3 x 1012 cm-2 has a width of Δ𝑉Æ  = 50 ± 5 V, 
which corresponds to a surface charge density of Δ𝜎 = (3.9 ± 0.4) x 1012  e-/cm2 that reasonably 
matches the molecular concentration (charge is calculated using the capacitance value acquired 
via Eq. ( 4.1 )). 
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Fig.  4.5 Fermi level pinning of F4TCNQ-doped graphene field-effect transistor. (a) STM 
images of graphene FET surface decorated with different molecular densities for measurement 
of molecule-induced Fermi-level pinning shown in (b). (b) Gate-voltage dependence of Dirac 
point energy (𝐸È) measured via STS on graphene FET surface for the different molecular 
densities shown in (a). A concentration-dependent plateau in 𝐸È  indicates Fermi level pinning. 
Red dashed line shows fit of Eq. ( 4.1 ) to data for zero molecular concentration (𝑛~ = 0).   

 
The Fermi level pinning described above for the static molecular configurations of Fig.  

4.5 is intimately related to the dynamic molecular reconfigurations that enable molecular 
concentration to be continuously tuned by gate voltage, the central focus of this paper. When the 
graphene Fermi level is securely pinned by molecular LUMO states, new electrons added to the 
device (e.g., by an increase in 𝑉Æ) do not cause the Fermi level to rise in energy since LUMO 
levels absorb any new charge added to the graphene at 𝐸e . On the other hand, if there are not 
enough molecules on the surface to pin the Fermi level, then increasing the gate voltage causes 
electrons to occupy graphene band states at energies higher than 𝐸V . This is the origin (from an 
energetic perspective) of the force that drives the molecules to move on the surface in order to 
dynamically change the molecular concentration when 𝑉Æ$PiQ is modified under “diffusive 
conditions” (i.e., when 𝐼�È  ≠ 0). When 𝑉Æ$PiQ is increased under diffusive conditions then the 
molecular concentration must also increase to maintain Fermi level pinning (the overall lowest 
energy state) so as to enable charge to flow into lower-energy LUMO levels rather than higher-
energy Dirac band states. 

These concepts allow us to formulate a simple model for predicting the expected 
concentration of molecules on the graphene surface for a given gate voltage. We start with the 
assumption that the lowest-energy electronic configuration under diffusive conditions (and when 
-10 V < 𝑉Æ) occurs when the Fermi energy is pinned at EL. For a given value of 𝑉Æ$PiQ the total 
charge density on the molecule-decorated FET surface (𝜎� = −𝐶𝑉Æ$PiQ) will have contributions 
both from charge carried by the molecules (𝜎~) and charge carried by the graphene Dirac band 
(𝜎Æ): 

 
 
 

−𝐶𝑉Æ$PiQ = 𝜎~ + 𝜎Æ	.	 ( 4.2 ) 
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If each charged molecule contains one electron in its LUMO state (assuming that double 
occupancy is forbidden due to the large Hubbard energy of the LUMO state26) then the total 
molecular charge is 𝜎~ = −𝑛~ where 𝑛~ is the surface concentration of molecules and 𝜎~ has 
units of |𝑒|. Eq. ( 4.2 ) then leads to the following expression for 𝑛~: 
 
 
 

𝑛~ = 𝐶𝑉Æ$PiQ + 𝜎Æ	.	 ( 4.3 ) 

Because 𝐸e  is pinned at 𝐸V  by the molecular coverage, and 𝐸V − 𝐸È< 0, 𝜎Æ  can be found by 
integrating the density of states in the graphene band from the Dirac point to EL, resulting in the 
following well-known expression:39 
 
 
 𝜎Æ =

|𝐸È − 𝐸V|<

𝜋ℏ<𝑣e<
	

( 4.4 ) 

 
Combining Eqs. ( 4.3 ) and ( 4.4 ) leads to the final expression for molecular concentration as a 
function of 𝑉Æ$PiQ: 
 
 
 𝑛~ = 𝐶𝑉Æ$PiQ +

|𝐸È − 𝐸V|<

𝜋ℏ<𝑣e<
	

( 4.5 ) 

 
Using 𝑣e = 1.1 x 106 m/s, we are able to fit Eq. ( 4.5 ) to the 𝑛~ vs. 𝑉Æ$PiQ data of Fig.  4.2 (g) by 
using |𝐸È − 𝐸V| and 𝐶 as fitting parameters. Eq. ( 4.5 ) fits the data well for a value of |𝐸È − 𝐸V| 
= 142 ± 23 meV and a value of 𝐶 = (7.9± 0.6) × 10�Ç𝑐𝑚$<𝑉$�. This value of capacitance 
agrees well with our independently determined device capacitance of 𝐶 = (7.8 ±
0.2) × 10�Ç𝑐𝑚$<𝑉$�. A consequence of the good agreement between these capacitance values 
is confirmation that each F4TCNQ molecule carries a single electron of charge, since every 
additional electron accumulated by increasing the gate voltage corresponds to an additional 
molecule. 

We can further check the validity of this conceptual framework by comparing the value 
of 𝐸È − 𝐸V obtained from our molecular concentration measurements with the value obtained 
independently from the STS measurements shown in Fig.  4.3 and Fig.  4.5. STS enables us to 
obtain 𝐸È − 𝐸V in two ways: first by extracting 𝐸V  and 𝐸È  directly from the 𝑑𝐼/𝑑𝑉� spectra in 
Fig.  4.3 (a) and Fig.  4.3 (b) and subtracting them, and second from the 𝐸È  energy plateau 
caused by Fermi level pinning in Fig.  4.5. Using the first method we see from Fig.  4.3 that for 
𝑉Æ  = -30V our on-molecule 𝑑𝐼/𝑑𝑉�  spectrum yields 𝐸V  = 165 meV while our off-molecule 
spectrum yields 𝐸È  = 305 meV. This results in a value of 𝐸È − 𝐸V  = 140 ± 20 meV (the average 
value over the gate-voltage range -60 V < 𝑉Æ  < -10 V is 𝐸È − 𝐸V  = 143 ± 9 meV which remains 
quite close to this value). Using the second method, the Fermi-level pinning data of Fig.  4.5 
reveals a Dirac point plateau at 𝐸È − 𝐸e  = 140 meV ± 5 meV. Since 𝐸e  is pinned at 𝐸V  under 
these conditions, this reflects a value of 𝐸È − 𝐸V  = 140 meV ± 5 meV. Both methods are in 
agreement with the value |𝐸È − 𝐸V| = 142 ± 23 meV obtained from the concentration-based 
analysis of Eq. ( 4.5 ), and thus support the overall physical picture that we have presented. 

One consequence of this analysis is that measurement of molecular concentration on a 
graphene FET is shown to provide a new method for quantitatively determining the energy of 
molecular frontier orbitals with respect to the graphene Dirac point (i.e., 𝐸È − 𝐸V). This new 
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method is potentially valuable for determining the energy alignment of highly mobile adsorbates 
since it can be extremely difficult to prevent them from moving when they are under an STM tip 
during the bias sweeps required for STS (characterizing small devices can also be quite 
challenging for X-ray-based probes). In our previous work, for example, we found it necessary to 
anchor F4TCNQ molecules to a secondary immobile molecular template in order to probe their 
LUMO levels in the charged state via STS.26  Such molecular templating, however, can alter 
local dielectric environments and influence molecular orbital energies.91,92  Our new technique of 
measuring gate-dependent molecular concentrations allows one to bypass templating and to 
access molecular energy-level information via a completely different method. 

 

4.5 Conclusion 
In conclusion, we have demonstrated that molecular concentration at the surface of a 

graphene FET can be continuously and reversibly manipulated via a back-gate voltage applied 
simultaneously with source-drain current. The equilibrium molecular concentration is precisely 
determined by the capacitance between the back-gate electrode and the graphene, in combination 
with the energy difference between the Dirac point and the molecular LUMO level. The driving 
force behind this dynamic mechanical reconfiguration of molecular concentration is the energetic 
favorability of molecular Fermi-level pinning compared to filling the graphene Dirac bands. The 
energy alignment of the molecular LUMO level obtained from a concentration-based analysis 
using these concepts compares well with the value determined from STS. 
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5 Gate-tunable Molecular Phase Transitions on 

a Graphene FET 
Solid-liquid phase transitions are fundamental physical processes, but atomically-

resolved microscopy has yet to capture both the solid and liquid dynamics for such a transition. 
In this chapter, I present a new technique for controlling the melting and freezing of 2D 
molecular layers on a graphene field-effect transistor (FET) that enables imaging of phase 
transition dynamics via atomically-resolved scanning tunneling microscopy. Back-gate voltages 
applied to a F4TCNQ-decorated graphene FET induce reversible transitions between a charge-
neutral solid phase and a negatively charged liquid phase. Nonequilibrium molecular melting 
dynamics are visualized by rapidly heating the graphene surface with electrical current and 
imaging the resulting evolution toward new equilibrium states. An analytical model has been 
developed that explains the observed equilibrium mixed-state phases based on spectroscopic 
measurement of both solid and liquid molecular energy levels. Observed non-equilibrium 
melting dynamics are consistent with Monte Carlo simulations. 

 
5.1 Introduction 

Phase transitions reflect the collective thermodynamic behavior of large numbers of 
particles, but they fundamentally originate from rapid reconfigurations at the single-particle 
scale. Numerous techniques have been used to image the dynamics of phase transitions, 
including high-resolution transmission electron microscopy (TEM),20,93 low-energy electron 
microscopy (LEEM),94 scanning tunneling microscopy (STM),95 and atomic force microscopy 
(AFM).96 These techniques have been applied to a variety of different physical systems, such as 
electrochemical cells,79 ion-intercalated systems,19 surface catalysts,97 two-dimensional 
materials,98 and nanocrystals in solution.99 However, high-resolution imaging of phase 
transitions at the single-atom/single-molecule level, including both the liquid and solid phases, 
has so far eluded even the most advanced microscopy due to the non-crystalline nature of liquids 
and their fast dynamics. Recent progress in this direction has been made using a new technique 
that is able to image two-dimensional (2D) molecular liquids via STM by confining molecular 
motion to the surface of a graphene field-effect transistor (FET) and using low temperature 
(4.5K) to rapidly quench dynamics.34 Here the time evolution of the liquid state is controlled by 
passing current through the FET to warm it briefly and thereby control the rate of the liquid 
kinetics. So far this technique has only been utilized to explore 2D molecular liquids34 and has 
not been applied to mixed phase solid-liquid systems.  

Here we demonstrate the ability to electrically control a 2D solid-liquid phase transition 
while imaging all constituent particles of both phases at the atomic scale via STM. This was 
achieved by depositing 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) 
molecules onto clean graphene FETs having back-gate and source-drain electrodes operable at T 
= 4.5K in an ultrahigh vacuum STM. We find that lowering the Fermi energy (𝐸e) of the FET 
via electrostatic gating causes molecular F4TCNQ adsorbates to freeze into a solid, quasi-one-
dimensional (1D) chain-phase, while raising 𝐸e  causes the molecular solid to melt into a 2D 
liquid phase. Scanning tunneling spectroscopy (STS) measurements reveal that molecules in the 
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solid phase are charge-neutral while molecules in the liquid phase are negatively charged. By 
applying short pulses of source-drain current to transiently heat the device, we are able to 
observe the nonequilibrium dynamics of molecules undergoing both melting and freezing 
processes. We have developed an analytical theoretical framework that explains the equilibrium 
energetics of this first-order solid-liquid phase transition as a function of gate voltage (including 
the mixed phase regime), and we have performed Monte Carlo simulations that capture its 
nonequilibrium melting dynamics. 

 

5.2 Methods 
The key experimental technique that enables these observations is our ability to tune the 

diffusivity of adsorbed molecules by applying source-drain current (𝐼�È) to the graphene FET to 
briefly heat the surface (a sketch of the device can be seen in Fig.  5.1 (i)). When the sample is 
heated by 𝐼�È  (what we term “diffusive conditions”), simultaneous application of a back-gate 
voltage (𝑉Æ) reversibly drives the solid-liquid phase transition of F4TCNQ adsorbates. If 𝐼�È  is 
applied for a sufficient amount of time, then the surface molecular configuration reaches a 
mixed-state equilibrium defined by a specific liquid phase molecular density set by 𝑉Æ . If 𝐼�È  is 
set to zero before the surface molecules reach equilibrium then the molecular kinetics halt 
midway, thus allowing intermediate nonequilibrium states to be imaged as the system evolves 
toward equilibrium. This technique allows movies to be made of molecular evolution through 
changing equilibrium landscapes, as well as exploration of fast nonequilibrium dynamics as 
molecules transition from one equilibrium state to another. 

