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Outline

• What types of defects do we need to detect?
• Why consider diffraction?
• Motivation for using tailored diffractive patterns
• Two example schemes:

• Depth measurement of channels ~ 1 µm deep
• Detection of incomplete micro-pattern embossing

• Future directions
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Examples of processing defects in hot embossing

• Nano-channel depth variation

• Nano-channel collapsing

• Incomplete stamp filling

• Demolding-related defects

• Intra-part non-uniformity
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Requirements of an in-line metrology system

• Speed: tens of components per minute
• alignment required not better than ± 1 mm or ± 1°

• Non-destructive
• ideally non-contact

• System cost
• perhaps ~ $1k (cf. embossing systems ~ $100k) 

• Measurement capabilities
• lateral dimensions 1 – 500 µm
• out-of-plane resolution sub-100 nm
• able to measure buried structures
• optically transparent materials
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Existing approaches

• Optical methods
• interferometry
• microscopy

• Scanning probe methods
• Scanning electron microscopy

V. Shilpiekandula, D.J. Burns, K. Youcef-Toumi, K. El Rifai, S. Li, I. Reading, and S.F. Yoon, 
“Metrology of Microembossed Devices: a Review,” in Proc. Intl Micromanufacturing Conf., Sep. 
2006, pp. 302–307.
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Proposed approach: use Fraunhofer diffraction

• Potential benefits: contact- and alignment-‘free’
• Inspired by scatterometry, used in semiconductor 

metrology

Far-field diffraction
pattern interpreted

Embossed sample 
under test

Coherent, collimated 
monochromatic light
(e.g. from HeNe laser)
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Proposed approach: use Fraunhofer diffraction

• Unlike scatterometry, we have:
• wavelength << lateral feature dimensions;
• transmissive substrates;
• many more diffracted orders produced;
• plus we require higher measuring speeds 
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Proposed approach: use Fraunhofer diffraction

• Far-field amplitudes B(θ) can be computed as Fourier 
Transform of component’s transmission function
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Simplest approach: use regular, 1-D grating

• Detection of collapsed nanochannels: promising
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Simplest approach: use regular, 1-D grating

• Incomplete embossing: changes in topography cause 
non-intuitive changes in envelope 

• Irrelevant variations may complicate interpretation
• Need a calibrated sensor and controlled environment

Topography of
one grating

period’s
cross-section

(µm)

Intensity of
observed

diffraction orders
(a.u.)

100 µm

angle in far field (radians)

interpolated
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Holographic elements instead of regular gratings?

• Holograms redistribute energy in far-field, and provide 
more information within a given angular range.

• Could design holograms to reduce interpretation of 
diffraction patterns to intensity comparisons only

• Can we design patterns to identify specific defects?
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Two approaches using holograms

1. Reference holograms modulate light 
passing through a simple part 
containing an embossed grating

2. Hologram built into the part itself
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Idea 1: measuring the depths of nanochannels

• Quadrant-swapping effect of grating in contact with 
hologram:

• Different grating phase-reliefs produce a weighted 
superposition of these two cases

Reference 
hologram
h[m, n]

H[u, v] H[u–N/2, v]
Grating: 
pitch = 2Δ, 
phase-relief = π rad

h[m, n]
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Nanochannel depth-measurement scheme

Set of 9 reference 
holograms hk[m, n]
illuminated together
through part under test

Δφ = 
2π(n–n0)Δz/λ0

Δφ (mod 2π) = 0Δφ (mod 2π) = π/4Δφ (mod 2π) = π/2Δφ (mod 2π) = 3π/4Δφ (mod 2π) = πΔφ (mod 2π) = 5π/4Δφ (mod 2π) = 3π/2Δφ (mod 2π) = 7π/4
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Nanochannel depth-measurement scheme
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Nanochannel depth-measurement: limitations

• Resolution for red light and PMMA ~ 200 nm with 
present hologram designs

• Angular alignment sensitivity is severe
• Linear offset introduces ambiguity if phase-relief can 

be greater than π rad.
• Requires physical contact between holograms and 

part under test
• Always ambiguous for gratings with a phase-relief of 

larger than 2π rad; yet we will sometimes need to 
measure channels that are many λ deep. 
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Idea 2: measuring incomplete feature formation

• Narrower features harder to fill than wider, when 
polymer in a rubbery regime

• Can exploit this behaviour to detect excessively low 
embossing pressure

pattern-dependency 
test stamp

measured 
topography, PMMA, 

110 °C, 8 MPa

3 µm 
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Topography of pixel determines intensity envelope

4. Focus on a particular part 
of the Fraunhofer plane

1. Pixel shapes depend on 
stamp design and 
embossing conditions

2. Fourier transform

3. Multiply
2. Fourier transform
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Two pixel designs developed to give substantial and 
opposite changes in envelope intensity 

Pixel shape 1:
easier to fill

Pixel shape 2:
harder to fill

Intensity 
envelopes

Position in envelope 
region of interest 

(multiples of 
sin θ = λ/NΔ)

Pixel 1, 5 MPa

3 MPa

5 MPa

3 MPa

5 MPa

Embossed 
topographies

Pixel 1, 3 MPa

Pixel 2, 5 MPa

Pixel 2, 3 MPa
Flat square pixel

stamp
recess
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Two holograms and corresponding pixel designs 
respond to varying embossing pressure
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Idea 2: challenges and opportunities

• Requires definition of sub-pixel features: stamp 
fabrication expensive?

• Could enhance information provided by designing 
holograms with richer, graded-intensity patterns

• If multi-level stamps are available, could have greater 
control of pressure-sensitivity
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Summary and future directions

• Overall idea: reduce interpretation of diffraction patterns 
to a series of ‘binary’ intensity comparisons

• Idea 1: nanochannel depth measurement
• well defined output
• requires contact and alignment

• Idea 2: incomplete filling detection for microchannels
• design approach demonstrated
• uses optimised pixel and hologram designs
• a promising stand-alone metrology tool
• needs fabricating and testing
• need to check insensitivity to other processing defects

• Future directions
• layer-layer alignment
• global distortion check
• diffractive components in fluidic devices
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