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1 Introduction

Convential time- and frequency- domain analysis have met with enormous
success in modern science and engineering. However, the scientific commu-
nity is becoming increasingly aware that signals found in nature often exhibit
complex, sometimes self-similar, even fractal characteristics. Wavelets are a
broad class of new tools developed with the specific intent of being better
able to analyse these properties of real signals.

2 Background

2.1 The Fourier Transform

In the early 1800’s, Joseph Fourier discovered that nearly any function can
be expressed as a (possibly infinite) sum of sines and cosines, or, equivalently,
complex exponentials (equivalent because of Euler’s identity: ejωt = j sinω+
cosω, where j =

√
−1).

A function f(t) is traditionally represented by defining its value for each
value of t in the domain of the function. In the terms of Linear Algebra, we
can say that the function is represented as a linear combination (a weighted
sum) of delta functions. The discrete-time (Krönecker) delta function is
defined as follows:

δ(x) =

{

1 if x = 0,
0 if x 6= 0.

(1)

Thus, for instance, we might define a simple sampled function imple-
menting the mapping {0, 1, 2, 3} 7−→ {2, 7, 1, 8} as a linear combination of
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delta functions:

f(x) = 2 · δ(x − 0) + 7 · δ(x− 1) + 1 · δ(x− 2) + 8 · δ(x− 3) + · · · (2)

The Fourier Transform allows us to find a new representation for the
function, given by the coefficients of complex exponentials of integer multi-
ples of some fundamental frequency. In other words, the Fourier Transform
is simply a change of basis from the basis of delta functions {δ(x)} to the
basis of complex sinusoids {ejωn}. The basis of delta functions is usually
called the time (or space) domain, while the basis of complex exponentials
is called the frequency domain. The continuous-time transform to the fre-
quency domain is:

f(ω) = F{f(t)} =

∫

∞

−∞

f(t)e−jωtdt (3)

To continue our example, we can use the Discrete Fourier Transform
(not shown) to transform from the basis of delta functions to the basis of
complex sinusoids. The resulting linear combination implements the same
function, just via a different representation:

f(x) =
9

2
· e0·jπn/2 +

1 + j

4
· e1·jπn/2 + (−3) · e2·jπn/2 +

1− j

4
· e3·jπn/2 (4)

The frequency domain has one serious shortcoming, however: it has
no time resolution. True, the frequency domain will tell us exactly what
frequency components are present in a signal, but it tells us nothing about
the locality of those frequency components in time. For practical purposes,
the Fourier Transform is only useful on steady-state, or “stationary” signals.

2.2 A Bit of Progress: The Windowed Fourier Transform

The basis functions of the frequency domain extend in time from negative
infinity to positive infinity, oscillating forever in both directions. We say that
these functions have “global extent”. In an attempt to add some locality of
time to the Fourier Transform, we can choose a new basis, one of sines and
cosines modulated by the Gaussian.

We now have a transform that takes a one-dimensional function and
returns a two dimensional function: time on one axis, frequency on the
other. This allows us to construct “spectrograms”, showing the relative
frequency content of a signal versus time.
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While this can be extremely useful, it too has a serious shortcoming:
the uncertainty principle. There is a fundamental trade-off between locality
in the frequency domain and locality in the time domain. As we gain one,
we lose the other. For instance, the frequency content localized at a single
point in a function is completely meaningless.

3 The Wavelet Transform

The Wavelet transform was inspired by the idea that we could vary the
scale of the basis functions instead of their frequency: a subtle yet powerful
modification. In the words of Amara Graps, “The fundamental idea behind
wavelets is to analyze according to scale.” [1] Instead of representing a
function as a sum of weighted delta functions (as in the time domain), or as
a sum of weighted sinusoids (as in the frequency domain), we represent the
function as a sum of time-shifted (translated) and scaled (dilated) represen-
tations of some arbitrary function, which as we shall see is called a wavelet.
The power of this idea is that it examines the structure of information on
all scales. The wavelet transform first compares the entire function to the
wavelet, then compares smaller pieces of the function to the wavelet. This
process is completed on successively smaller and smaller scales. This pro-
cess forms a representation of the original function as a sum of wavelets of
various scales and positions in time, acheiving a balance between locality in
time and locality in frequency/scale.