 
5.3 Results 

Fig.  5.1 shows the reversible melting/freezing of a partial monolayer of F4TCNQ on a 
graphene FET as it transitions through different equilibrium states as a function of applied 𝑉Æ .  
For 𝑉Æ  = -30 V (Fig.  5.1 (a)) the molecules all lie in a solid chain phase after flowing a current 
of 𝐼�È  = 1mA through the device for 180 sec (all images and spectroscopy are acquired only after 
setting 𝐼�È  to zero to quench molecular motion). Locating regions on the surface that exhibit the 
solid phase is challenging because it covers only a small fraction of the device surface (< 10%) 
under typical experimental conditions, which explains why it was not observed previously.34  
Close-up STM and AFM images of the solid phase reveal two similar quasi-1D chain 
morphologies that we call “linear” and “zigzag” (Fig.  5.1 (j)).  

Subsequent raising of the gate voltage to 𝑉Æ  = 0 V under diffusive conditions (i.e., by 
setting 𝐼�È  = 1 mA for 180 sec) causes the molecular solid to melt. This can be seen in Fig.  5.1 
(b) which shows isolated F4TCNQ molecules dotting the surface near the edge of the solid phase 
in the same area as Fig.  5.1 (a) (the isolated molecules belong to the liquid phase). Fig.  5.1 (b) 
shows an equilibrium configuration, meaning that the average concentrations of the liquid and 
solid phases have stopped changing with time under diffusive conditions (the time to reach 
equilibrium can vary strongly with gate voltage, but is typically < 60 seconds). The images in 
Fig.  5.1 (c), (d) show the equilibrium configurations of the same region after incrementally 
raising the gate voltage first to 𝑉Æ  = 6V and then to 𝑉Æ  = 30V under diffusive conditions. For 
every step increase in 𝑉Æ  the solid is seen to melt a little more until it is completely liquefied at 
VG = 30V. Fig.  5.1 (e)-(h) show the same surface region as 𝑉Æ  is decreased back to -30V under 
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identical diffusive conditions. The liquid-solid phase transition is seen to be completely 
reversible. 

 

 
Fig.  5.1 Gate-tunable solid-liquid molecular phase transition. (a)-(d) STM images show 
the melting of self-assembled chains of F4TCNQ molecules (solid phase) into isolated 
molecules (liquid phase) as 𝑉Æ  is increased from -30V, 0V, 6V to 30V. (e)-(h) The reverse 
phase transition (liquid to solid) is observed at the same spot on the surface with molecules 
coalescing from liquid phase into self-assembled chains as 𝑉Æ  is decreased to 6V, 0V, -6V and 
-30V. (i) Schematic of the experimental setup shows F4TCNQ molecules adsorbed onto the 
surface of a graphene field-effect transistor (FET) device. (j) Closeup STM images of the 
molecular chain phase (with structural overlays) show two observed geometries (linear and 
zig-zag), both having a center-to-center molecular distance of 8.6 Å. A bond-resolved nc-AFM 
image in the bottom row (obtained with a CO tip100) reveals the linear geometry in greater 
detail. (k) The radial distribution function 𝑔(𝑟) of molecular positions in the liquid phase 
shows a shell-like structure characteristic of liquids having an average shell spacing of 3.84 
nm. The corresponding structure factor 𝑆(𝐪) shown in the inset indicates that the liquid is 
isotropic. STM images obtained at T = 4.5K.  
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Justification for calling the molecular phase containing isolated molecules a liquid comes 
from an analysis of the molecular radial distribution function, 𝑔(𝑟), and structure factor, 𝑆(𝒒). 
Fig.  5.1 (k), for example, shows 𝑔(𝑟) extracted from a large-area image containing isolated 
molecules prepared under equilibrium conditions. 𝑔(𝑟) shows evenly-spaced peaks with a 
spacing of a = 3.84 nm, as expected for the shell-structure of an isotropic liquid101. The structure 
factor seen in the Fig.  5.1 (k) inset is also indicative of an isotropic liquid and shows no 
evidence of crystal or gas behavior101.  

Understanding the cause of the observed molecular phase transition requires 
understanding how charge transfers between molecules and graphene under different gating 
conditions. STS measurements were used to gain insight into this process by separately 
measuring the local electronic structure of the solid and liquid phases. Fig.  5.2 (a) shows 𝑑𝐼/𝑑𝑉 
spectra measured on an F4TCNQ chain (solid phase) compared to an isolated F4TCNQ molecule 
(liquid phase) for VG = -60V (this is the hole-doped graphene regime as shown by the inset 
electronic structure diagram in Fig.  5.2 (a)). The bare graphene spectrum for this surface (taken 
10 nm away from any molecules) is shown as an inset for reference. A dip in the bare graphene 
local density of states (LDOS) near V = 0.34 V marks the location of the graphene Dirac point 
(𝐸È), thus verifying that graphene is in the hole-doped regime for this gate voltage. The gap-like 
feature at V = 0 (𝐸e) arises from a well-known phonon-assisted inelastic tunneling (IT) effect89. 

 

 
Fig.  5.2 Electronic energy level alignment between graphene and F4TCNQ molecules, 
and charge accumulation under electrostatic gating. (a)  dI/dV spectra taken at VG = -60 V 
for F4TCNQ molecules at the chain middle (CM), the chain end (CE), and for single, isolated 
molecules (SM) (images shown in Fig. 5.1). Inset plot shows dI/dV spectrum measured on 
bare graphene for VG = -60V. Inset sketch shows the relative energy alignments of the CM 
LUMO state, the CE LUMO state, the SM LUMO state, the Fermi energy (EF), and the Dirac 
point (ED). (b) Total charge density accumulated in the molecule/graphene surface (measured 
capacitively and plotted in terms of electron density) as a function of EF - ED (as determined by 
STS). The discontinuity at EF - ED = -0.125 eV signifies a first-order phase transition. STS 
spectra obtained at T = 4.5K. 

 
The blue curve in Fig.  5.2 (a) shows the 𝑑𝐼/𝑑𝑉 spectrum for a single, isolated F4TCNQ 

molecule (SM) in this hole-doped regime. The leading edge of the first peak marks the LUMO 
energy as discussed in previous work26,34 (𝐸V�~  = 0.2 eV and is marked by a dashed blue line), 
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while the second peak (𝑉Y  ~ 0.4 V) is a phonon satellite arising from intramolecular vibrations.26 
The F4TCNQ LUMO level is unoccupied for this value of 𝑉Æ . The second curve (red) shows the 
𝑑𝐼/𝑑𝑉 spectrum measured with the STM tip held over the end molecule of an F4TCNQ chain 
(the chain end (CE) as shown in Fig. 5.1(j)). The CE spectrum is nearly identical to the single 
molecule spectrum except that 𝐸V  is shifted up by 0.06 eV. The third curve (orange) shows the 
spectrum for a molecule in the middle of a chain (CM) (as shown in Fig.  5.1 (j)). Here 𝐸V  is 
pushed up even further by an additional 0.05 eV. The overall energy-level structure is 
schematically represented by the inset sketch which shows the energy level alignment of the SM 
LUMO, the CE LUMO, and the CM LUMO relative to 𝐸È  and 𝐸e  (the experimental energy 
levels of the zigzag and linear chains are identical). 
 
5.4 Discussion 

This energy-level structure has important consequences for F4TCNQ/graphene solid-
liquid phase transitions. For example, suppose that 𝑉Æ  were first set to 𝑉Æ  = -60V (the case 
shown in Fig.  5.2 (a)) and then slowly increased under diffusive conditions. This would cause 
𝐸e  to slide to the right and to eventually intersect with 𝐸V�~ . The first molecules to fill with 
charge due to the increasing 𝑉Æ  would thus be isolated F4TCNQ molecules. As shown 
previously,34 under these conditions 𝐸e  becomes pinned close to 𝐸V�~  and so never reaches the 
chain orbitals (𝐸V�`  or 𝐸V�~) which therefore remain charge-neutral (i.e., unoccupied) for a wide 
range of 𝑉Æ  values. Increasing 𝑉Æ  while 𝐸e  is pinned in this way causes molecules to melt from 
the neutral solid and to fill with charge, thereby increasing the density of the charged liquid 
phase (separation between the isolated molecules is explained by Coulomb repulsion).  

A useful thermodynamic variable to characterize this process is the total charge density in 
the molecule-decorated graphene system, −Δ𝑄 (this counts the excess density of electrons). 
When the molecular chains begin to melt in response to increased VG, −Δ𝑄 exhibits a 
discontinuous jump when plotted as a function of EF as shown in Fig.  5.2 (b). −Δ𝑄 here is 
obtained from the relationship -Δ𝑄 = 𝐶𝑉Æ  where 𝐶 is the capacitance per area between the 
graphene and the gate electrode. 𝐸e  and 𝐸È  are measured as a function of VG from STM 
spectroscopy (by fitting the 𝑑𝐼/𝑑𝑉 spectrum as shown in the inset to Fig.  5.2 (a)) and the 
discontinuity in −Δ𝑄 is observed to occur at 𝐸e − 𝐸È ≈ -0.125 eV. For 𝐸e − 𝐸È < -0.125 eV the 
molecules are all in the charge-neutral chain phase, so any increase in −Δ𝑄 while 𝐸e  is in this 
regime reflects filling of the graphene Dirac band and follows the well-known parabolic 
dependence of graphene.90 When 𝐸e  reaches the critical value of 𝐸e − 𝐸È  = -0.125 eV, however, 
charge begins to flow into the F4TCNQ LUMO states as the chain phase melts to accommodate 
the additional charge. The molecules have a high quantum capacitance at this energy, so device 
charge accumulates rapidly in this regime as 𝐸e  is increased and exhibits discontinuous behavior 
as shown in Fig.  5.2 (b). The EF dependence of −Δ𝑄 in Fig.  5.2 (b) is reminiscent of the 
temperature dependence of transferred heat in a standard temperature-driven solid-liquid melting 
transition (such as ice to water) where latent heat must be provided to increase entropy as the 
solid converts to a liquid. Here 𝐸e  is analogous to temperature and the number of excess 
electrons (−Δ𝑄) is analogous to entropy, so one can think of “latent charge” as being necessary 
to induce 2D molecular melting in our devices.54 

These insights enable us to develop a theoretical model for quantitatively understanding 
the microscopic energetics of the F4TCNQ/graphene solid-liquid phase transition. We first note 
that the F4TCNQ molecules and graphene both exchange electrons with the gate which acts as a 
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reservoir. The thermodynamics of such an open system is described by the grand potential. 
Under our low-temperature experimental conditions (20~30K with current flow) the entropy 
contribution 𝑇𝛥𝑆 to the grand potential is expected to be small, and so we model the grand 
potential as follows: 

 
 Φ = U − 𝐸e𝑁i	.	 ( 5.1 ) 

 
Here U is the total energy and 𝑁i is the total number of electrons relative to a reference state 
(i.e., the state where all electrons occupy graphene band states with energy 𝐸 < 𝐸V�~ and the 
molecules are uncharged). Since the LUMO energy of the chains is higher than that of the 
isolated molecules, we ignore the possibility of the chains becoming charged and assume that 
electrons occupy either single-molecule LUMO states or graphene Dirac band states. The 
graphene contribution to the total energy relative to the reference state is denoted by 𝑈×(𝐸e) =
∫ 𝜖	𝑔(𝜖)𝐴	𝑑𝜖`g
`z

, where 𝑔(𝜖) is found from the well-known linear band model39 to be 𝑔(𝜖) =
<�(`É$�)
³ℏt�g

t  . If we assume that our system has a total of 𝑁 molecules that are all in the neutral chain 

phase, then the molecular energy can be approximated as 𝑈P(𝑁) ≈ −𝛼𝑁 where −𝛼 corresponds 
to the energy per bond between adjacent molecules. We denote the number of electrons in this 
pure solid phase as 𝑁i,P, in which case the grand potential is 
 
 Φ% = 𝑈P(𝑁) + 𝑈×(𝐸e) − 𝐸e𝑁i,P	.	 ( 5.2 ) 

 
On the other hand, if the 𝑁 molecules are all in the charged liquid phase then the molecules are 
each charged by one electron in the LUMO and the molecular contribution to the total energy 
becomes 𝑈'(𝑁) = 𝐸V𝑁  (for simplicity we have dropped the superscript “SM” from 𝐸V ). We 
denote the number of electrons in this pure liquid phase as 𝑁i,', in which case the grand potential 
is 
 
 Φ' = 𝑈'(𝑁) + 𝑈×(𝐸e) − 𝐸e𝑁i,' 	.	 ( 5.3 ) 

 
The critical Fermi level (𝐸e)) at which the phase transition occurs is determined by setting 

Φ% = Φ'. At this Fermi level 𝑁i,' −𝑁i,P = 𝑁 since N electrons are needed to charge the 
molecules, thereby yielding 𝐸e) = 𝐸V + 𝛼. For 𝐸e < 𝐸e) all of the electrons reside in graphene 
band states and all of the molecules are condensed into solid chains due to the energy gain of 
bond formation. For 𝐸e > 𝐸e) , on the other hand, all of the molecules are in the charged liquid 
state. The transition from the solid phase to the liquid phase does not occur when 𝐸e = 𝐸V  
because melting the chains requires extra energy to break the bond between a chain end molecule 
and its neighbor (i.e., the latent heat of melting). The process of adding a charged, isolated 
molecule to the liquid phase only becomes energetically favorable when the Fermi level reaches 
a value equal to 𝐸V  plus the energy required to break one bond (𝛼). This insight allows us to, in 
principle, experimentally obtain 𝛼 by comparing the measured value of 𝐸e�  at which the phase 
transition occurs (which is marked by Fermi level pinning) to spectroscopic measurements of 𝐸V . 
Experimentally we observe 𝐸e) to be 120±20 meV below the Dirac point energy and 𝐸V  to be 
140±5 meV below the Dirac point (𝐸V  was determined previously34). The difference between 
these quantities is on the order of our experimental uncertainty, and so we are not yet able to 
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extract an accurate value of 𝛼 from our data. We are, however, able to place an upper limit on 𝛼: 
 	𝛼 ≲ 40 meV (this is reasonably consistent with a DFT-based estimate of 𝛼 (see SI)).      

