MEMS Packaging Techniques for Silicon Optical Benches

Hayden Taylor

David Moore, Mohamed Boutchich, Billy Boyle, Johnny He, Graham McShane, Richard Breen, Rob Wylie

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT

Why MEMS for optoelectronic packaging?

- high precision required: ±0.5 micron, ±0.7°
- towards parallel assembly
- avoid expense of nanomanipulator

Introduction Why rapid prototyping?

- many new materials
- mechanical design hard

Introduction Why rapid prototyping?

- many new materials
- mechanical design hard
 - Laser beam 3ns pulses @ 50Hz 0.6mJ/pulse 355nm or 532nm 50pm-diameter spot

Introduction Why rapid prototyping?

- many new materials
- mechanical design hard

Previous MEMS packaging work: passive

Journal Micromechanics Microengineering 8, 343-360 (1998)

Previous MEMS packaging work: out of plane

• polysilicon multi-layer processes (e.g. SUMMiT, Sandia)

Previous MEMS packaging work: out of plane

- polysilicon multi-layer processes (e.g. SUMMiT, Sandia)
- surface tension: self-assembly

Imperial College http://www.ee.ic.ac.uk/optical/Microsystems.html

3ns-pulse 3.5eV (UV), 50Hz, 10µms⁻¹

0.1mm

3ns-pulse 2.3eV (Green), 50Hz, 10µms⁻¹

0.1mm

3ps-pulse 1.2eV (IR), 50kHz, 10mms Lumera Laser

0.1mm

SiN (2μm) SiN (0.2μm) ta-C(0.1μm) Bare silicon threshold

- resonance frequency measurement¹
- electrostatic pull-in²
- microbeam deflection with nanoindenter³

M Madou: <u>Fundamentals of Microfabrication</u>, p270
 Journal MEMS, **6** 2 1997 pp107–118
 WD Nix: *Measurement of Mechanical Properties in Small Dimensions by Microbeam Deflection*, Stanford

- resonance frequency measurement¹
- electrostatic pull-in²
- microbeam deflection with nanoindenter³
- scanning profilometer along microbeam

M Madou: <u>Fundamentals of Microfabrication</u>, p270
 Journal MEMS, **6** 2 1997 pp107–118
 WD Nix: <u>Measurement of Mechanical Properties in Small Dimensions by Microbeam Deflection</u>, Stanford

 $Z = F\{(x-x_0-L_u)^3/3EI + (x-x_0-L_u)^2L_u/EI_u + (x-x_0-L_u)L_u^2/EI_u + L_u^3/3EI_u)\}$ = $Fx^3/3EI + O(x^2)$

 $Z = F\{(x-x_0-L_u)^3/3EI + (x-x_0-L_u)^2L_u/EI_u + (x-x_0-L_u)L_u^2/EI_u + L_u^3/3EI_u)\}$ = Fx³/3EI + O(x²)

Extracting Young's Modulus of thin films — additional problems

- anticlastic curvature affects effective stiffness
- stylus force varies with deflection
- local indentation
- beam twisting

Extracting maximum stress of thin films

Problem abstraction

			θ, x, y: in plane z, φ, ψ: out of				
		0	1	2+	3	plane	
Linear DoF	0	filter				* x or y ⁺ includes θ plus φ or ψ [§] translation in x or y, plus z [#] positioning in x and y	
	1*			plane mirror	diffraction grating		
	2			detector§	triangular prism#		
	3	spherical lens		parabolic lens or mirror; emitter			

Specification

- Alignment precision: 0.1dB coupling loss requires 0.5µm and 0.7° but throw must be larger
- 2. Components to be held sub-millimetre: lenses, mirrors and fibres
- 3. Slop: component dimension tolerances up to 10%
- 4. Up to 2 linear and 3 angular degrees of freedom or vice versa
- 5. Power and area budgets: debatable

DRIE structure Lens manipulator

DRIE structure Lens manipulator

Out-of-plane bistable clamps

Proposed microclips

When a component is inserted, the microcantilevers deflect and hold the component in static equilibrium.

Fabrication

- 1. deposit thin film on to wafer
- 2. photolithography or laser micromachining to define cantilevers
- 3. anisotropic etch through wafer

Proposed microclips

When a component is inserted, the microcantilevers deflect and hold the component in static equilibrium.

Fabrication

- 1. deposit thin film on to wafer
- 2. photolithography or laser micromachining to define cantilevers
- 3. anisotropic etch through wafer

Deflection of Microbeams

- A thin beam subject to a tip displacement constraint assumes a shape that minimises energy.
- To obtain a minimum energy state we must vary the shape function of the cantilever until the integral energy function reaches a stationary point.

$$E = k \int_{0}^{L} F(y, \frac{dy}{dx}, x) dx$$
$$E_{tot} = \int M \kappa ds$$

Discretisation

- The integral expression can be approximated by a series expression.
- The system effectively becomes a series of rigid members joined by torsional springs whose spring constant gives the same bending rigidity per unit length as the continuous bar.

