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Abstract—Autonomous vehicles research is currently one of 
the most prominent areas of research within the fields of deep 
learning and computer vision. Many companies around the world 
that are involved in the automotive industry have joined the race 
to achieve full, level five autonomy. This project seeks to address 
this issue by creating and training a convolutional neural 
network (CNN) using three simulated front-facing RGB cameras 
paired with human-input steering commands. Once trained, this 
system is able to map raw pixel data from a single front-facing 
RGB camera directly to steering commands. Nvidia’s 
autonomous vehicles research was used as a starting point for 
designing the CNN, and Udacity’s self-driving car simulator was 
used to collect driving data and evaluate the model’s 
performance. This method proved to be surpisingly effective, 
even with very limited training data. After some data 
preprocessing and hyperparameter tuning, the model was able to 
drive around Udacity’s “Lake” simulated driving course without 
crashing or leaving the track. With additional research, this and 
similar endeavors will help to realize fully-autonomous, 
driverless vehicles. 

I. INTRODUCTION 
The need for reliable and safe self-driving systems for 

autonomous driving is reflected in the emergence of self-
driving AI endeavors. Uber, Lyft, Waymo, Tesla, MobilEye, 
Ford and many other companies have invested millions into 
self-driving car research in order to compete with one another 
in the race for a technology that will revolutionize 
transportation. A self-driving system with level five autonomy 
will enable humans to live more productively, increase the 
efficacy of any industry that is involved with the use of 
automotive transportation, and decrease the number of 
accidents, automobile related deaths, and general costs of 
automotive operation. 

Many organizations have implemented their own versions 
of self-driving artificial intelligence. Most major automobile 
companies have their own R&D teams working on autonomous 
vehicles research, and this emerging technology will be 
unavoidably pertinent in the future. While much progress has 
been made, most developments are protected under the 
confidentiality of patents and intellectual property. As of now, 
no entity has been able to successfully implement level five 
automation. 

One of the issues facing autonomous vehicles research is 
that training often relies on very large datasets and long 
training times to converge. This makes conducting research in 
this field inaccessible to anyone who does not have access to 
extensive datasets and computational power. This project seeks 

to explore this issue by attempting to train a one-car model 
with a very limited dataset to perform road following within a 
driving simulator. 

1. The five levels of autonomous driving. 

II. DISCUSSION OF RELATED WORK 
A 2016 study by the Nvidia Corporation trained a CNN to 

map raw pixels from a single front-facing camera directly to 
steering commands [1]. Using minimum training data from a 
variety of road, lighting, and weather conditions, the system 
learned to drive in traffic on local roads with or without lane 
markers, on highways, and in areas with unclear visual 
guidance such as parking lots and unpaved roads. 

This system automatically learned internal representations 
of all processing steps, such as detecting the important features 
of the road, with only human steering angles as training signal. 
It was able to optimize all processing steps simultaneously, 
without explicit decomposition of the problem. 

Nvidia’s research empirically demonstrated that CNNs are 
able to learn the entire task of lane and road following without 
manual decomposition into road or lane marking detection, 
semantic abstraction, path planning, and control. A small 
amount of training data from 72 hours of human driving was 
sufficient to train the car to operate in diverse conditions; such 
as on highways, local roads, and residential roads; and in 
sunny, cloudy, and rainy conditions. The CNN was also able to 
learn meaningful road features from a very sparse training 
signal of steering alone. 
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2. Nvidia’s system for training the neural network. 

III. METHODS 

A. Tools and Dataset 
The project was written in Python, using the Keras 

framework with Tensorflow back-end. The dataset was 
generated using Udacity’s self-driving car simulator. The 
simulator allows users to record human input in the form of 
keystroke logging (“keylogging”, the steering controls based 
on arrow keys and the duration of presses), in addition to 
frame-by-frame image data from three front-facing RGB 
cameras. 

The car was driven four times around the “Lake” course in 
Udacity’s simulator, or about 5.5 minutes of driving. In order to 
best maintain the quality of the human-input driving data, the 
car was kept in the center of the lane as best as possible. 
Frame-by-frame image data for the four laps was captured 
from center, left, and right front-facing cameras attached to the 
vehicle within the simulator. 

The final image dataset consisted of 4,422 frames with 
center, left, and right camera angles of RGB images of 
160x360 resolution. This was represented in a numpy array of 
4,422 (total frames) x 3 (camera angles) x 160 (height in 
pixels) x 360 (width in pixels) x 3 (RGB values). 

3. Images taken from center, left, and right camera angles (cropped). 

B. Data Preprocessing 
In order to reduce the dimensionality of the dataset, the 

images were first cropped from 160x360 pixels to 66x200 
pixels. This crops the dimensions of the input images to match 
the dimensionality of the images from Nvidia’s research, as 
well as eliminates most of the sky and the extreme edges from 
the images. 

Next, the dataset was augmented by flipping the image over 
the x-axis. This was appended to the dataset to double the size 
of the original dataset. The images from the left and right 
camera angles were also appended to the dataset with steering 
angle corrections to help training for sharp turns. 