While the grand potential is continuous at the phase transition, its first derivative with 
respect to 𝐸e  is not. From Eqs. ( 5.2 ) and ( 5.3 ) we see that ��,

é`g
 and ���

é`g
 differ by 𝑁 at 𝐸e = 𝐸e), 

confirming that this is a first-order phase transition and that the “latent charge” required for 
complete conversion of N molecules in the solid phase to the liquid phase is the charge of 𝑁 
electrons. This is consistent with the experimental discontinuity in −Δ𝑄 seen in Fig.  5.2 (b) 
which reflects the charge transferred to melted F4TCNQ while EF is pinned at the critical value.  
The preceding discussion has focused on equilibrium conditions of the pure liquid phase (𝐸e >
𝐸e)) versus pure solid phase (𝐸e < 𝐸e) ), but we are also able to characterize the nonequilibrium 
solid-liquid (mixed phase) coexistence regime (i.e., unstable excursions from 𝐸e = 𝐸e)) where 
the proportion of molecules in the chain and liquid phases can be adjusted from one equilibrium 
state to another (Fig.  5.3). Fig.  5.3 (a) shows a plot of the experimental liquid phase molecular 
density (𝑁'	 𝐴⁄ , where 𝐴 is the graphene area) versus 𝑉Æ − 𝑉Ç where 𝑉Ç  = -10V is the gate voltage 
at which isolated molecules first appear in STM images. The yellow dots in Fig.  5.3 (a) show 
that the experimental equilibrium values for 𝑁' 𝐴⁄  exhibit a linear dependence on gate voltage. 
The magenta dots, on the other hand, show experimental nonequilibrium data obtained by 
changing 𝑉Æ  and 𝐼�È  in such a way that diffusive conditions do not last long enough for the 
system to fully equilibrate. Fig.  5.3 (b)-(g) show a full cycle of the system (measured at a single 
location on the device) as it evolves from one equilibrium configuration to a different one 
(yellow dots) and then back again by transitioning through a series of intermediate 
nonequilibrium states (magenta dots).  

We start with Fig.  5.3 (b) which shows a patch of the surface that was initially in an 
equilibrium state at 𝑉Æ − 𝑉Ç = 60 V. At this gate voltage a relatively high liquid phase density 
(𝑁' 𝐴⁄  = 4.1 × 10�< molecules/cm2) coexists with a much lower concentration of the solid phase. 
The gate voltage was then changed to 𝑉Æ − 𝑉Ç = 50 V under non-diffusive conditions (i.e., 𝐼�È  = 
0) to set a new equilibrium target, but without allowing the system to evolve toward the new 
target (since the kinetics are quenched by keeping 𝐼�È  = 0). The resulting nonequilibrium 
configuration is denoted t = 0 and is visually identical to the equilibrium state at 𝑉Æ − 𝑉Ç = 60 V. 
Fig.  5.3 (c) shows the same region after subjecting it to diffusive conditions (by setting ISD = 1.1 
mA) for Dt = 50 ms while holding the gate voltage constant at 𝑉Æ − 𝑉Ç= 50 V. The solid phase 
density is seen to increase, but equilibrium is not yet established. Fig.  5.3 (d) shows the same 
region after allowing it to evolve for an additional 50ms under diffusive conditions while 
maintaining VG – 𝑉Ç = 50 V. The system is now in equilibrium with 𝑁' 𝐴⁄  reduced to 
3.5 × 10�<molecules/cm2 and the solid density correspondingly increased. Fig.  5.3 (e)-(g) show 
the same process in reverse as 𝑉Æ  is reset to the original value of 𝑉Æ − 𝑉Ç = 60 V . The system is 
observed to evolve back to its original equilibrium configuration after passing through a 
nonequilibrium (Fig.  5.3 (f)) regime.  

The mixed phase solid/liquid configurations observed in Fig.  5.3 can be understood 
within our theoretical framework in a straightforward way. To do this we consider the total 
energy of a mixed phase state containing 𝑁' molecules in the liquid phase and 𝑁 −𝑁' molecules 
in the chain phase given by 

 
 𝑈(𝑁', 𝐸e) = 𝑈'(𝑁') + 𝑈P(𝑁 − 𝑁') + 𝑈×(𝐸e),				 ( 5.4 ) 
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where  𝑈', 𝑈P, 𝑈×, and 𝑁 are defined the same as for Eqs. ( 5.2 ) and ( 5.3 ). Here 𝑁 is constant, 
and 𝐸e  is determined by 𝑉Æ  and 𝑁'. Only 𝑁' remains variable, and its value at equilibrium 𝑁'

i¡ is 
obtained by minimizing Eq. ( 5.4 ) with respect to 𝑁'. The resulting expression for 𝑁'

i¡ per unit 
area is 
 
 𝑁'

i¡

𝐴 = 		 𝐶𝑉Æ +
|𝐸È − (𝐸V + 𝛼)|<

𝜋ℏ<𝜈e<
	,	

( 5.5 ) 

 
where 𝐴 is the area of the graphene capacitor, 𝐸V  is the LUMO energy, 𝐸È  is the Dirac point 
energy, and 𝑣e is the Fermi velocity near the Dirac point (1.1 × 10Ì	𝑚/𝑠). This expression is 
similar to an expression derived in ref. 34 using a different approach, but the new expression 
differs in the last term of which arises due to the energy required to break a bond (𝛼), a factor not 
considered in ref. 34. Eq. ( 5.5 ) is plotted in Fig.  5.3 (a) (white dashed line) and is seen to match 
the equilibrium data (yellow dots) quite well. The nonequilibrium behavior (magenta dots) can 
be explained by plotting 𝑈 from Eq. ( 5.4 ) as a color map depending on both VG and 𝑁' in Fig.  
5.3 (a). The low-energy region of 𝑈(𝑁', 𝑉Æ) is seen to correspond to precisely the equilibrium 
density defined by Eq. ( 5.5 ) (as expected). Excursions from equilibrium, as shown by the 
magenta dots, thus push the system to higher energy. The energy landscape of Fig.  5.3 (a) is 
consistent with the experimentally observed tendency of the system to relax back down in energy 
to the equilibrium configuration. 
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Fig.  5.3 F4TCNQ chain freezing and melting under non-equilibrium conditions.  
(a) Experimental values of the equilibrium liquid phase molecule density (𝑁' 𝐴⁄ ) are plotted as 
yellow dots and non-equilibrium values as magenta dots. The theoretical total energy of the 
equilibrium mixed phase of F4TCNQ/graphene is also shown (color scale) as a function of 
liquid phase surface density and gate voltage (V0 is the gate voltage at which melting first 
begins). The minimum energy configuration corresponds to the dashed white line (obtained 
from Eq. ( 5.5 )). (b) STM image of the non-equilibrium molecular state obtained by switching 
VG -V0 to 50 V starting from the equilibrium state at VG -V0 = 60 V and not allowing the 
system to evolve under diffusive conditions (t = 0). (c) Molecular chains condense into a new 
non-equilibrium state after allowing the system to evolve for 50ms under diffusive conditions 
(ISD = 1.15 mA, VG -V0 = 50 V ). (d) Molecular chain condensation advances to this 
equilibrium state after waiting an additional 50ms under diffusive conditions (ISD = 1.15 mA, 
VG -V0 = 50 V). (e) STM image of the non-equilibrium state obtained by switching VG -V0 to 
60 V and not allowing the system to evolve under diffusive conditions (t = 0). (f) Molecular 
chains have partially melted in this new non-equilibrium state obtained after allowing the 
system to evolve for 50ms under diffusive conditions (ISD = 1.11 mA, VG -V0 = 60 V). (g) 
Molecular chains have melted even further in this equilibrium state obtained after waiting an 
additional 100ms under diffusive conditions (ISD = 1.11 mA, VG -V0 = 60 V), thus returning 
the molecular density to its initial configuration in (b). STM images obtained at T = 4.5K. 
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A more dramatic example of nonequilibrium behavior is shown in Fig.  5.4 which exhibits 
the time evolution of a nonequilibrium melting process at the molecular solid-liquid interface. 
The STM image in Fig.  5.4 (a) shows that the equilibrium configuration (t = 0) at 𝑉Æ  = -20 V 
exhibits a region of high solid phase density (upper left) and zero liquid phase density 
everywhere else. The surface was then put into a nonequilibrium state by rapidly changing the 
gate voltage to 𝑉Æ  = 60V (corresponding to an expected high equilibrium liquid phase 
concentration). The system was then allowed to evolve under diffusive conditions for Δ𝑡 = 500µs 
before being quenched and imaged as shown in Fig.  5.4 (b). This nonequilibrium snapshot 
shows a “wave” of liquid phase molecules emanating from the molecular solid like water from a 
melting glacier. The width of the liquid layer extends outward from the solid by ~80nm and 
exhibits an interparticle spacing that is mostly constant. Fig.  5.4 (c) shows the same area after 
allowing it to evolve under diffusive conditions for another 700µs. The layer of liquid now 
extends outward from the solid by more than 160nm. 

The theoretical framework discussed up to now is inadequate to model this type of 
nonequilibrium dynamics. To better understand this melting process we have generalized our 
overall model to account for: (i) multiple chains, (ii) isolated uncharged molecules, and (iii) 
screened Coulomb interactions between ionized molecules. We have numerically simulated this 
more complete model using the Monte Carlo method to explain the dynamics shown in Fig.  5.4 
(a)-(c). An initial configuration was chosen with molecules arranged into chains to mimic the 
F4TCNQ solids we observe experimentally (Fig.  5.4 (d)). All model parameters were 
constrained by experiment except for a (for which we only have an upper bound), but our results 
do not strongly depend on the precise value of a.  A fixed number of electrons was added to the 
system at the start of the calculation to simulate the gating process, and the resulting liquid phase 
density and 𝐸e  value were subsequently determined. Overall, the simulation produced results 
quite similar to the experiment. For example, isolated molecules were observed to dissociate 
from chains after only a few Monte Carlo steps and to move towards empty graphene regions 
(Fig.  5.4 (e), (f)), similar to the flow of molecules observed experimentally in Fig.  5.4 (b), (c). 
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Fig.  5.4 Non-equilibrium melting of the F4TCNQ solid.  (a) STM image of equilibrium 
F4TCNQ solid formed under diffusive conditions on graphene FET at VG-set = -20V. VG was 
stepped up to VG = 60 V before imaging, but the system was not allowed to evolve under 
diffusive conditions (t = 0). (b) Same region of surface after allowing it to evolve under 
diffusive conditions for Dt = 500µs (ISD = 1.3 mA, VG = 60 V). A “wave” of charged liquid 
phase molecules can be seen emanating from the solid interface. (c) Same region after 
allowing the system to evolve for an additional Dt = 700µs under diffusive conditions (VG = 
60 V). The flow of the charged molecular liquid has extended even further from the condensed 
phase interface. (d)-(f) Monte Carlo simulations of F4TCNQ molecules disassociating from 
chains to model the behavior shown in (a)-(c). Molecules colored in blue are charged and can 
be seen flowing outward from the charge-neutral condensed phase interface. STM images 
obtained at T = 4.5K. 

