Diffraction-based approaches to the in-situ measurement of dimensional variations in components produced by thermoplastic micro- and nano-embossing

Hayden Taylor and Duane Boning 23 January 2008

Microsystems Technology Laboratories and the Center for Polymer Microfabrication Massachusetts Institute of Technology http://web.mit.edu/cpmweb/

Outline

- What types of defects do we need to detect?
- Why consider diffraction?
- Motivation for using tailored diffractive patterns
- Two example schemes:
 - Depth measurement of channels ~ 1 μm deep
 - Detection of incomplete micro-pattern embossing
- Future directions

Examples of processing defects in hot embossing

Nano-channel depth variation

Nano-channel collapsing

Incomplete stamp filling

Demolding-related defects

Intra-part non-uniformity

Requirements of an in-line metrology system

- Speed: tens of components per minute
 - alignment required not better than ± 1 mm or ± 1°
- Non-destructive
 - ideally non-contact
- System cost
 - perhaps ~ \$1k (cf. embossing systems ~ \$100k)
- Measurement capabilities
 - lateral dimensions 1 500 μm
 - out-of-plane resolution sub-100 nm
 - able to measure buried structures
 - optically transparent materials

Existing approaches

- Optical methods
 - interferometry
 - microscopy
- Scanning probe methods
- Scanning electron microscopy

V. Shilpiekandula, D.J. Burns, K. Youcef-Toumi, K. El Rifai, S. Li, I. Reading, and S.F. Yoon, "Metrology of Microembossed Devices: a Review," in *Proc. Intl Micromanufacturing Conf.*, Sep. 2006, pp. 302–307.

Proposed approach: use Fraunhofer diffraction

- Potential benefits: contact- and alignment-'free'
- Inspired by scatterometry, used in semiconductor metrology

Proposed approach: use Fraunhofer diffraction

- Unlike scatterometry, we have:
 - wavelength << lateral feature dimensions;
 - transmissive substrates;
 - many more diffracted orders produced;
 - plus we require higher measuring speeds

Proposed approach: use Fraunhofer diffraction

• Far-field amplitudes $B(\theta)$ can be computed as Fourier Transform of component's transmission function

$$\varphi(x) = \frac{2\pi (n_0 - n)}{\lambda_0} z(x)$$

$$B(\theta) = \sum_{k=1}^{S} \exp\left[\frac{2\pi jkd\sin\theta}{\lambda_0}\right] \int_{0}^{d} \exp\left[-\frac{2\pi jx\sin\theta}{\lambda_0} - j\varphi(x)\right] dx$$

For number, S, of grating periods large:

Simplest approach: use regular, 1-D grating

Detection of collapsed nanochannels: promising

Simplest approach: use regular, 1-D grating

 Incomplete embossing: changes in topography cause non-intuitive changes in envelope

- Irrelevant variations may complicate interpretation
- Need a calibrated sensor and controlled environment

Holographic elements instead of regular gratings?

- Holograms redistribute energy in far-field, and provide more information within a given angular range.
- Could design holograms to reduce interpretation of diffraction patterns to intensity comparisons only
- Can we design patterns to identify specific defects?

Two approaches using holograms

- 1. Reference holograms modulate light passing through a simple part containing an embossed grating
- 2. Hologram built into the part itself

Idea 1: measuring the depths of nanochannels

Quadrant-swapping effect of grating in contact with hologram:

 Different grating phase-reliefs produce a weighted superposition of these two cases

Nanochannel depth-measurement scheme

Nanochannel depth-measurement scheme

Nanochannel depth-measurement: limitations

- Resolution for red light and PMMA ~ 200 nm with present hologram designs
- Angular alignment sensitivity is severe
- Linear offset introduces ambiguity if phase-relief can be greater than π rad.
- Requires physical contact between holograms and part under test
- Always ambiguous for gratings with a phase-relief of larger than 2π rad; yet we will sometimes need to measure channels that are many λ deep.

Idea 2: measuring incomplete feature formation

Narrower features harder to fill than wider, when polymer in a rubbery regime

Can exploit this behaviour to detect excessively low embossing pressure

Topography of pixel determines intensity envelope

Two pixel designs developed to give substantial and opposite changes in envelope intensity

Two holograms and corresponding pixel designs respond to varying embossing pressure

Idea 2: challenges and opportunities

- Requires definition of sub-pixel features: stamp fabrication expensive?
- Could enhance information provided by designing holograms with richer, graded-intensity patterns
- If multi-level stamps are available, could have greater control of pressure-sensitivity

Summary and future directions

- Overall idea: reduce interpretation of diffraction patterns to a series of 'binary' intensity comparisons
- Idea 1: nanochannel depth measurement
 - well defined output
 - requires contact and alignment
- Idea 2: incomplete filling detection for microchannels

 - design approach demonstrated uses optimised pixel and hologram designs
 - a promising stand-alone metrology tool needs fabricating and testing

 - need to check insensitivity to other processing defects
- **Future directions**

 - layer-layer alignment
 global distortion check
 diffractive components in fluidic devices

Acknowledgements

Matthew Dirckx, David Hardt, George Barbastathis, Yee Cheong Lam, Nici Ames and Lallit Anand

The Singapore-MIT Alliance