Challenges and progress in physical tomographic reconstruction of light doses for volumetric additive manufacturing

Vishal Bansal¹, Indrasen Bhattacharya², Kyle Champley³, Erika Fong³, Chi Chung Li¹, Robert McLeod⁴, Charles Rackson⁴, Maxim Shusteff³, <u>Hayden Taylor</u>^{1*}, and Joseph Toombs¹

¹ Department of Mechanical Engineering, University of California, Berkeley
 ² Applied Science and Technology program, University of California, Berkeley
 ³ Lawrence Livermore National Laboratory, Livermore, CA
 ⁴ Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder
 *hkt@berkeley.edu

IS&T Electronic Imaging 2022 January 20, 2022

Computed Axial Lithography – a tomographic volumetric additive manufacturing (VAM) technique

Computed Axial Lithography – a tomographic volumetric additive manufacturing technique

Why do we need to optimize the digital light projections?

10

103

0°01 Tuedneuch

10¹

100

Goal of optimization is to push gel and void dose distributions apart to achieve high dose contrast

Various optimization techniques have been developed since the introduction of tomographic VAM

B. Kelly, I. Bhattacharya, H. Heidari et al. *Science*. **363**. (2019)
 D. Loterie, P. Delrot, C. Moser. *Nat. Comms.* **11**. (2020)
 C. Cook, E. Fong, J. Schwartz et al. *Adv. Mat.* **32**. (2020)
 M. Shusteff, K. Champley, E. Fong et al. US Pat. No. 20220011742
 I. Bhattacharya, J. Toombs, H. Taylor. *Additive Manufacturing*. **47**. (2021)
 C. Rackson, K. Champley, J. Toombs et al. *Additive Manufacturing*. **48**. (2021)
 J. Toombs, M. Luitz, C. Cook et al. arXiv: 2110.01651 (2021)

IS&T EI 2022

Tomographic VAM algorithms span 0th to 2nd order methods with varying complexity

	CAL 2019	EPFL (FBP) 2020	LTT 2020	PM 2021	OSMO 2021
Optimization space	Projection	NA	Projection	Projection	Object
Analytical cost function	No	NA	Yes	Yes	NA
Order	1 st	NA	2 nd	2 nd	O th
$p\left(\ell_p extsf{-norm} ight)$	1	NA	2	1	NA
Computational complexity (2D)*	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2\log n^2)^*$	Unknown	$\mathcal{O}(mn^2)^*$	$\mathcal{O}(n^2)$
Space complexity (2D)*	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$	Unknown	$\mathcal{O}(mn^2)^*$	$\mathcal{O}(n^2)$
Open-source	Yes	Yes	No	Yes	Yes
* <i>n</i> is # of pixels/voxels on a side of the target matrix		* Not an iterative method, only requires forward and backprojection and 1 FFT and 1 IFFT		* <i>m</i> is # of historical steps stored to reconstruct approximate inverse Hessian in L-BFGS algorithm	-

Performance trends

FBP CAL 2019

PM 2021 OSMO 2021

600

700

10⁻⁴

10⁻⁵

0

200

300

400

Computational time [s]

500

100

Conclusions

- All methods converge to solutions several orders of magnitude better than no optimization (FBP)
- First order methods (CAL 2019, OSMO 2021) are robust but require more iterations to converge
- High convergence rate of second order methods (PM 2021) may come at the cost of increased computational and space complexity for large 3D problems

What about more challenging physical tomographic reconstruction? — A progress survey in multimaterial tomographic VAM — overprinting

Opaque insert/occlusion

Transparent (refractive) insert/occlusion

[2] Seron et al., Comp. & Graphics. 29, (2005).

[1] C. Rackson, K. Champley, J. Toombs et al. Additive Manufacturing. 48. (2021)

A progress survey in multimaterial tomographic VAM — scattering

mm

 $n_{particle} \approx n_{liquid}$

 $n_{particle} pprox n_{liquid}$

[2] J. Madrid-Wolff, A. Boniface, D. Loterie et al. arXiv: 2105.14952 (2021)

Refractive index matching $n_{silica} \approx n_{precursor}$ leads to small scattering component of total transmission

[1] J. Toombs, M. Luitz, C. Cook et al. arXiv: 2110.01651 (2021)

9

When modeling the physical process becomes difficult Color Schlieren Tomography paves the way to real-time monitoring and process feedback

Conclusions