 

5.5 Conclusion 
In conclusion, we have observed a gate-tunable first-order solid-liquid phase transition 

for F4TCNQ molecules adsorbed onto the surface of a graphene FET. We are able to control and 
image the relative abundances of liquid and solid phases for different equilibrium conditions and 
to directly visualize the nonequilibrium dynamics of this system with single-molecule resolution 
for both the solid and liquid phases. We have developed an analytical model that explains the 
gate-dependent equilibrium properties of this system with the only unknown parameter being the 
energy of cohesion of the molecular solid. The techniques described here provide a new method 
for experimentally extracting this parameter, and our results put an experimental upper bound on 
it equal to 40meV per molecule. Monte Carlo simulations show reasonable agreement with the 
highly nonequilibrium kinetics observed in our experiment. The phenomenology observed here 
should be generalizable to other adsorbate/surface systems that are gate-tunable. 
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6 Gate-tunable Molecular Diffusion on a 

Graphene FET 
 The ability to tune surface diffusion using electrostatic gating is potentially useful for 
controlling surface reactions, catalysis and material deposition. In this chapter I will demonstrate 
our control over the diffusion of F4TCNQ molecules at the surface of a graphene field-effect 
transistor (FET) by electrostatic gating. We have found that by tuning the applied gate voltage 
the molecular charge state can be switched from negatively to neutral, leading to a dramatic 
change in molecular diffusion behavior. The diffusion barrier was not found to depend strongly 
on the applied gate voltage for charged molecules, but it increases rapidly for lower gate voltages 
for neutral molecules. By using a “freeze-frame” heating technique in our scanning tunneling 
microscope (STM) we were able to track molecule positions and identify distinct molecular 
diffusion paths associated with different charge states. Ab initio DFT calculations were used to 
calculate the diffusion barrier, but did not fully explain the gate-dependent trends observed in the 
experimental diffusion data. 
 
6.1 Introduction 

Surface diffusion plays a central role in many fundamental processes such as 
catalysis,102,103 mass transport in porous materials,104,105 and thin-film deposition.106,107 In 
catalytic applications the surface diffusion rate directly controls reaction rates, while for thin-
film deposition control of the surface diffusion rate is crucial to the formation of ultra-stable 
glasses with minimal two-level systems.107 Usually the surface diffusion rate is controlled by 
changing the temperature 𝑇 of a system since surface diffusion is a thermally activated process 
governed by the Boltzmann factor 𝑒$�/¿Z�, where Δ is the surface diffusion barrier. However, it 
is in principle also possible to control the diffusion rate by tuning the surface diffusion barrier Δ, 
a much less explored option. The ability to tune the diffusion barrier allows surface diffusion 
processes to be controlled independently of temperature. While previous studies have 
demonstrated that atomic diffusive behavior is sensitive to the charge state of adsorbates,108 this 
effect has so far not been exploited for dynamically modifying surface diffusion rates in device-
tunable systems. 

Here we demonstrate the ability to control the diffusive motion of an adsorbed molecule on 
a graphene field effect transistor (FET) by electrostatic gating. We measured the gate voltage-
dependent diffusion barrier of molecules adsorbed to the FET surface by directly tracking the 
diffusive motion of individual molecules under different gating conditions. The molecule studied 
was 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) which has previously been 
found to have a switchable charge state that is tunable by electrostatic gating on graphene.34 We 
found that the charge state of this molecule strongly affects its diffusive behavior. In particular, 
when the molecule is uncharged its diffusion barrier is strongly dependent on the applied gate 
voltage, but when the molecule is charged its diffusion barrier is independent of applied gate 
voltage. Detailed tracking of molecular orientations reveals that the charge state of the molecule 
determines the energetically favored diffusion paths for different applied gate voltages, thus 
explaining the gate voltage dependence of the diffusion barrier for charged versus uncharged 
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molecules. DFT calculations of the minimum energy diffusion barrier agree well with the 
experimentally measured values, but fail to perfectly reproduce the preferred diffusion paths 
under some conditions. 
 

6.2 Methods 
To study the diffusive behavior of gate-tunable molecules, we observed molecular 

diffusion at different temperatures. F4TCNQ molecules were first deposited onto a graphene FET 
under ultra-high vacuum. The sample was then cooled down to 4.5K in a cryogenic STM for 
measurement. The molecular density on the graphene surface was adjusted to (3 ± 1) ×
10��	𝑐𝑚$< under an applied gate voltage of 5V while flowing source-drain current through the 
device, following the procedure described in ref. [34]. A typical surface molecule density is 
shown in Fig.  6.1 (a). The tip was then withdrawn 2𝜇𝑚 from the surface and a diode heat source 
located close to the sample was used to heat the graphene device for 60s. The temperature of the 
sample was monitored by a thermometer diode close to the sample plate. The heating procedure 
was controlled by a PID feedback loop to rapidly heat and maintain the target temperature 
(typically between 10K and 35 K) for 60s before the device was cooled back down to 4.5K. 
After the temperature of the device cooled back down to 4.5K we imaged the surface with the 
STM and tracked the centroid positions of each molecule in our field of view (typically 
100	nm × 	100	nm).109 Using this method, which we refer to as “direct heating”, we can 
produce a freeze-frame movie of molecular motion occurring as a result of each heating cycle. 

 
6.3 Results 

A series of STM images taken after performing the protocol described above is shown in 
Fig.  6.1 (a)-(d) where individual molecular trajectories have been overlaid. The drift of the scan 
frame after each heating cycle was seen to be small (typically ~3 nm per heating cycle).  The 
individual molecular tracks were then analyzed to extract the ensemble-averaged mean-square 
displacement (MSD) as a function of time. An example of the molecular MSD is plotted for 
different heating temperatures in Fig.  6.1 (e). A diffusive MSD in two dimensions follows the 
well-known relation ⟨Δ𝑟<⟩ = 4𝐷𝑡ó, where Δ𝑟 is the root mean square molecular displacement 
from the origin at time 𝑡, 𝐷 is the diffusion constant, and 𝛼 is the power law of the diffusion 
(𝛼 = 1 describes perfect Brownian motion, 𝛼 < 1 is subdiffusive, and 𝛼 > 1 is superdiffusive). 
Our experimental data shows 𝛼 = 0.97± 0.1 for all the curves in Fig.  6.1 (e), indicating that the 
movement of molecules under these conditions is well characterized by Brownian motion. By 
taking the logarithm of the MSD we are able to extract the diffusion constant as the intercept 
term. As seen in the data of Fig.  6.1 (g) we observe that the molecular diffusion constant 
increases exponentially with linearly increasing heating temperature since the intercept of the 
MSD logarithm curves are roughly evenly spaced apart. This method allows us to extract the 
molecular diffusion constant for different heating temperatures and gating conditions.  
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Fig.  6.1: Tracking molecular diffusion on a graphene surface. (a)-(d) A series of STM 
topographs shows F4TCNQ molecules diffusing on graphene after each heating step. Overlaid 
molecular tracks show the trajectories of diffusion. (e) Mean squared displacement of the 
tracked molecules as a function of diffusion time. The diffusion constant 𝐷 is found from the 
intercept of the log mean square displacement. 

 

 
Fig.  6.2 Gate-dependent molecular diffusion barrier. (a) Extracted diffusion constants 𝐷 
plotted as a function of heating temperature and gate voltage. The diffusion constants are 
roughly constant for 𝑉Æ > −20	𝑉, but vary strongly with 𝑉Æ  for 𝑉Æ < −20	𝑉. (b) The 
diffusion barrier 𝐸£  is extracted from the slope of log	(𝐷) and shows a strong dependence on 
gate voltage for 𝑉Æ < −20	𝑉. 

 
Fig.  6.2 (a) shows a series of extracted diffusion constants as a function of heating 

temperature for different applied gate voltages (𝑉Æ), where −60V ≤ 	𝑉Æ ≤ 60V. The measured 
diffusion constants for the different applied gate voltages are plotted as connected points versus 
1/T, where T is the temperature. All diffusion constants were measured in the same scan area. 
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For classic Brownian diffusion in two-dimensions the diffusion barrier 𝐸£  is related to the 
diffusion constant 𝐷 by 

 
 
 log(𝐷) = log

𝑎𝜈Ç<

4 ® −
𝐸£
𝑘)𝑇

	,	
(6.1) 

 
where 𝑎 is the distance per jump to a neighboring adsorption site, 𝜈Ç is the attempt frequency, 
and 𝑇 is the temperature at which the diffusion occurs. By performing a linear fit to our log(𝐷) 
curves, we estimate the diffusion barrier energy for each applied gate voltage and plot it in Fig.  
6.2 (b). The resulting gate voltage-dependent diffusion barrier curve (Fig.  6.2 (b)) exhibits two 
distinct features: (1) The diffusion barrier 𝐸£  is nearly independent of the applied gate voltage 
for 𝑉Æ ≥ 	−20𝑉, and (2) The diffusion barrier 𝐸£  increases dramatically for 𝑉Æ ≤ 	−20𝑉, with 
𝐸£  at 𝑉Æ  = -60V reaching 3.5 times its value at 𝑉Æ  = -20V. We note that the critical gate voltage 
𝑉Æ  = -20V roughly coincides with previously reported gate voltages above which F4TCNQ 
molecules become negatively charged on similar graphene FETs.34 
 In order to better understand the diffusion behavior in these two distinct gate voltage 
regimes, we require more detailed information about the molecular diffusion paths. The direct 
heating method allows us to track molecular motion with reasonable precision, but the error on 
molecular position after drift correction is still greater than a single lattice constant of graphene. 
In order to minimize drift and increase our precision regarding the molecular position, we 
utilized an alternate heating method which we call “current heating”. Here we first follow the 
same aforementioned procedure for preparing the surface with (3 ± 1) × 10��	molecules	𝑐𝑚$<. 
The tip is then withdrawn 300nm away from the surface, and a 60 sec. source-drain current pulse 
is applied to the graphene FET to produce Joule heating and induce molecular diffusion. The 
source-drain current is then switched off, allowing the graphene to cool down which causes the 
molecules to stop diffusing on the surface. The tip is then approached to the graphene surface 
and STM imaging is performed. This “snapshot” of the surface taken after current heating allows 
the motion of individual molecules to be tracked with high precision, since current heating is 
local to the device and thus produces significantly less thermal drift for the scan piezos. 

We investigated which diffusion paths the molecules were taking on the graphene lattice 
by tracking both molecular displacements and molecular orientational changes occurring 
between consecutive scan frames. STM images of F4TCNQ molecules show 3 different 
orientations for the long axis of the molecule that are separated by 120° from each other as 
shown in Fig.  6.3 (a). These images are consistent with DFT calculations that suggest that the 
minimum energy molecular geometries correspond to the center ring and long axis of the 
F4TCNQ molecule aligning with one of the 3 equivalent “bridge” sites on graphene, as shown in 
Fig.  6.3 (b). By calculating the image moment of each molecule in the STM images, molecular 
orientations were classified as one of the 3 distinct orientations. To track the displacement of a 
particular molecule between two snapshots we first identified its position and molecular 
orientation in the initial snapshot. We then re-centered and re-oriented the reference frame of the 
molecule in the initial snapshot such that its centroid lies at the origin and the long axis of the 
molecule is oriented at 0°. The final molecular position and orientation in the subsequent 
snapshot was then measured relative to the initial position and orientation. 