In figure 1, it can be seen that when the frequency of the windowed
fourier transform basis function is varied, the width of the pulse remains
the same. When the frequency of the wavelet transform basis function is
changed, however, the width of the wavelet also changes. For higher fre-
quency wavelets, a narrower envelope results. This allows wavelet analysis
to look at different frequency components on different time scales.

We will first discuss the selection of a wavelet ψ(t) and then we shall
introduce the continuous and discrete wavelet transforms.

3.1 Wavelets

The Wavelet transform introduces a degree of freedom not present in time
or frequency domain analysis: we get to choose the wavelet that we’re going
to use in the analysis.

What qualities would we like to see in a wavelet? It turns out that
there are some properties a wavelet must have, and others that are very
desirable. The must-have properties are grouped together in what is called
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Figure 1: A comparison of the Windowed Fourier Transform (left) and
Wavelet Transform (right) basis functions.

the admissibility criteria. The primary requirement is that the integral of
the wavelet over all t be zero; it must spend equal time above and below the
axis:

∫

∞

−∞

ψ(t)dt = 0 (5)

Furthermore, to be useful, a wavelet must have local extent. In other
words, it must be localized in time (or space); it must be nonzero only for a
finite interval. Furthermore, we prefer wavelet bases that are orthonormal.
Two vectors are orthogonal if the projection of one on the other has zero
length; a set of vectors is orthonormal if all pairs of vectors in the set are
orthogonal and all vectors in the set are normal, eg, have length 1. Intu-
itively, if the basis functions are orthogonal, then the coefficients needed to
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represent a linear combination will all represent independent information.
With an orthonormal wavelet basis, it is possible that more information will
be compressed into fewer coefficients.

The first wavelet with these properties was discovered (or invented, de-
pending on your weltanschauung) in 1910 by Alfred Haar [2], a Hungarian
mathematician. The Haar wavelet is very simple; it just just a step function.
Nonetheless it forms an orthonormal wavelet basis, and due to its simplic-
ity and place in history it has also become the canonical example used in
introducing wavelets.

ψ(x) =











1 for 0 ≤ x < 1

2

−1 for 1

2
≤ x < 1

0 otherwise
(6)

The Haar wavelet is simple, but it is not ideal. It produces a basis set
of predominantly flat functions, large numbers of which are required in lin-
ear superposition to approximate a non-flat function. A better, smoother
wavelet is needed. Yet, we would like to preserve the orthonormality of the
wavelet basis. We need a mother wavelet that is localized in time and in fre-
quency, is reasonably smooth, and ideally produces orthonormal translations
and dilations.

Only recently was such a wavelet found, by Ingrid Daubechies, now a
professor at Princeton, in 1988 at AT&T Bell Laboratories. This function is
now known as the Daubechies Wavelet after its discoverer and has become
the canonical “real” wavelet.

To understand the Daubechies wavelet, we must first introduce the scal-

ing equation. The scaling equation is a recursive expression that is used
to generate wavelets, so in some sense it is a “grandmother wavelet”. In
the emphatic words of Gilbert Strang, “All good wavelet calculations use

recursion.” The scaling equation is given as [3]:

φj(t) =
∑

ckφj−1(2x− k) (7)

To use the scaling equation to generate a mother wavelet, we must specify
several parameters. First, we must specify the the base case of the recursion,
the function φ0(t). Second, we must specify coefficients {c0, c1, · · · , cN}. For
φ0 we use the box function, which is zero everywhere except the interval
[0, 1]:

φ0(t) =

{

1 for 0 ≤ x ≤ 1
0 otherwise

(8)
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The summation is over k: one term in the sum for each of the coefficients.
It remains to specify what these “magic” coefficients are. The special values
found by Daubechies in 1998 are [3]:

{

c0 =
1

4
(1 +

√
3), c1 =

1

4
(3 +

√
3), c2 =

1

4
(3−

√
3), c3 =

1

4
(1−

√
3)

}

(9)