Additionally, the input images, which were in RGB color 
space, was mapped to the YUV color space, which helps 
emphasize certain important features of the road. Finally, the 
dataset was shuffled, in order to randomize the images that will 
be allotted into training data and validation data.  

The preprocessed dataset consisted of 26,532 images of 
66x220 resolution and YUV color space, split into original and 
flipped images with center, left, and right camera angles. This 
was represented in a numpy array of 26,532 (total images) x 66 
(height in pixels) x 220 (width in pixels) x 3 (YUV values). 
C. Network Architecture 

Nvidia’s CNN architecture consisted of 9 layers, including 
a normalization layer, 5 convolutional layers, and 3 fully-
connected layers. Because their CNN performed so well under 
conditions of limited training data and sparse training signal, 
the network architecture of this project was modeled after 
Nvidia’s design. The final network architecture consisted of 10 
layers, including a normalization layer, 5 convolutional layers, 
a dropout layer, and 3 fully-connected layers. 

The network takes as input YUV images of 66x200 
resolution represented as a numpy array with dimensions 
3x66x200. After passing this data through the network, the 
CNN returns an output control value as the steering angle. 

The normalization layer performs image normalization. The 
normalizer is hard-coded, and is not adjusted during training. 
Performing image normalization in the neural network allows 
the normalization scheme to be altered with the network 
architecture, as well as to be accelerated using GPU 
processing. 

The five convolutional layers are designed to perform 
feature extraction.  The first three of the five convolutional 
layers use striped convolutions with a 2x2 stride and a 5x5 
kernel. The last two convolutional layers use non-strided 
convolutions with a 3x3 kernel. Nvidia empirically determined 
these hyperparameters through a series of experiments that 
varied the layer configurations. All convolutional layers used 
the exponential linear unit (“elu”) activation function to 
prevent the vanishing gradient problem. 

The dropout layer is designed to perform dropout 
regularization. After evaluations of initial models showed signs 
of overfitting, this dropout layer with dropout of 0.5 was 
introduced to reduce the overfitting. 

The three fully connected layers are designed to function as 
a controller for steering. However, because this system is 
trained end-to-end, it is not possible to make a clean distinction 



between the parts of the network that serve as the feature 
extractor and the parts that serve as the controller. 

4. Nvidia’s CNN architecture. 

D. Training, Evaluation, and Optimization 
The model was trained using the Adaptive Moment 

Estimation (Adam) optimization algorithm. The Adam 
optimizer is similar to classical stochastic gradient descent, but 
preserves momentum by altering the learning rate based on the 
first and second moments of the gradient. 

The data was trained over ten epochs, and the model was 
saved at the end of each epoch. The performance of each model 
was then evaluated visually based on its performance in a 
driving test, and the results were recorded. Because the model 
is trained on static images without a concept of velocity, the 
velocity of the vehicle during evaluations was manually set to a 
constant 10mph. 

To optimize the validation split, the model performance for 
several values between 0.01 and 0.5 was evaluated. The one 
that yielded the best result was a 0.3 validation split. This 

meant that the last 30% of the dataset (roughly 1.2 laps around 
the track) was being used as validation data. However, this 
introduces a significant bias, since the human driving input is 
different for each lap. 

To resolve this issue, the numpy array is randomly shuffled 
during preprocessing. This scrambles the order of the images, 
and causes the dataset to be randomly split between training 
and validation data. 

After these optimizations, the model was able to 
successfully drive the vehicle around Udacity’s “Lake” 
simulated driving course without crashing or leaving the track. 

IV. CONCLUSION 
This project has empirically demonstrated that CNNs are 

able to learn the entire task of road following, even with an 
extremely limited dataset of 5.5 minutes of human driving 
input. Like in the findings of the Nvidia Corporation, the CNN 
was able to perform this task without explicit manual 
decomposition of the processing steps when trained and 
evaluated within a simulator. The CNN was also able to learn 
meaningful road features from a very sparse signal of steering 
angles. 

V. IMPROVEMENTS AND FUTURE RESEARCH 
Further research is needed to incorporate velocity data into 

the training process, so that the network would be able to take 
full control of the driving process. Research is also needed to 
improve the robustness of the network to operate outside the 
specific conditions of the simulator. These will most likely 
require a larger dataset than was used during this project, but 
should greatly improve the performance of the network. 

Another area to explore is the effects of training the model 
using deep reinforcement learning. One of the problems this 
project encountered is the consistency of the human driving 
input. Supervised learning fundamentally assumes that the 
training data is sampled from examples of great performance. 
However, given the inconsistency of human ability, this 
assumption will often times not hold. As a result, supervised 
learning will often perform worse than deep reinforcement 
learning (see AlphaGo Master vs AlphaGo Zero). 

Therefore, the next step would be to train a second model 
using deep reinforcement learning, and compare the results of 
that experiment with the results of training with supervised 
learning. This comparison will hopefully shed some insight 
into the strengths and limitations of supervised learning versus 
deep reinforcement learning. 
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