The resulting displacements for all molecules between consecutive snapshots are 
aggregated and represented as scatter plots in Fig.  6.3 (c)-(e) and (g)-(i) for different values of 
𝑉�È . A molecule that has moved a displacement of (Δ𝑥, Δ𝑦) between frames is represented as a 
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point with coordinates (Δ𝑥, Δ𝑦) in the scatter plot, and the color of the point indicates whether or 
not the molecule has changed its orientation after moving. Blue points indicate molecules whose 
orientation remained the same, while orange points indicate molecules that have undergone a 
change in orientation. Fig.  6.3 (c)-(e) show molecular displacements when the current heating 
experiment is performed under the condition 𝑉Æ  = 60V (i.e. when the molecules are clearly in the 
charged regime), and Fig.  6.3 (g)-(i) show molecular displacements when the experiment is 
performed under 𝑉Æ  = -60V (i.e. when the molecules are clearly in the neutral regime). Fig.  6.3 
(c)-(e) show that the charged molecular displacements are not continuous but instead fall into a 
discretized triangular lattice with a lattice constant of 2.46 Å, which matches the lattice constant 
of graphene. For uncharged molecules (Fig.  6.3 (g)-(i)) we observe additional points halfway 
between the triangular lattice pattern produced by charged molecules seen in Fig.  6.3 (c)-(e). In 
addition, by classifying the motion of the molecules into three categories: (1) no movement, (2) 
movement without orientation change, (3) movement with orientation change, we can track how 
their relative population changes as a function of applied source-drain voltage. The percentage of 
molecules falling into each of these three categories is plotted as a function of applied source-
drain voltage in Fig.  6.3 (f) for charged molecules (under conditions 𝑉Æ=60V), and in Fig. 6.3(j) 
for uncharged molecules (under conditions 𝑉Æ=-60V). Fig. 6.3 reveals a striking difference in 
diffusion paths between charged (Fig.  6.3 (c)-(e)) and uncharged molecules (Fig.  6.3 (g)-(i)). 
While charged molecules primarily jump to neighboring adsorption sites without rotating, 
uncharged molecules also rotate as they move to neighboring adsorption sites.  
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6.4 Discussion 
The observed triangular lattice of displacements provides crucial information about the 

diffusion paths taken by the molecules. To explain why the molecular displacements form a 
triangular lattice, we first consider the neighboring sites that a F4TCNQ sitting on a “bridge” site 
can jump to. Fig.  6.4 (a)-(c) shows a molecular jump to a neighboring adsorption site by a 
translation with no rotational motion, which we refer to as diffusion path “T”. There are 4 
equivalent nearest neighbor sites that the molecule can jump to by a translation of a lattice vector 
(shown as blue dots in Fig.  6.4 (a)). The set of all possible consecutive jumps that a molecule 
can take following diffusion path “T” forms a triangular lattice with a lattice constant of 2.46 Å, 
which matches the lattice constant of graphene. Fig.  6.4 (b), (c) show how a molecule might 
transition between binding sites for a “T” diffusion event. Another possible diffusion path 
involves a translation accompanied by a 60° rotation, as shown in Fig.  6.4 (d)-(f), which we 
refer to as path “TR”. For this type of diffusion there are also 4 equivalent nearest neighbor sites 
that the molecule can jump to (shown as blue dots in Fig.  6.4 (d)). The set of all possible jumps 
taken in this way forms a Kagome lattice with an inter-site distance of 1.26 Å, which is half the 
lattice constant of graphene. Fig.  6.4 (e), (f) show the process of a “TR” diffusion event. A third 
possible diffusion path involves a translation accompanied by a 60° rotation that moves the 
molecule to a further site than seen for “TR” events, as shown in Fig.  6.4 (g)-(i) We refer to this 
as diffusion path “TR2”. The molecular jumps following the “TR” and “TR2” paths account for 
the additional orange points that appear in between the blue triangular lattice points formed by 
“T” jumps. 

The experimental results shown in Fig.  6.3 suggest that “T” diffusion paths are favored 
when molecules are uncharged while “TR” and “TR2” paths are favored when molecules are 
charged. The relative prevalence of the different diffusion paths also depends on the source-drain 
voltage used to heat the graphene (Fig.  6.3 (f), (j)). For lower 𝑉�È  the number of favored 
diffusion path events is significantly larger than non-favored diffusion path events, whereas at 
larger source-drain voltages the number of non-favored diffusion path events increases. This 
suggests that the non-favored paths are thermally activated at higher temperatures. 
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Fig.  6.4 Schematic of molecular diffusion paths. (a) Schematic of a F4TCNQ molecule 
sitting on an initial “bridge” site. The green triangle labels the original position of the 
molecular center. Blue dots label the equivalent neighboring bridge sites that the molecule can 
jump to by pure translational movement through the diffusion path T. (b) A transition state 
along the diffusion path T between the green triangle and a blue dot. (c) Final state geometry 
of the molecule for a diffusion path T. (d) Schematic of a F4TCNQ molecule sitting on an 
initial “bridge” site. Blue dots label the equivalent neighboring bridge sites that the molecule 
can jump to by a translation + rotation of 60°	along	diffusion	path	TR. (e) A transition state 
along the diffusion path TR. (f) Final state geometry of the molecule for diffusion path TR. (g) 
Schematic of a F4TCNQ molecule sitting on an initial “bridge” site. Blue dots label the 
equivalent neighboring bridge sites that the molecule can jump to by a translation + rotation of 
60°	through	diffusion	path	TR2. (h) A transition state along the diffusion path TR2. (i) Final 
state geometry of the molecule for diffusion path TR2. 

 
In order to explain the molecules’ preference for different diffusion paths under different 

conditions, we calculated the diffusion barrier as a function of gate voltage and molecular charge 
state for different diffusion paths (calculations were performed by the Lischner group). To obtain 
the diffusion barrier from DFT, we first calculated the energy of a series of smoothly varying 
molecular geometries transitioning between the initial adsorption geometry and the final 
adsorption geometry for each of the three paths. During these series calculations, the charge of 
the molecule was not constrained. Then, we identified the transition state geometry 
corresponding to the maximum barrier height for each of the three paths. After the transition 
state is identified, we restricted the net charge of the F4TCNQ molecule to be 0 for VG < -20V 
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and 1 electron charge for VG > -20V, in accordance with the molecular charge state found in 
previous experiments.34 The diffusion barrier was then calculated for each of the three paths by 
taking the difference in total energy between the transition state geometry and the initial 
molecular adsorption geometry while restricting the charge. 

The result of the gate-dependent diffusion barrier calculation is shown in Fig.  6.5 (a). For 
charged molecules path “T” has the lowest diffusion barrier (for the transition state geometry 
shown in Fig.  6.4 (b)). For charge neutral molecules, however, path “TR” has the lowest 
diffusion barrier (for the transition state geometry shown in Fig.  6.4 (e)). The calculated 
diffusion barrier for path “TR2” appears to be the highest of the three paths under all gate 
voltages. The position-dependent total energy of path “T” is plotted as a function of the diffusion 
path coordinates in Fig.  6.5 (b) for VG=60V (charged case). The calculated diffusion barrier is 
32 meV, which agrees reasonably well with the experimentally measured value of 23 meV. The 
“TR” path, on the other hand, has a more complex shape that exhibits two energy maxima 
situated at symmetric positions about the halfway point, with a calculated diffusion barrier of 51 
meV. This value agrees reasonably with the experimentally measured diffusion barrier of 73 
meV. The gate-dependence of the diffusion barrier for uncharged molecules has the correct trend 
but is much weaker than experimentally observed. This might be due to artificial constraints 
imposed on the charge transfer between the molecule and substrate in our calculations, which 
weakens the sensitivity of the total energy to applied electric fields. Such charge transfer effects 
are difficult to capture accurately using DFT.110,111 

In order to clarify how much the three different diffusion paths each contributed to the total 
molecular diffusion, we transformed the experimental scatter plots shown in Fig.  6.3 into 2D 
histograms of the probability of a molecule jumping to each adsorption site from a starting 
bridge site (note that this does not directly tell us the diffusion path taken due to site overlap for 
the different paths). We then fitted the experimental data with a theoretical probability map 
produced via Monte Carlo simulation. The fit parameters for the Monte Carlo simulation were 
taken to be the probabilities for a molecule to take each of the three different diffusion paths. 
This process allowed us to extract the experimental probabilities for a molecule to take each 
different diffusion path. In Fig.  6.5 (c), (e), each colored bar represents an adsorption site (where 
the molecule’s center aligns with a “bridge site”), while its shading denotes the experimental 
probabilities that a charged (Fig.  6.5 (c)) and neutral (Fig.  6.5 (e)) molecule starting from the 
origin lands on that particular “bridge” site after a current pulse. Fig.  6.5 (d), (f) shows the 
corresponding Monte Carlo fits for a charged (Fig.  6.5 (d)) and neutral (Fig.  6.5 (f)) molecule 
starting from the origin and jumping to different adsorption sites on the graphene lattice via the 
different diffusion paths. The molecular jumps in our simulations were uncorrelated to each other 
and the hopping probabilities of each of the 3 paths were adjusted until the squared difference 
between the experimental probability map and the simulated probability map converged to a 
minimum. 

A comparison of Fig.  6.5 (c) and (d) suggests that the probability of a charged molecule 
taking path “T” as opposed to other paths is 98%. A comparison of Fig.  6.5 (e) and (f) suggests 
that the probability of a neutral molecule taking path “TR2” is the highest, at 48%, and the 
probability of a neutral molecule taking path “TR” is only 13%, despite DFT calculations 
indicating that path “TR” is the lowest energy path. Path “T”, on the other hand, accounts for 
39% of the jumps. Although the overall trend holds true that charged molecules move primarily 
by path “T”, uncharged molecules appear to primarily move by path “TR2” instead of path 
“TR”, which is contrary to the DFT predictions. 
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Fig.  6.5 Molecular diffusion barriers calculated from DFT and diffusion probability 
maps. (a) Diffusion barriers for the three diffusion paths (“T”, “TR”, “TR2”) obtained from 
DFT for neutral molecules under conditions 𝑉Æ < −20	𝑉 and for charged molecules under 
conditions 𝑉Æ > −20	𝑉. (b) Diffusion barrier profile of path “T” for the charged molecule 
case. (c) Experimentally observed histogram of molecular jumps to each adsorption site under 
current pulsing conditions for 𝑉Æ = 40	𝑉 and 𝑉�È = 0.8	𝑉 (the charged molecule case). (d) 
Theoretical histogram of charged molecule jumps to each adsorption site using a Monte Carlo 
method fitted to the charged molecule data of (c). Molecules moving by path “T” constitute 
98% of all molecules which have moved. (e) Experimentally observed histogram of neutral 
molecule jumps to each adsorption site under current pulsing conditions of 𝑉Æ = −60	𝑉 and 
𝑉�È = 1.6	𝑉 (the neutral molecule case). (f) Theoretical histogram of neutral molecule jumps 
to each adsorption site using a Monte Carlo method fitted to the neutral molecule data of (e). 
Molecules moving to different adsorption sites by path “T”, “TR”, and “TR2” have respective 
probabilities of 39%, 13% and 48%. 
 
 
 
 
 
 

 



 82 

6.5 Conclusion 
We have demonstrated the ability to use an electrostatic gate to control the diffusion 

behavior of F4TCNQ molecules on graphene. We find that the surface diffusion barrier is not 
only strongly dependent on gate voltage, but it also exhibits two different regimes depending on 
the charge state of the molecules. We attribute this difference to the distinct diffusion paths 
preferred by the molecules when they are charged versus when they are neutral. By tracking 
molecular motion with STM, we find that the preferred diffusion path of a charged molecule is a 
simple translation to a neighboring bridge site. The preferred diffusion path of a charge neutral 
molecule, on the other hand, involves a 60° rotation. DFT calculations of the diffusion barrier 
reasonably match experimentally determined values, but the preferred diffusion path for 
uncharged molecules does not match the DFT prediction. 
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7 Resonant Transport in molecule-decorated 

Graphene Devices 
Ion-decorated graphene holds great promise for realizing low-power neuromorphic 

devices due to the tunability of graphene’s conductance through chemical doping by adsorbed 
ions. Fine electrical control over lithium intercalation in graphene heterostructures has been 
successfully demonstrated,112,113 and graphene synapses based on lithium electrochemical 
systems have also been fabricated.78 In contrast to lithium-based technology, molecular ions have 
not yet been explored as an option for controlling the conductivity of graphene devices. 
Molecular ions are attractive for this application because of their relative low-cost of synthesis 
and their potential to be modified by functionalization.114 Furthermore, since lithium orbital 
levels are far away from the graphene Fermi level, lithium modifies the graphene conductivity 
only by changing the carrier concentration and not through the formation of electrically resonant 
states on the graphene surface. Molecules such as F4TCNQ, on the other hand, have resonances 
near the Fermi level that should strongly influence electron scattering in graphene, thereby 
causing significant conductivity changes. This phenomenon has not yet been reported for 
molecule/device systems with well-defined resonant scatterers. 

In this chapter, I will present measurements of resonant scattering phenomenon observed 
in transport measurements of F4TCNQ-decorated graphene transistors. 
 
7.1 Introduction 

Impurities on graphene are known to modify graphene conductivity by chemical doping 
and electron scattering. While scattering generally lowers the carrier mobility in graphene,60,115 
chemical doping can change the conductivity in either direction by modifying the carrier 
concentration. This can be implemented by impurities introduced to graphene through ion 
sputtering, ion deposition in vacuum, or ion intercalation in an electrochemical environment. 
Sputtering can effectively produce defects in graphene by knocking out carbon atoms as well as 
by ion implantation. However, sputtering is imprecise and creates a variety of different defects, 
leading to a range of different (and poorly controlled) electronic properties associated with 
different defects. Sputtering also irreversibly modifies the surface and is thus not ideal for 
information storage applications. Using deposited alkali ions as scatterers on graphene also 
suffers from similar problems of irreversibility. Once ions are deposited, their concentration on 
the graphene surface cannot be reversibly tuned, and adsorbed alkali ions can typically only be 
removed by annealing to high temperatures.  