Plugging these coefficients into the scaling equation and iterating, we
get the Daubechies Wavlet (the Daubechies Wavlet is actually a class of
wavelets; this is the member that is generated from four coefficients.). It
should not come as a suprise that the Daubechies Wavelet, generated in this
way, has fractal properties! Fractals arise in systems involving iteration or
recursion, and the generation of the Daubechies Wavelet very much follows
the recipe for generating fractals. In fact, the Daubechies Wavlet has an
amazing property of self similarity: it actually contains a scaled down version
of itself! And this scaled down version in turn contains a scaled down version,
ad infinitim. [4]

It is very easy to write a short computer program to demonstrate this,
as we did. The source code is attached in the appendics.
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Figure 2: T
¯
he Daubechies-4 wavelet. On the left, the complete Daubechies

wavelet is shown. The self-similarity of this wavelet is easily seen when
looking more closely at the region between 2.4 and 3.0, as shown on the
right.

When choosing a wavelet to use, it is advantageous to use a wavelet
that resembles the signal to be analyzed. If such a wavelet is chosen, the
signal can be represented using significantly fewer coefficients than if a non-
similar wavelet were used. In addition, choosing a wavelet that possesses
self-similarity is also useful.

6



3.2 The Continuous Wavelet Transform

To use the Continuous Wavelet Transform (CWT), we first select a “mother
wavelet” function, ψ(t). This could be the Haar wavelet, the Daubechies
wavelet, or any other wavelet. We then form the vector projections of the
function under analysis f(t) with dilations and translations of the mother
wavelet:

W{x(t)} =

∫

∞

−∞

f(t)ψµ
ν (t)dt ∀ν, µ (10)

where ψµ
ν represents a specific dilation (µ) and translation (ν) of the

mother wavelet, ψ(t):

ψµ
ν (t) =

√
µψ

(

t− ν

µ

)

(11)

Although the continuous wavelet transform is very useful for theoretical
purposes, in practice most signals are sampled, forming discrete data series.
For these series we must use the Discrete Wavelet Transform.

3.3 The Discrete Wavelet Transform

The result of the Continuous Wavelet Transform of a one-dimensional signal
(say, a time series for example) is a two-dimensional signal, with independent
axes of scale, and of time. Thus the CWT has introduced redundancy into
the representation of the signal. In the discrete case, the mother wavelet
is only scaled and dilated in discrete steps. “Dyadic” scalings are usually
chosen: one translation on the largest scale, two translations on a scale half
as large, four translations on a scale one quarter as large, etc. Thus the
translation and dilation parameters in the wavelet transform become:

{

µ = 2−m

ν = n2−m (12)

For a data series of lengthN = N02
M samples, the transform is evaluated

for the following scales and translations:

{

m = 1, 2, ...,M
n = 0, 1, ..., N02

m−1 − 1
(13)

Notice that m chooses the scale (dilation) of the wavelet, and n chooses
the location (translation) of the wavelet. The value m = 1 corresponds to
the largest, most general scale, corresponding to the general shape of f(t)
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over all t. Thus, we only have to evaluate one translation of the wavelet. For
m = 2, we’ve halved the scale of our analysis, so it is necessary to evalue two
translations. Hopefully this conveys an intuitive view of the dyadic scaling.

Using these relationships, we can form a set of orthogonal basis functions
from the mother wavelet ψ(t) and the relationships given above as:

ψm
n (t) = 2m/2ψ(2mt− n) (14)

We then perform the wavelet transform as given in the continuous case,
but with the integral reduced to a summation over a finite number of
terms [5].

4 Applications of Wavelet Analysis

Wavelet Analysis has found applications in numerous fields.
Perhaps the most widespread use of Wavelets is in data compression in

general and in image compression in particular. The poster child of this
application cannot be anything other than the FBI fingerprint database,
and the success of Wavelet analysis can also be seen in its adoption as
the compression technology to be used in the upcoming JPEG-2000 image
compression standard. We will discuss image compression in some detail,
and then summarize other applications of Wavelet technology.

