
Supervised Learning for Simulated Autonomous
Vehicle using Convolutional Neural Network

Haotian Xu
College of Engineering

University of California, Berkeley
Berkeley, CA 94720

Email: haotianxu@berkeley.edu

Abstract—Autonomous vehicles research is currently one of
the most prominent areas of research within the fields of deep
learning and computer vision. Many companies around the world
that are involved in the automotive industry have joined the race
to achieve full, level five autonomy. This project seeks to address
this issue by creating and training a convolutional neural
network (CNN) using three simulated front-facing RGB cameras
paired with human-input steering commands. Once trained, this
system is able to map raw pixel data from a single front-facing
RGB camera directly to steering commands. Nvidia’s
autonomous vehicles research was used as a starting point for
designing the CNN, and Udacity’s self-driving car simulator was
used to collect driving data and evaluate the model’s
performance. This method proved to be surpisingly effective,
even with very limited training data. After some data
preprocessing and hyperparameter tuning, the model was able to
drive around Udacity’s “Lake” simulated driving course without
crashing or leaving the track. With additional research, this and
similar endeavors will help to realize fully-autonomous,
driverless vehicles.

I. INTRODUCTION
The need for reliable and safe self-driving systems for

autonomous driving is reflected in the emergence of self-
driving AI endeavors. Uber, Lyft, Waymo, Tesla, MobilEye,
Ford and many other companies have invested millions into
self-driving car research in order to compete with one another
in the race for a technology that will revolutionize
transportation. A self-driving system with level five autonomy
will enable humans to live more productively, increase the
efficacy of any industry that is involved with the use of
automotive transportation, and decrease the number of
accidents, automobile related deaths, and general costs of
automotive operation.

Many organizations have implemented their own versions
of self-driving artificial intelligence. Most major automobile
companies have their own R&D teams working on autonomous
vehicles research, and this emerging technology will be
unavoidably pertinent in the future. While much progress has
been made, most developments are protected under the
confidentiality of patents and intellectual property. As of now,
no entity has been able to successfully implement level five
automation.

One of the issues facing autonomous vehicles research is
that training often relies on very large datasets and long
training times to converge. This makes conducting research in
this field inaccessible to anyone who does not have access to
extensive datasets and computational power. This project seeks

to explore this issue by attempting to train a one-car model
with a very limited dataset to perform road following within a
driving simulator.

1. The five levels of autonomous driving.

II. DISCUSSION OF RELATED WORK
A 2016 study by the Nvidia Corporation trained a CNN to

map raw pixels from a single front-facing camera directly to
steering commands [1]. Using minimum training data from a
variety of road, lighting, and weather conditions, the system
learned to drive in traffic on local roads with or without lane
markers, on highways, and in areas with unclear visual
guidance such as parking lots and unpaved roads.

This system automatically learned internal representations
of all processing steps, such as detecting the important features
of the road, with only human steering angles as training signal.
It was able to optimize all processing steps simultaneously,
without explicit decomposition of the problem.

Nvidia’s research empirically demonstrated that CNNs are
able to learn the entire task of lane and road following without
manual decomposition into road or lane marking detection,
semantic abstraction, path planning, and control. A small
amount of training data from 72 hours of human driving was
sufficient to train the car to operate in diverse conditions; such
as on highways, local roads, and residential roads; and in
sunny, cloudy, and rainy conditions. The CNN was also able to
learn meaningful road features from a very sparse training
signal of steering alone.

© Haotian Xu, 2017

2. Nvidia’s system for training the neural network.

III. METHODS

A. Tools and Dataset
The project was written in Python, using the Keras

framework with Tensorflow back-end. The dataset was
generated using Udacity’s self-driving car simulator. The
simulator allows users to record human input in the form of
keystroke logging (“keylogging”, the steering controls based
on arrow keys and the duration of presses), in addition to
frame-by-frame image data from three front-facing RGB
cameras.

The car was driven four times around the “Lake” course in
Udacity’s simulator, or about 5.5 minutes of driving. In order to
best maintain the quality of the human-input driving data, the
car was kept in the center of the lane as best as possible.
Frame-by-frame image data for the four laps was captured
from center, left, and right front-facing cameras attached to the
vehicle within the simulator.

The final image dataset consisted of 4,422 frames with
center, left, and right camera angles of RGB images of
160x360 resolution. This was represented in a numpy array of
4,422 (total frames) x 3 (camera angles) x 160 (height in
pixels) x 360 (width in pixels) x 3 (RGB values).

3. Images taken from center, left, and right camera angles (cropped).

B. Data Preprocessing
In order to reduce the dimensionality of the dataset, the

images were first cropped from 160x360 pixels to 66x200
pixels. This crops the dimensions of the input images to match
the dimensionality of the images from Nvidia’s research, as
well as eliminates most of the sky and the extreme edges from
the images.

Next, the dataset was augmented by flipping the image over
the x-axis. This was appended to the dataset to double the size
of the original dataset. The images from the left and right
camera angles were also appended to the dataset with steering
angle corrections to help training for sharp turns.