Electrochemical intercalation is a possible solution to achieve reversible and precise 
control over the conductivity of graphene. Lithium ions embedded in solid electrolytic polymers 
can be intercalated between graphene layers by applying voltages between a two-terminal 
graphene device and a counter electrode. Since lithium is an electron donor when adsorbed on 
graphene, the intercalated lithium concentration can be used to control the carrier concentration 
in graphene and thus its conductivity.112,113 Such devices are useful for simulating neuronal 
plasticity since current pulses can be used to modify the device responsiveness to subsequent 
current pulses (i.e. the devices have “memory”).12,13,116 
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Charge-carrying molecules can also perform a similar function, but they have not been as 
widely used to modify the conductivity of graphene. Here I will present transport measurements 
of the conductivity of F4TCNQ-decorated graphene transistors where the surface molecule 
density can be reversibly controlled by an applied gate voltage. Scanning tunneling microscopy 
was used to characterize the surface molecular concentration, while two-probe differential 
conductance measurements were simultaneously used to monitor changes in the graphene 
conductivity. Using the device gate voltage to control when isolated molecules appear on the 
graphene surface provides control over when the resulting molecular resonance is observed in 
the graphene electrical conductance versus gate voltage characteristic curve. A plateau in the 
graphene conductance as a function of gate voltage is observed that can be explained by Fermi 
level pinning due to charge-tunable molecular LUMO states on the surface. We have developed 
a model that explains the conductivity of F4TCNQ-decorated graphene based on Boltzmann 
transport theory that accounts for modifications to the graphene band structure due to the 
molecular LUMO resonance. The model captures experimentally observed features arising from 
molecular resonances and Fermi level pinning. 
 

7.2 Methods 
To measure the conductance of F4TCNQ-decorated graphene devices, F4TCNQ 

molecules were first deposited onto graphene FETs in ultra-high vacuum. Devices were then 
transferred into an STM held at a temperature of 4.5K. The experimental setup for measuring the 
conductance of the molecule-decorated device in the STM is shown in Fig.  7.1. To change the 
surface molecule density, a gate voltage 𝑉Æ$PiQ was applied to the device while simultaneously 
heating it with a diode heater on the STM stage. After allowing the molecular density to reach 
equilibrium for 180 s, the diode heater was turned off and the device was allowed to cool back 
down to 4.5K. The mechanism for changing the surface molecule density is described in detail in 
chapters 4 and 5. Heating the graphene device with the diode produces a more homogeneous 
distribution of single molecules on the surface compared to Joule heating the device using 
source-drain current (this is advantageous for observing sharper features in conductance 
measurements). After cooling the device to 4.5K, gate-dependent differential conductance 
measurements were performed by setting the DC voltage to 𝑉� = 0 and applying a wiggle 
voltage 𝑉��  of 20 meV to the source electrode. Switch S1 was then closed so that a lock-in 
amplifier connected in series to a current preamplifier could be used to detect the 𝑑𝐼/𝑑𝑉��  
signal. The gate voltage was then ramped from -60V to 60V while recording 𝑑𝐼/𝑑𝑉�� . 
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Fig.  7.1 Conductance measurement experimental setup. The surface molecule density of a 
molecule-decorated graphene device is adjusted by simultaneously applying a gate voltage 
𝑉Æ$PiQ while heating the device with a diode heater. After the heater is turned off, a wiggle 
voltage 𝑉��  is applied to the device and a lock-in amplifier is used to measure the differential 
conductance	𝑑𝐼/𝑑𝑉��	as a function of gate voltage 𝑉Æ$PiQ. 𝑉� sets the sample/tip bias voltage. 

 
7.3 Results 

The surface molecule density obtained as a function of 𝑉Æ$PiQ is shown in Fig.  7.2. As 
expected from previous experiments, the surface molecule density varies roughly linearly with 
𝑉Æ$PiQ. For this sample molecules start appearing on the surface near 𝑉Æ = 0𝑉 (this voltage can 
change due to impurity-induced offsets). 
 

 
Fig.  7.2 Molecule density on graphene as a function of 𝐕𝐆$𝐬𝐞𝐭. (a) STM topography of the 
graphene surface after setting the molecule density during a heating cycle with 𝑉Æ$PiQ. (b) 
Surface molecule density of the sample region shown in (a) as a function of 𝑉Æ$PiQ. 

  
The gate-dependent conductance measured for the different molecular concentrations 

determined by each 𝑉Æ$PiQ is shown in Fig.  7.3 (a). For surfaces prepared under the condition 
𝑉Æ$PiQ ≤ −10𝑉 (where the molecular concentration is near zero) the electrical conductance 
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curves are very similar and exhibit a characteristic minimum conductivity when the Fermi level 
is at the graphene Dirac point near 𝑉Æ = 0. Asymmetry in the electron and hole conductance 
indicates the existence of non-resonant impurities on the surface that skew the spectral weight by 
the mechanism explained in section 3.3.2. As 𝑉Æ$PiQ is increased to 0V (and charged molecules 
begin to populate the surface), we notice two features: (1) a dip appears near 𝑉Æ = −20V in the 
device conductance, and (2) the minimum conductivity point shifts to the right. The gate voltage 
where the first dip occurs will be referred to as 𝑉V�~� and the position of the minimum 
conductivity point will be referred to as 𝑉È . As 𝑉Æ$PiQ is increased even further (causing more 
molecules to populate the surface), we notice that the dip at 𝑉V�~� deepens and widens, and 
spans a larger range in 𝑉Æ . The position of 𝑉È  also shifts to the right with increasing 𝑉Æ$PiQ. The 
difference between 𝑉È  and 𝑉V�~� is plotted as a function of the surface molecule density in Fig.  
7.3 (c). 
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Fig.  7.3 Gate-dependent conductivity of a F4TCNQ-decorated graphene device as a 
function of 𝐕𝐆$𝐬𝐞𝐭. (a) The gate-dependent conductance of the device is plotted as a function 
of the setting gate voltage 𝑉Æ$PiQ (which determines the molecular concentration). Molecules 
appear on the surface for 𝑉Æ$PiQ ≥ −10𝑉 and a molecule resonance becomes visible at 𝑉Æ =
−20𝑉. Fermi level pinning due to the molecular LUMO states is responsible for shifting 
spectral features to the right. (b) Theoretical conductivity of the graphene-molecule system 
calculated using Boltzmann transport theory. The molecule resonance and the shift of spectral 
features qualitatively match experimental observations. (c) The gate voltage difference 
between 𝑉È  and 𝑉V�~� is plotted as a function of the surface molecule density. 𝑉È − 𝑉V�~�  is 
roughly linear in surface molecule density. 
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7.4 Discussion 
In order to explain these observations we use the model developed in section 3.3.3 to 

calculate the gate-dependent conductivity. Here we utilize the impurity band structure resulting 
from the continuum model of section 3.3.3. The electrical conductivity can be calculated from 
the band velocity and the Fermi wavevector using ( 3.77 ), assuming that the scattering time 
constant 𝜏 is independent of energy or band index. While this is only an approximate model, the 
density of states contributed by the molecular resonance is reasonably captured in the model. To 
compare the conductivity between theory and experiment, we plot it as a function of gate voltage 
(similar to Fig.  3.11 (b)) instead of Fermi energy (as shown in Fig.  3.11 (a)). To convert Fermi 
energy to carrier density we first find the reference Fermi level 𝜀e�+ that corresponds to charge 
neutrality for the molecule-decorated graphene system, corresponding to a density of states 𝑔(𝜀). 
Since molecules take electrons from the previously charge neutral graphene, which has a density 
of states 𝑔Æ(𝜀),  the total electron density counting from a given energy 𝜀A@Ü is then 

 
 
 b 𝑔Æ(𝜀)𝑑𝜀 =

Ç

���0

	𝜀A@Ü<
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Next, the carrier density 𝑛 relative to the charge neutral system can be defined using 
 
 
 𝑛 = b 𝑔(𝜀)𝑑𝜀	

�g
��

�g
, 

(7.2) 

 
where 𝜀e is the Fermi level. Finally, the carrier density is converted to a gate voltage using 𝑉Æ =
𝑛/𝐶, where the device geometric capacitance is 𝐶 =	6.5× 10�Ç electron charges cm$<𝑉$�.  

The calculated conductivities for realistic values of the surface molecule density are 
plotted in Fig.  7.3 (b). The theoretical results exhibit key features similar to the experiment as 
follows: (1) a dip in conductivity near 𝑉V�~� = −20𝑉, and (2) shifting of spectral features to 
higher gate voltage for increased molecular density. The theoretical difference between 𝑉È  and 
𝑉V�~� for different surface molecule densities is also found to vary linearly with the surface 
molecule density (Fig.  7.3 (c)). This can be explained by the fact that each single molecular 
orbital hosts one electron, thus more charge is needed to raise the Fermi level for a higher surface 
molecule density. The total density of electrons needed to raise the Fermi level from the 
molecular orbital to the Dirac point is equal to the charge density 𝐶(𝑉È − 𝑉V�~�), which can be 
expressed as 

 
 
 

𝐶(𝑉È − 𝑉V�~�) = 𝑛~ + 𝑛Ç,	 (7.3) 

where 𝑛~ is the surface molecule density and 𝑛Ç = 	
|`É$`z���|t

³ℏt�g
t  is the integrated graphene 

density of states between the Dirac point energy and molecular orbital energy. Since 𝑛~ =
𝐶𝑉Æ$PiQ + 𝑛Ç from Eq. ( 4.5 ), we have 
 
 
 𝑉È − 𝑉V�~� = 𝑉Æ$PiQ +

2𝑛Ç
𝐶 	,	 (7.4) 
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which predicts that 𝑉È − 𝑉V�~�  varies linearly with 𝑉Æ$PiQ with a slope of 1. The experimentally 
measured 𝑉È − 𝑉V�~�  is seen to be ~30% higher than this predicted value. It is possible that this 
is due to inhomogeneity in the device capacitance, where fringing fields can cause the average 
device capacitance to become higher near the edges of the graphene sheet. Nevertheless, it is 
clear that the Fermi level pinning effect observed in the conductivity is explained by the extra 
quantum capacitance introduced by the presence of isolated molecules on the surface. 
 

7.5 Conclusion 
In conclusion, we are able to correlate changes in the microscopic distribution of 

molecules on a graphene device to changes in the device’s macroscopic transport properties. In 
particular, a reduction in conductivity due to the molecular resonance is observed as the local 
molecular density is increased. Pinning of the Fermi level by molecular LUMO states is also 
observed through a plateau in conductivity over a wide range of gate voltages. The gate voltage 
range over which the Fermi level is pinned is observed to vary linearly with the surface 
molecular density, in agreement with theoretical predictions based on Boltzmann transport. The 
sharp features observed in the device conductivity suggests that changes in the surface molecular 
concentration is reasonably uniform over a macroscopic scale. 
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8 Electromigration of single-molecule 

adsorbates 
The previous chapter showed that molecular resonances reduce the conductivity of 

graphene due to electron-molecule scattering, but these same scattering processes can also 
induce a force that pushes molecules across the device surface. The force resulting from 
electrons scattering off an impurity under current flow was first related to electrical conductivity 
in a jellium model by Das and Peierls and called a “wind force”.117 Such a force is capable of 
moving atoms and molecules in well-specified directions, producing a phenomenon called 
electromigration. 

In this chapter I present a study of electromigration forces on isolated F4TCNQ molecules 
at the surface of a graphene device. 

 

8.1 Introduction 
Electromigration is the current-driven migration of atoms or impurities in a conductor 

over time. Even though electromigration forces are typically very small, they cause insidious 
damage to microelectronic devices through the cumulative effects of current flow, eventually 
leading to breakage of thin conductor wires and device failure. It is thus important to understand 
this force in order to ameliorate its effect in device applications. On the other hand, 
electromigration forces also present opportunities for fabricating nanogap devices for actuating 
nanomechanical systems, and for facilitating nanoengineering.118 Numerical methods have been 
used to model the fundamental electromigration properties of single impurities,119,120  but 
experimentally measuring those properties for individual atoms or molecules has never been 
done. One reason this is hard is the difficulty of combining devices and atomically-resolved 
microscopy. Another reason is the local inhomogeneity of electric fields at the microscopic scale 
which makes it challenging to measure electric field directions and magnitudes at any given 
point in a driven adsorbate’s trajectory. Although macroscopic experiments have been used to 
estimate electromigration forces by measuring the average transport rate of ensembles of 
impurities,42,65,66 the detailed structure of these impurities is unknown, and so the obtained 
electromigration force is an average quantity. Some attempts have been made to quantify 
electromigration forces at the nanoscale, but even the smallest electromigrating object reported 
to date is ~100 nm in size and composed of hundreds of thousands of atoms.23 
 Here we study the electromigration of single F4TCNQ molecules at the surface of a 
graphene FET. Scanning tunneling microscopy was used to image molecular motion after 
passing source-drain current through the device to induce electromigration in molecules. 
Scanning tunneling potentiometry (STP) was used to determine the average electric field 
direction in nearby regions of the device so that the electron flow direction could be identified. 
We find that molecules move in the same direction as the electron flow (opposite to the current) 
even though the current carriers are holes under our experimental conditions. Our experimental 
results indicate that the electron wind force dominates over the direct force by a factor of ~200 in 
driving the motion of molecules across a graphene surface. The direction of molecular motion is 
explained intuitively by strong inter-cone scattering in graphene induced by the rapidly 



 91 

oscillating potential of the molecule, which causes large momentum transfer to molecules in the 
direction of electron motion. The role of inter-cone scattering is important because if only intra-
cone scattering were permitted (as in the case of slowly varying potentials), then momentum 
transfer should push the molecules in the direction of hole motion. Force calculations using a 
non-equilibrium Green’s function (NEGF) method confirm this intuitive picture of 
electromigration, and yields detailed real-space information about charge redistribution and the 
local forces induced by current flow. 
 