4.1 Image Compression

The wavelet representation is extremely well suited for image compression
because it does not require the image to be broken down into sub-blocks
for processing. Furthermore, with Wavelet compression, an image can be
transmitted as a data stream allowing progressive display of an image. The
first coefficients contain information about the image on the broadest scale;
successive coefficients contain information about successively finer details.
A user will have a good idea of what an image looks like after only a few
coefficeints have been received, and may stop the transmission at any time.

In Wavelet-based image compression, the source image is first trans-
formed to the Wavelet domain using the Discrete Wavelet Transform. The
source is already of finite size, discretely sampled (into pixels), and quan-
tized into a discrete set of colors (say, 256 levels of gray, red, green, or blue).
Thus, the transformation into the wavelet domain is only a change-of-basis;
no information is gained nor lost, and the resulting data takes up exactly
the same amount of space. We now quantize the data. To each wavelet
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coefficient, we allocate a number of bits proportional to that coefficient’s
importance in reconstruction. Low valued coefficients, by definition, con-
tribute little to the reconstructed image. It is in this quantization step that
some information is lost. Finally, the resulting quantized, Wavelet-domain
representation of the image is compressed using conventional, loss-less tech-
niques, usually Huffman compression. The wavelet transform reärranges
the information in an image so that the variations on differing scales are
grouped together. Usually the high-numbered coefficients, corresponding to
variation on the smallest scales, are very small: very often zero. Conven-
tional compression is highly effective in compressing these regions of little
variation. [6]

4.2 FBI Fingerprint Database

The American FBI has been collecting fingerprint cards since 1924 and in
this time has accumulated more than 200 million cards. The FBI digitizes
these cards for electronic storage, at a resolution of 500 dots per inch with
256 levels of gray. A single fingerprint card results in about 10 megabytes of
data; thus the entire collection would require 3000 terabytes, a truly huge
amount of data. Furthermore, about 40,000 new cards are now being added
per day. Add to this the needs to search for and retrieve cards from the
database on a daily basis, and it’s clear there’s a problem.

The FBI investigated the use of JPEG as a compressed image format
for fingerprint data, but after some consultations with their friends at the
UK Home Office Police Research Group, the conclusion was reached that
JPEG, and even custom JPEG variants, are unsuitable for compression
of fingerprints at ratios greater than about 10:1. The blocking artifacts
produced by JPEG at high levels of compression inhibited the interpretation
of fingerprint data.

Eventually the FBI settled on a Wavelet based compression scheme de-
veloped at Los Alamos National Laboratory, called Wavelet Scalar Quanti-
zation. WSQ is a fairly typical wavelet image compression algorithm and has
proven to be enormously successful in storing fingerprint information. With
the adoption of WSQ by the FBI as a standard data format for fingerprint
information, it has become a de-facto standard worldwide as well. [7] [1] [8]

4.3 JPEG 2000

With the upcoming JPEG 2000 standard set to use wavelets as the founda-
tion of its image compression mechanism, wavelets will soon enter the homes
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of millions of people worldwide.
JPEG 2000 will offer many improvements over the current generation of

JPEG compression. It will offer both lossy and lossless compression. It will
fully exploit the desirable properties of the wavelet domain. Users will be
able to view images at different resolutions corresponding to their needs and
capabilities. If only a preview of an image is needed, the wavelet datastream
can be terminated very early, but when a higher quality image is needed,
more of the wavelet datastream can be decoded. [9]

4.4 Audio Compression

It will be interesting to see what fields Wavelet Analysis shall next infiltrate.
MP3, a Fourier-based audio compression technology, coupled with relatively
wide access to high-bandwidth internet connectivity, is poised to cause a
complete reorganization of the music industry as well as American copyright
law. Could wavelets be applied to audio for even greater compression or less
degradation in quality?

Unfortunately one of the qualities that makes Wavelets so incredibly well
suited for image compression is a drawback when audio compression is con-
sidered. When we view images, we take in the entire image at once. First
we perceive general features of the image, and then we look at the finer
details. The wavelet transform allows images to be displayed progressively
in a way very suited to the human visual system. The more coefficients are
received, the higher the quality of the resulting image. Audio, on the other
hand, the human brain processes linearly. When listening to a song, we do
not comprehend the entire song in its entirety all at once; we comprehend
the song moment-by-moment, and how it develops over time is important.
Thus the wavelet approach – where the “general idea” of the song would
be available first, followed by the details, would not be appropriate for pro-
gressive, real-time transmission of audio, for example over the internet. We
would have to wait for a sufficient number of coefficentsto be received before
starting playback.