Deflection of Microbeams

- Excel contains an optimisation plug-in called Solver. This allows us to
 - Minimise an objective function
 - By changing a set of variables
 - Subject to constraints

Stored Energy

Bar Angles $(\theta_0 ... \theta_n)$

Tip Displacement + segment angle

Node	θ degrees	heta radians	Un	Vn	$\Delta \theta_n$	Energy
0	0.00	0	0.00	0.00		
1	1.32	0.0230469	0.03	0.00	0.0230469	4.46E-03
2	2.64	0.0460318	0.07	0.00	0.0229848	4.44E-03
3	3.95	0.0688915	0.10	0.00	0.0228598	4.39E-03
4	5.25	0.0915638	0.13	-0.01	0.0226723	4.32E-03
5	6.53	0.1139874	0.17	-0.01	0.0224236	4.22E-03
6	7.80	0.1361017	0.20	-0.02	0.0221143	4.11E-03
7	9.04	0.1578469	0.23	-0.02	0.0217453	3.97E-03
8	10.27	0.1791647	0.26	-0.03	0.0213178	3.82E-03
9	11.46	0.1999985	0.30	-0.03	0.0208338	3.65E-03
10	12.62	0.2202919	0.33	-0.04	0.0202934	3.46E-03
11	13.75	0.2399913	0.36	-0.05	0.0196994	3.26E-03
12	14.84	0.2590443	0.39	-0.06	0.0190529	3.05E-03
13	15.89	0.2774013	0.43	-0.07	0.018357	2.83E-03
14	16.90	0.2950133	0.46	-0.08	0.017612	2.61E-03
15	17.87	0.3118345	0.49	-0.09	0.0168212	2.38E-03
16	18.78	0.3278219	0.52	-0.10	0.0159874	2.15E-03
17	19.65	0.342934	0.55	-0.11	0.0151121	1.92E-03
18	20.46	0.3571318	0.58	-0.12	0.0141977	1.69E-03
19	21.22	0.370379	0.62	-0.13	0.0132472	1.47E-03
20	21.92	0.3826425	0.65	-0.14	0.0122636	1.26E-03
					_	
					Σ Energy	6.345E-02

IEEE 2002 Electronics Components and Technology Conference, San Diego, U.S.A., s19p3, pp. 1-7 (2002)

Processing variations and probabilistic design

- For optical benches components must be precisely aligned in the vertical plane.
- Process variability can lead to component misalignment.

Processing variations and probabilistic design

Towards 'active' clips

Thicknesses a_1 , a_2 Thermal expansivities are α_1 , α_2 Moduli E_1 , E_2 Increase in temperature ΔT

$$E_1/E_2 = n$$

$$a_1 + a_2 = t$$

$$a_1/a_2 = m$$

$$K = 6(1 + m)^2 / [3(1 + m)^2 + (1 + mn)(m^2 + 1/mn)]$$

Thermal curvature is given by:

 $\kappa = K(\alpha_2 - \alpha_1) \Delta T/t$

No misalignments

2 0.0002 0.0002 0.0002 0.0008 0.0004 0.0006 0.0008 0.0001 0.00012 0.00014

Local energy minimum with antisymmetric clip orientations

rotation $\psi = -11.5^{\circ}$

20 µm front-to-back misalignment…

rotation $\psi = -2.1^{\circ}$ x ≈ 0

No misalignments

20 µm front-to-back misalignment…

rotation $\psi = -2.1^{\circ}$ x ≈ 0 ... countered by 20K temp increase in red clip. (150nm Ni/SiN_x)

rotation $\psi = 0.4^{\circ}$ x ≈ 0

rotation $\psi \sim 2^{\circ}$ x ~ -5 μ m

Why consider inflatable MEMS?

- sharp edges unstressed
- films in tension mean larger holding forces
- inherent damping
- fluid could solidify

Explore the possibilities of making inflatable microballoons from elastic films, either welded together or spun on to a rigid substrate.

Conclusions

Laser micromachining

- cutting slow / refinement fast
- material damage can probably be controlled
- UV/silicon nitride combination ideal

Modulus extraction

- target accuracy better than 20%
- noise in data remains largest problem

Deep reactive ion etching

+ strong + well-characterised – large footprint

Thin-film microclips

+ simple + compact - max. stress high

Inflatable MEMS

- + manipulate and fix in one step
- + strength from inflation not high modulus unproven