8.2 Methods 
F4TCNQ molecules were deposited onto a graphene FET in ultra-high vacuum which was 

then transferred into an STM held at 4.5K. The surface molecule density was set using the gate-
voltage procedure described in previous chapters to prepare a desired surface molecule density. 
A schematic of the procedure used to induce and observe electromigration of molecules is shown 
in Fig.  8.1. A STM scan of the surface is taken before applying the source-drain current required 
to induce electromigration, as shown in Fig.  8.2 (a). The STM tip is then withdrawn ~2𝜇𝑚 from 
the surface and a source-drain current pulse lasting ~10s is applied to the device to induce 
electromigration. A gate voltage of VG = -20 V is typically applied to the device during the 
electromigration current pulse to ensure that molecules remain uncharged and do not interact 
strongly with each other via Coulomb repulsion during the electromigration. This also ensures 
that the graphene is unambiguously in the p-doped regime, as shown in chapter 4. After the 
source-drain current is turned off the STM tip is re-approached onto the same area of the surface 
and another scan is taken to visualize the resulting surface molecular configuration. The drift of 
the scan frame between individual scans is very minimal (typically less than 0.1 nm) and can be 
neglected. 

 

 
Fig.  8.1 Electromigration experimental setup. (a) F4TCNQ molecules deposited onto a 
graphene FET are first imaged with a STM to determine initial molecular positions. (b) The 
STM tip is withdrawn, and a source-drain voltage VSD is subsequently applied to the device, 
causing current to flow through the graphene and molecules to electromigrate. (c) After VSD is 
turned off, the STM tip is re-approached onto the surface, and another image is taken to 
determine the movement of individual molecules. 

 

8.3 Results 
Some examples of surface molecular configuration changes are shown in Fig.  8.2 (a)-(d) 

and (e)-(h). Fig.  8.2 (b)-(d) show the surface molecular configuration after consecutive positive 
polarity source-drain current pulses were applied to the device for 20 to 90 s, where VSD = 0.5 V 



 92 

and ISD = 240	𝜇𝐴. The molecules are observed to move towards the lower left corner of the 
image, the direction of electromigration. Fig.  8.2 (f)-(h) show the surface molecular 
configuration after consecutive negative polarity source-drain current pulses were applied to the 
device for 30 to 340 s, where VSD = -0.5 V and ISD = 240	𝜇𝐴. The molecules can be seen moving 
towards the top right corner, the direction of electron flow for this opposite polarity bias. The 
direction of molecular motion is clearly current-polarity dependent, with molecules impeding 
each other and aggregating into clusters, thus resembling a traffic jam. 

 

 
Fig.  8.2 Current-polarity dependent migration of molecules. (a)-(d) STM topography 
images of the surface molecular configuration evolution after a series of positive-polarity 
source-drain current pulses (VSD = 0.5 V and ISD = 240	𝜇𝐴) were applied to the device. The 
duration of the current pulses are indicated in the top right corner of the images. (e)-(h) The 
surface molecular configuration evolution after a series of negative-polarity source-drain 
current pulses (VSD = -0.5 V and ISD = 240	𝜇𝐴) were applied to the device. Molecules can be 
seen moving towards opposite directions for positive-polarity current and negative-polarity 
current. In both cases the molecules are moving in the direction of electron flow. 

 
In order to study the electromigration of individual molecules isolated from the effects of 

other molecules, the surface molecule density was tuned to a lower value of ~2 × 10��	𝑐𝑚$< via 
the method described in chapter 4. This allowed identification of individual molecule trajectories 
via particle tracking software109 in STM images taken before and after the current pulse. To 
compare electromigration behavior for different values of VSD, 15 current pulsing and imaging 
cycles were applied to the device for each value of VSD, and an ensemble average molecular 
velocity was calculated over the duration of the electromigration current pulses from the 
resulting particle trajectories. Examples of molecular trajectories obtained after applying the 
electromigration pulse cycles are shown in Fig.  8.3. Fig.  8.3 (a) shows molecular trajectories 
after a series of source-drain current pulses where a negative source-drain voltage of VSD = -0.42 
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V,  ISD = 100 𝜇𝐴 was applied. On average, molecules are seen to drift to the top left corner, but 
the motion resembles a biased random walk. Fig.  8.3 (b) shows molecular trajectories after a 
series of source-drain current pulses with opposite polarity where the source-drain voltage used 
was VSD= 0.51 V, ISD = 120 𝜇𝐴. In this case molecules are observed to drift in the opposite 
direction, towards to bottom right. Similar behavior was seen for multiple graphene FET devices. 
 

 
Fig.  8.3 Molecular trajectories during electromigration. Molecular trajectories are shown 
for electromigration experiments performed under (a) VSD=-0.42V, ISD = 100 𝜇𝐴 and (b) 
VSD=0.51V, ISD = 120 𝜇𝐴. A current pulse of 60s was passed through the graphene device 
before each scan frame was taken. Molecules display current polarity-dependent motion in the 
direction of electron flow. 

 
Fig.  8.4 shows the average drift velocity and diffusion constant of all molecules within a 

single scan window as a function of VSD. The average displacement vector of all molecules in the 
scan window between every two consecutive scans is plotted as an arrow and connected head-to-
tail to indicate the average displacement of the molecules, as shown in Fig.  8.4 (a), (b). The 
average drift velocity is calculated by dividing the average molecular displacement by the 
duration of active current through the device (typically 60 s). For negative VSD, as shown in Fig.  
8.4 (a), the total length of the arrows increases as the magnitude of the applied source-drain 
voltage is increased, and the average direction of motion is towards the top left. For positive VSD, 
as shown in Fig.  8.4 (b), the total length of the arrows also increases as the magnitude of the 
applied source-drain voltage is increased, and the average direction of motion is towards the 
bottom right. All arrows are approximately collinear, indicating that the average molecular drift 
velocity is time-independent. Fig.  8.4 (c),(d) indicate that the magnitude of the average drift 
velocity increases exponentially with applied VSD. The diffusion constant of the molecular 
motion 𝐷 was obtained by subtracting the average drift from the molecular motion and then 
fitting the mean square displacement of the drift-corrected molecules using Eq. (6.1). 
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Fig.  8.4 Average drift velocity of molecules. (a)-(b) The average drift velocity of all 
molecules between two consecutive scans are plotted as an arrow and connected head-to-tail to 
indicate the average direction and magnitude of motion, for (a) negative VSD and (b) positive 
VSD applied to the device. (c)-(d) The average magnitude of the drift velocity is shown as a 
function of VSD for (c) negative VSD and (d) positive VSD. (e)-(f) The average diffusion 
constant is shown as a function of VSD for (e) negative VSD and (f) positive VSD. 

  
In order to correlate molecular motion with the local in-plane electric field, we mapped 

out the local electrochemical potential gradient using STP. Fig.  8.5 (a)-(d) show a series of STP 
measurements under applied VSD taken close to the area where electromigration of single 
molecules was measured. The in-plane electric field was extracted by fitting a plane to the 
potential maps for each VSD applied and determining the gradient. It was found that for positive 
VSD electrons move towards the bottom right of the scan frame, whereas for negative VSD, 
electrons move towards the top left of the scan frame, thus the molecules were found to move in 
the same direction as electrons. Fig.  8.5 (e) shows the magnitude of the fitted in-plane electric 
field as a function of VSD. The in-plane electric field is roughly linear to the applied VSD, as 
expected for a device with Ohmic contacts. The value of the in-plane electric field was found to 
be ~5	𝜇𝑉	𝑛𝑚$� for every 1 V of VSD applied.  
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Fig.  8.5 Scanning tunneling potentiometry measurement of the in-plane electric field. (a)-
(d) STP potential maps of the graphene device surface, taken at a location on the device near 
the location of the electromigration experiments. A VSD of (a) 2V, (b) 1V, (c) -2V, (d) -1V was 
applied to the device. For positive VSD, electrons move towards the bottom right, whereas for 
negative VSD, electrons move towards the top left. (e) Magnitude of the electric field as a 
function of VSD. 

 

8.4 Discussion 
To obtain the magnitude of the total electromigration force 𝐹Q�Q£', we make use of the 

Einstein relation 𝐷 = 𝜇𝑘Y𝑇, which relates the diffusion constant 𝐷 to the mobility of the 
molecules 𝜇 = 𝑣Ò/𝐹Q�Q£' and temperature 𝑇, where 𝑣Ò is the molecular drift velocity. The total 
force can then be found using 

 
 
 𝐹Q�Q£' ≡

𝑣Ò
𝜇 =

𝑘Y𝑇𝑣Ò
𝐷 	,	

(8.1) 

 
where 𝑘Y is the Boltzmann constant. For an applied VSD of -0.42V, the diffusion constant is 
found to be 0.096 𝑛𝑚<𝑠$� and the drift velocity is 0.025 𝑛𝑚	𝑠$�.  Under a temperature of 20K, 
the estimated total force on the molecule is found to be 0.07 pN. 
 The effective valence 𝑍∗ of the molecule, defined as the ratio between the total force and 
the applied electric field, can be calculated using 
 
 
 𝑍∗ ≡

𝐹Q�Q£'
𝑒𝐸 	.	 (8.2) 

 
Using an electric field of 𝐸 ≈ 2.1	𝜇𝑉	𝑛𝑚$� under VSD=-0.42V, we find that the effective 
valence of F4TCNQ is 𝑍∗ ≈ 200. Since the highest direct force the electric field can apply on a 
charged molecule is at most 𝑒𝐸, a 𝑍∗ of 200 suggests that the wind force is ~200 times stronger 
than the direct force. 
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 We now turn our attention to explaining the direction of the wind force. In a normal p-
doped semiconductor with parabolic bands, where the Fermi surface is near the Γ point, and all 
scattering is limited to the first Brillouin zone (a good approximation for slowly varying 
potentials), as illustrated in Fig.  8.6, the wind force can be calculated as a sum of scattering 
processes64,121 
 
 
 ⟨𝐅b⟩ = −cℏ(𝐤I − 𝐤)

2𝜋
ℏ
G𝑈G¿�¿G

<[1 − 𝑔(𝐤I)]𝑔(𝐤)𝛿(ℰ¿� 	− ℰ¿)		
¿,¿�

			,	 (8. 3) 

 
where 𝑈G is the screened adsorbate-graphene potential, 𝑔(𝐤) is the non-equilibrium distribution 
function as defined in ( 3.72 ), and the delta function 𝛿(ℰ¿� 	− ℰ¿) ensures elastic scattering. This 
expression has an intuitive interpretation: the wind force on the adsorbate is just the opposite of 
the momentum change ℏ(𝐤I − 𝐤) of the incoming electron. In this model electrons scattering off 
a potential in a crystal are similar to free electrons scattering off a potential in vacuum, in that the 
momentum change of electrons is equal to their change in crystal momentum ℏ(𝐤I − 𝐤). Since 
there are more left-going filled states and more empty right-going empty states, this model 
predicts that the force pushing on an adsorbate will be in the same direction as the electric field, 
hence a hole-wind emerges. 
 The scattering process in graphene is more complicated because large momentum 
transfers can occur if inter-cone scattering is allowed. For instance, a scattering event with a 
large momentum transfer is shown in Fig.  8.6. The scattering wavevector illustrated corresponds 
to a momentum transfer that now pushes the adsorbate in the opposite direction of the electric 
field. To calculate the total force, one must sum over all scattering processes for every 𝐤 and 𝐤I 
pair in reciprocal space, each scattering weighted by the matrix element G𝑈G¿�¿G

<
. If the adsorbate 

potential has large Fourier components on the order of 1/𝑎, where 𝑎 is the graphene lattice 
constant, the total wind force produced may redirect opposite the direction of the electric field, 
creating an electron-wind force in the direction of electron flow. Moreover, backscattering in 
graphene is suppressed between different valleys and pseudospins if the scattering potential does 
not break the sublattice symmetry. The direction of the final wind force obtained by summing 
over these factors is thus not immediately clear and can depend on details of the adsorbate 
potential. For an extended object like an organic molecule, the potential varies on the same scale 
as the graphene lattice and we thus expect substantial scattering amplitudes on the order of 1/𝑎. 
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Fig.  8.6 Schematic of electron scattering processes in a normal semiconductor and 
graphene. Electron scattering in a semiconductor and in graphene is visualized. For a normal 
semiconductor with scattering only in the first Brillouin zone, a hole-wind is predicted. For 
graphene, large scattering wavevectors can lead to the emergence of an electron-wind even in 
the hole-doped limit. 