This practical detail aside, we speculate that audio is well suited to
wavelet compression. Music traditionally exhibits a high degree of self-
similarity, and, moreover, self-similarity on a multitude of scales. These
features are exactly those that the wavelet transform exploits, so it would
be interesting to examine the application of wavelet analysis to audio in
another project at another time.
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4.5 Other Applications

Wavelet analysis has permeated nearly every region of modern science. In
any field where data needs to be analyzed, wavelet analysis is often able
to give insights that more traditional data analysis techniques cannot pro-
vide. In the field of astronomy and cosmology, wavelet analysis is useful
in analyzing stellar and solar data and has provided information about the
sun and other stellar processes that methods such as Fourier analysis have
not been able to provide. Wavelet analysis is also used in these fields to
compress telescopic image data (such as that from the Hubble Space Tele-
scope). Wavelet analysis is also useful in analyzing seismic data. Algorithms
are needed to determine when an earthquake begins and to study various
properties of the motion. Wavelet analysis is a natural candidate to analyze
such data. Wavelet analysis has also provided new insights in the study
of turbulence. Wavelets are also used extensively in computer graphics to
perform edge-detection, texture analysis, and denoising of image data. [10]

Wavelet analysis has also been incorporated into so-called “Fractal Mod-
ulation”, a new scheme for modulating data for transmission over a wire.
Officially known as DWMT, or Discrete Wavelet Multi-Tone Modulation,
and developed by Aware, Inc., this technology is one of several being inves-
tigated for use in next-generation Digital Subscriber Line technology. Digital
Subscriber Line (DSL) is a means of sending and receiving high-speed dig-
ital data to and from residences over the same copper wires that are used
for regular telephone service – indeed, the system operates simultaneously

with regular telephone service. With greater and greater needs for high-
bandwidth internet connectivity at home, being able to squeeze every last
bit per second out of existing infrastructure is also increasing in importance,
and Wavelets may have a significant influence in this field. [11]

One reason that wavelet analysis is so useful in such a wide range of
physical applications is that physical signals usually have different frequency
components on different spatial scales. There are usually very short, high
frequency signals mixed with longer, low frequency signals. Wavelet analysis
lends itself perfectly to such signals because of its ability to look at different
spatial regions using different scales.
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5 An Experiment In Image Compression

5.1 Motivation

There is a vast amount of literature available on the subject of wavelets, how-
ever most consists of mathematical text with little information on practical
application of wavelet technology. Outrageous claims are made regarding
the capabilities of wavelet-based techniques, yet it is difficult to find ele-
gant, compelling examples of the success of wavelet analysis.

We set out to verify whether or not wavelets could do everything they
promised, specifically in the area of image compression.

5.2 Procedure

We first selected a test image. We could not resist the temptation to use
the professor’s portrait as it appears on his webpage, instead of a more tra-
ditional IEEE test image of some sort. We first converted this image from
JPEG format to the much-simpler Portable Greymap (PGM) image file for-
mat, which is essentially a list of pixel values in plain, human-readable text.
To do this we used a free software program developed at UC Berkeley’s
eXperimental Computing Facility (the XCF), the GNU Image Manipula-
tion Program (more affectionately known as The GIMP). The next step was
to implement the two-dimensional Discrete Wavelet Transform. We were
pleased to find an implementation available in the popular reference, Nu-

merical Recipes In C [12]. We wrote a C program that reads in the PGM
format image of the professor into a row-major linear array. Next, we use
the Numerical Recipes routines to compute the discrete wavelet transform
along two dimensions. Now, we make a copy of the resulting array, and we
use the C standard library routine qsort() to sort it. This allows us to find
the value of the nth highest coefficient. We then set to zero some percent-
age of the lowest-valued coefficients. Finally, we take the inverse discrete
wavelet transform resulting in a regular image once again. The program
outputs the pixel values of the image to a file, which we then load in Matlab
and compare to the original. To summarize, the procedure is as follows:

1. Load the source image data from a file into an array

2. Compute the Discrete Wavelet Transform of the data

3. Remove (set to zero) all coefficients whose value is below a threshold.
(This is the compression step.)
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4. Reconstruct the image by computing the Inverse Discrete Wavelet
Transform

5. Compare the resulting reconstruction of the compressed image to the
original image

The C source code to this software is listed in the appendix.