Additionally, the input images, which were in RGB color
space, was mapped to the YUV color space, which helps
emphasize certain important features of the road. Finally, the
dataset was shuffled, in order to randomize the images that will
be allotted into training data and validation data.

The preprocessed dataset consisted of 26,532 images of
66x220 resolution and YUV color space, split into original and
flipped images with center, left, and right camera angles. This
was represented in a numpy array of 26,532 (total images) x 66
(height in pixels) x 220 (width in pixels) x 3 (YUV values).
C. Network Architecture

Nvidia’s CNN architecture consisted of 9 layers, including
a normalization layer, 5 convolutional layers, and 3 fully-
connected layers. Because their CNN performed so well under
conditions of limited training data and sparse training signal,
the network architecture of this project was modeled after
Nvidia’s design. The final network architecture consisted of 10
layers, including a normalization layer, 5 convolutional layers,
a dropout layer, and 3 fully-connected layers.

The network takes as input YUV images of 66x200
resolution represented as a numpy array with dimensions
3x66x200. After passing this data through the network, the
CNN returns an output control value as the steering angle.

The normalization layer performs image normalization. The
normalizer is hard-coded, and is not adjusted during training.
Performing image normalization in the neural network allows
the normalization scheme to be altered with the network
architecture, as well as to be accelerated using GPU
processing.

The five convolutional layers are designed to perform
feature extraction. The first three of the five convolutional
layers use striped convolutions with a 2x2 stride and a 5x5
kernel. The last two convolutional layers use non-strided
convolutions with a 3x3 kernel. Nvidia empirically determined
these hyperparameters through a series of experiments that
varied the layer configurations. All convolutional layers used
the exponential linear unit (“elu”) activation function to
prevent the vanishing gradient problem.

The dropout layer is designed to perform dropout
regularization. After evaluations of initial models showed signs
of overfitting, this dropout layer with dropout of 0.5 was
introduced to reduce the overfitting.

The three fully connected layers are designed to function as
a controller for steering. However, because this system is
trained end-to-end, it is not possible to make a clean distinction

between the parts of the network that serve as the feature
extractor and the parts that serve as the controller.

4. Nvidia’s CNN architecture.

D. Training, Evaluation, and Optimization
The model was trained using the Adaptive Moment

Estimation (Adam) optimization algorithm. The Adam
optimizer is similar to classical stochastic gradient descent, but
preserves momentum by altering the learning rate based on the
first and second moments of the gradient.

The data was trained over ten epochs, and the model was
saved at the end of each epoch. The performance of each model
was then evaluated visually based on its performance in a
driving test, and the results were recorded. Because the model
is trained on static images without a concept of velocity, the
velocity of the vehicle during evaluations was manually set to a
constant 10mph.

To optimize the validation split, the model performance for
several values between 0.01 and 0.5 was evaluated. The one
that yielded the best result was a 0.3 validation split. This

meant that the last 30% of the dataset (roughly 1.2 laps around
the track) was being used as validation data. However, this
introduces a significant bias, since the human driving input is
different for each lap.

To resolve this issue, the numpy array is randomly shuffled
during preprocessing. This scrambles the order of the images,
and causes the dataset to be randomly split between training
and validation data.

After these optimizations, the model was able to
successfully drive the vehicle around Udacity’s “Lake”
simulated driving course without crashing or leaving the track.

IV. CONCLUSION
This project has empirically demonstrated that CNNs are

able to learn the entire task of road following, even with an
extremely limited dataset of 5.5 minutes of human driving
input. Like in the findings of the Nvidia Corporation, the CNN
was able to perform this task without explicit manual
decomposition of the processing steps when trained and
evaluated within a simulator. The CNN was also able to learn
meaningful road features from a very sparse signal of steering
angles.

V. IMPROVEMENTS AND FUTURE RESEARCH
Further research is needed to incorporate velocity data into

the training process, so that the network would be able to take
full control of the driving process. Research is also needed to
improve the robustness of the network to operate outside the
specific conditions of the simulator. These will most likely
require a larger dataset than was used during this project, but
should greatly improve the performance of the network.

Another area to explore is the effects of training the model
using deep reinforcement learning. One of the problems this
project encountered is the consistency of the human driving
input. Supervised learning fundamentally assumes that the
training data is sampled from examples of great performance.
However, given the inconsistency of human ability, this
assumption will often times not hold. As a result, supervised
learning will often perform worse than deep reinforcement
learning (see AlphaGo Master vs AlphaGo Zero).

Therefore, the next step would be to train a second model
using deep reinforcement learning, and compare the results of
that experiment with the results of training with supervised
learning. This comparison will hopefully shed some insight
into the strengths and limitations of supervised learning versus
deep reinforcement learning.

REFERENCES
1. NVIDIA Corporation, “End to End Learning for Self-Driving Cars,”

April 2016. https://arxiv.org/pdf/1604.07316.pdf.

DATA
1. https://drive.google.com/open?id=1inxGfkKfqNE2V-

zzFe2zs39FegHMFe6I