  
In order to precisely calculate the total force on F4TCNQ molecules we performed a 

NEGF calculation for F4TCNQ-decorated graphene.120 The two-electrode DFT-NEGF 
calculation (performed by M. L. Cohen’s group) was set up over a finite unit cell in the x-
direction, as shown in Fig.  8.7 where a finite bias difference 𝑉 is applied between the left and 
right electrodes, and electrons flow towards to +x direction. Periodic boundary conditions were 
used in the y-direction. The electronic contribution to the force on the atom located at position 𝐑@ 
can be calculated using 

 
 
 𝐅@(𝑉) = 	−𝑇𝑟[𝜌�(𝑉)

𝜕𝐻è(𝑉)
𝜕𝐑@

	]		,	
(8. 4) 

 
where 𝐻è(𝑉) is the electronic Hamiltonian, and 𝜌�(𝑉) is the electronic density matrix element at 
finite bias 𝑉. The current-induced non-equilibrium atomic force is then 𝐅Üi¡,@(𝑉) = 𝐅@(𝑉) −
𝐅@(𝑉 = 0).69,70,122 By summing the force on all atoms in the molecule, the total electromigration 
force can be calculated. 
 
 
 

𝐅 ~(𝑉) = 	 c 𝐅Üi¡,@(𝑉)
@∈£ÒP�&Y£Qi

		.	 (8. 5) 



 98 

 

 
Fig.  8.7 Atomic structure used in the DFT-NEGF calculation. The atomic structure of an 
F4TCNQ molecule adsorbed on graphene is shown. The shaded regions indicate electrode 
regions. The chemical potential is raised by 𝑒𝑉/2 at the right electrode and lowered by −𝑒𝑉/2 
at the left electrode so that electrons flow towards the +x direction. Adapted from ref. 120. 

 
In the low-bias regime the wind force can be reduced to the form69,70 
 

 
 ⟨𝐅𝐖⟩ = −b𝛿𝜌(𝐫)∇𝐑�𝑣

'(𝐫) 𝑑𝐫 −cΔ𝜌�¿H𝜙�G∇𝐑�𝑣mP
Ü'(𝐫)|𝜙¿⟩

�¿

	,	 (8.6) 

 
where ∇𝐑�𝑣

'(𝐫) is the gradient of the local part of the DFT potential, ∇𝐑�𝑣mP
Ü'(𝐫) is the gradient of 

the non-local part of the pseudopotential, and |𝜙@⟩ is the pseudo-atomic orbital basis for electron 
wavefunctions. In order to gain some insight into the microscopic origin of the wind force, we 
can roughly divide the current-induced charge density 𝛿𝜌 into two components 𝛿𝜌 = 𝛿𝜌� + 𝛿𝜌<, 
where 𝛿𝜌� and 𝛿𝜌< represent the induced electron charge density residing in the graphene 
substrate and in the molecule, respectively. These induced charge densities are plotted in Fig.  
8.8. We note that 𝛿𝜌� (the induced electron density in graphene) piles up around the molecule on 
the upwind side of the electron flow (the -x side) and decreases on the downwind side of the 
electron flow (the +x side). This feature is known as the Landauer dipole, or the residual 
resistivity dipole, and is considered to be the fundamental source of resistivity at the microscopic 
scale. 𝛿𝜌<, on the other hand, can be thought of as a screening response of electrons within the 
molecule to the outside charge build-up 𝛿𝜌�. The local polarizability of the molecule causes this 
second dipole to form on the molecule opposite the direction of the Landauer dipole. The 
distribution of 𝛿𝜌< thus has a deficiency of electrons in the -x direction and a surplus of electrons 
in the +x direction, which produces a force in the +x direction on positively charged ions at the 
center of 𝛿𝜌<. This means that the molecule experiences a force pointing in the direction of 
electron flow (an electron wind force). 

We find that the wind force dominates the direct force by 1 to 2 orders of magnitude. 
However, comparison of the calculated wind force magnitude to experiment is only approximate. 
For a current density of ~3	𝐴/𝑚 (estimated from a total current of 100 𝜇𝐴 over the device width 
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of 30 𝜇𝑚), the calculated total force is ~1.6	𝑝𝑁. This is roughly an order of magnitude larger 
than the experimentally estimated force of 0.07 𝑝𝑁. It is possible that this discrepancy stems 
from inaccurate estimation of the graphene current density since electrons are assumed to travel 
ballistically in the NEGF calculation. In reality the graphene conductivity is influenced by 
scattering with defects in the device substrate, which likely decreases the total force due to 
decreased current density. 
 

 
Fig.  8.8 Calculated charge distribution obtained from NEGF. The integrated 
nonequilibrium electron charge density distribution is plotted (a) within a ±1.5 Å range from 
the molecular plane for 𝛿𝜌< (top view), and (b) within a ±1.5 Å range from the graphene plane 
for 𝛿𝜌� (top view), and (c) along the length of the molecule (side view). Red represents excess 
electron density and blue represents electron density deficiency. In the graphene layer 
electrons can be seen piling up on the upwind side of electron flow with a deficiency on the 
downwind side. This corresponds to the Landauer dipole. The electron density on the molecule 
itself has opposite polarity to the Landauer dipole and induces an electron wind force towards 
+x for the positively charged ion cores. Here the charge density has been smeared with a 
Gaussian function with standard deviation = 0.15 Å to emphasize the polarization. Calculations 
performed by Y. W. Choi. 
 

 
8.5 Conclusion 

In conclusion, we have demonstrated the ability to simultaneously control and image 
electromigration of single molecules on a graphene FET by delivering source-drain current 
pulses to the device and using a STM to image the resulting molecular motion. The direction of 
molecular motion is consistent with an electron-wind force, even though the graphene charge 
carriers are holes under experimental conditions. Graphene band structure effects and strong 
inter-cone scattering induced by the molecule potential explain the direction of momentum 
transfer to the molecules. NEGF was used to visualize the nonequilibrium charge distribution 
around the molecule, which also confirms the direction of the experimentally observed 
electromigration. Lastly, the magnitude of the electromigration force was estimated by 
evaluating the Einstein relation with the observed average electromigration velocity and 
diffusion constant. 
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9 Conclusion 
To conclude, I have presented several different ways of controlling molecular motion at 

the atomic scale, including tuning the density of molecular adsorbates through Fermi level 
pinning, tuning the molecular phase by controlling the charge state of the molecules, tuning the 
diffusion barrier through electrostatic gating, and using in-plane current to drive electromigration 
of molecules. The techniques for controlling molecules demonstrated in this dissertation are not 
only generally reversible, but also drive device-scale changes of the surface molecular 
distribution, enabling us to directly correlate local images of the surface obtained by STM to 
global changes in device properties (such as conductivity). It was found that the ability to change 
the charge state of adsorbed molecules is a useful tool for exerting molecular control because it 
changes the inter-molecular Coulomb interaction and can lead to dramatic changes in the surface 
molecular distribution. Force and momentum were also found to transfer non-trivially for a 
molecular scatterer experiencing electromigration in graphene, where the direction of the 
electromigration force can depend on the specific molecular potential. The collection of 
techniques for molecular control presented in this dissertation will hopefully one day become 
useful tools for assembling and operating nanoscale machines. 
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Appendix A: Capacitive navigation in STM 
Due to the relatively small size of typical exfoliated graphene/hBN devices (~30 

microns), special techniques are needed to navigate the STM tip onto conductive areas of the 
device. One method used to achieve this goal is measuring the capacitive pickup current between 
the tip and graphene sample.123 By sweeping the tip with the coarse motors across a wide range 
over the graphene sample, the edges of the graphene can be detected as sharp transitions in the 
capacitive pickup current. However, due to the presence of the conductive back gate (Si layer), 
the background capacitance is usually large compared to the small change in capacitance as the 
tip is swept across the conductive regions of the device. To achieve good contrast, therefore, 
good background compensation is needed. Practically, one can use the back gate to compensate 
for the background capacitive current in a typical circuit as shown in Fig. A1. In Fig. A1, the tip-
sample, sample-gate, and tip-gate capacitances are represented as Ct-s, Cs-g, and Ct-g. The AC 
current flowing between tip and sample 𝐼¡Q$P can be expressed as 

 
 𝐼¡Q$P = 𝑖𝜔𝐶Q$P𝑉£�	,	 (A.1) 

 
where 𝑉£�	is the oscillation voltage applied to the sample. The AC current flowing between the tip 
and gate can be expressed as 
 
 𝐼¡Q$× = 𝑖𝜔𝐶Q$×𝑉£Æ , (A.2) 

 
where 𝑉£Æ	is the oscillation voltage applied to the gate. To obtain minimum background 
capacitive current, one needs to have these two currents cancel each other, such that  𝐼¡Q$P +
𝐼¡Q$× = 0. To achieve this, one can invert the signal 𝑉£� (with 180° phase shift) and apply it to the 
gate while adjusting the signal amplitude with a variable resistor 𝑅�£& such that 
𝐶Q$×𝑉£Æ = −𝐶Q$P𝑉£�. Deviations from zero current is then amplified by the STM current preamp 
and sent to the lock-in for measurement. 
 

 
Fig. A1. Capacitive pickup current measurement setup. Ct-s denotes the capacitance 
between tip and sample, Cs-g denotes the capacitance between sample and back gate, Ct-g 
denotes the capacitance between tip and back gate. 
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Fig. A2 (a) shows an SEM image of a typical graphene/hBN FET device contacted by 
Cr/Au pads. A map of the conductive regions on the device produced by capacitive pickup 
current scanning is shown in Fig. A2(b). The contour of the graphene, as well as the metal 
contacts is clearly visible due to a sharp change in tip-sample capacitance as the tip is scanned 
across from conductive regions to non-conductive regions. Using this method, the STM tip can 
be safely and reliably navigated onto the graphene device with micron precision. 

 
Fig. A2. Graphene device imaged by SEM and capacitive pickup (a) SEM image of a 
graphene/hBN FET and (b) a map of conductive regions on the device produced by capacitive 
pickup current scanning. The darker regions correspond to conductive areas consisting of the 
graphene sheet and two Au electrodes. 
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Appendix B: Fitting the Dirac Point Energy 

from STS 
In order to obtain the experimental graphene Dirac point energy (ED), we perform a fit on 

the scanning tunneling spectroscopy (STS) dI/dV data. The Dirac point causes a dip in the dI/dV 
spectra, but finding its precise energy is complicated by a well-known phonon gap feature that 
occurs in graphene STS and which appears in all of our calibrated dI/dV spectra (this gap-like 
feature is caused by phonon-assisted inelastic tunneling89). The phonon gap feature has been 
shown to span the energy range -65 meV < E < 65 meV and thus offsets spectral features away 
from the Fermi level by 65 meV.89,124 Consequently, obtaining the true value of ED requires that 
this inelastic offset be taken into account. For ease of fitting, the phonon gap feature can be 
removed via a simple mathematical algorithm whereby we “cut out” the phonon gap and stitch 
together the data outside of the phonon gap region by joining the two resulting curves (i.e., the 
positive and negative bias branches of the dI/dV spectrum) at the Fermi level and then perform a 
fit on the collapsed data. Due to finite broadening of the phonon gap feature,124 we stitch together 
the dI/dV branches starting at ±100 meV to eliminate the phonon gap feature entirely. After 
finding the energy of the Dirac-point-induced minimum in dI/dV from our fit, we then shift this 
energy by the known value of the phonon gap (65 meV) to obtain the correct ED value. The 
following protocol describes this fitting procedure in detail: 

1. We first collapse the dI/dV spectrum by stitching together the dI/dV branches having 
|𝑉Y| > 	100 meV at zero energy such that the new values of energy are assigned as                                      
𝑉Y
′ = 𝑉Y − 𝑠𝑔𝑛(𝑉Y) × 100 meV.  

 
2. We then find the Dirac-point-induced dip in the collapsed dI/dV spectrum about the 

minimum by using a Gaussian function: 𝑦(𝑉YI) = −𝑎𝑒$
¹¥¦
� W¦º

t

§ + 𝑑.  
 
 

3. We reverse the collapsing process of step 1 by adding back 100 meV to the fitted value of 
the parameter 𝑏 by using 𝛽 = 𝑏 + 𝑠𝑔𝑛(𝑏) × 100 meV. 
 

4. To account for the phonon gap energy, we then subtract the known energy of 65 meV to 
obtain the final value of ED: 𝐸È = 𝛽 − 𝑠𝑔𝑛(𝑏) × 65 meV. 
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