5.3 Results

Figure 3: Various levels of wavelet compression. Picture a) shows the orig-
inal image. Picture b) has had 45% of the wavelet coefficients removed.
Picture c) has had 95% removed. Picture d) has had 98% removed. Pic-
ture e) has had 99% removed. Picture f) has had 99.9% of the coefficients
removed.

For comparison purposes, we compressed the original image using JPEG,
selecting a very high compression ratio. JPEG is the current de-facto stan-
dard for compressing photorealistic images (as opposed to diagrams and line
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drawings) for distribution over the internet. The resulting image, at an ap-
proximate compression ratio of 10:1, appears very “blocky”. JPEG operates
by first separating an image into 8x8 pixel blocks and then performing the
discrete cosine transformation (DCT), a form of the Fourier transform, on
each 8x8 pixel block. The resulting coefficients are truncated and stored in
the resulting JPEG file. For higher compression ratios, fewer coefficients are
stored, and/or the coefficients are stored at a lower numeric precision. In
the limiting case where only one coefficient is stored, the only information
that is available is the average value of the pixels in each block; each 8x8
pixel block assumes this color, hence the “blocky” look to the image.

Figure 4: A comparison of images using 10:1 JPEG compression (left) and
approximately 100:1 wavelet compression using the Daubechies-4 wavelet
(right).

On the other hand, the wavelet transform operates on the entire image at
once, so there are never any block-like artifacts. We were astounded to find
that we could remove (set to zero) 98% of the wavelet coefficients and still be
able to reconstruct a decent-looking image. This translates to a compression
ratio of nearly 100:1, with visual quality far better than JPEG compression
at a ratio of only 10:1. The results using various wavelet compression ratios
can be seen in figure 3.

Another interesting comparison is the location of error in the JPEG and
wavelet compressed images. In images compressed using JPEG, the error
usually is most visually apparent in areas of high spatial frequencies. In
contrast, the wavelet compressed image tends to smooth out those areas
of an image that are lacking details, or are already smooth. As can be
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seen in figure 3, even with a compression ratio of approximately 100:1, high
resolution regions can still be seen, such as the areas around the glasses,
mouth, necktie, and hair, while lower frequency regions, such as the suit
and other facial regions have been smoothed out. This mix of sharp and
smooth regions demonstrates how the wavelet transform is able to analyze
different spatial regions using different scales.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"error"

Figure 5: Mean square error as a function of wavelet coefficients removed.

A plot of the mean square error as a function of the percentage of wavelet
coefficients removed can be seen in figure 5. Very little error is introduced
in removing wavelet coefficients until a certain point is reached, in this case
when around 70% of the coefficients are removed, at which time the increase
in error becomes exponential. The shape of this curve supports the qualita-
tive claim that a large number of wavelet coefficients can be removed while
still rendering an accurate image.

We were interested to find that in the wavelet domain, the vast majority
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of coefficients are very small. Indeed, the highest coefficient in our test case
exceeded the lowest coefficient by five orders of magnitude!
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6 Conclusion

Wavelet analysis is able to transform a time- or space- domain signal to
a new basis, the wavelet domain, that takes advantage of the character of
real signals. Most real-life data cannot be concisely modeled using only
time series or fourier series, but the wavelet transform has been remarkably
successful in exploiting the fractal characteristics of these signals. Because
of this, wavelet-based compression is phenominally effective, and as time
goes on will become more and more pervasive. Furthermore, knowledge
gained through wavelet analysis in diverse fields may lead to significant new
knowledge of the world. Wavelet theory is maturing rapidly and is becoming
more and more widely known. This will likely lead to even more applications
of wavelet analysis in years to come.
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