Computationally efficient modelling of pattern dependencies in the micro-embossing of thermoplastic polymers

Hayden Taylor and Duane Boning

Microsystems Technology Laboratories Massachusetts Institute of Technology

Ciprian Iliescu and Bangtao Chen

Institute of Bioengineering and Nanotechnology, Singapore

24 September 2007

Hot micro- and nano-embossing

- To choose an optimal process, we need to assign values to
 - Heat
 - Time
- Our load and temperature are constrained by
 - Equipment
 - Stamp and substrate properties

PMMA in compression

PMMA in compression, 140 °C

PMMA in compression ($T_q = 105$ °C)

Starting point: linear elastic material model

- Embossing done at high temperature, with low elastic modulus
- Deformation 'frozen' in place by cooling before unloading
- Wish to compute deformation of a layer when embossed with an arbitrarily patterned stamp
- Take discretized representations of stamp and substrate

Response of material to unit pressure at one location

General load response:

Response to unit pressure in a single element of the mesh:

$$F_{i,j} = \frac{1 - v^2}{\pi E} \left[f(x_2, y_2) - f(x_1, y_2) - f(x_2, y_1) + f(x_1, y_1) \right]$$

$$f(x, y) = y \ln\left(x + \sqrt{x^2 + y^2}\right) + x \ln\left(y + \sqrt{x^2 + y^2}\right)$$

1-D verification of approach for PMMA at 130 °C

- Iteratively find distribution of pressure consistent with stamp remaining rigid while polymer deforms
- Fit elastic modulus that is consistent with observed deformations

Extracted Young's modulus ~ 5 MPa at 130 °C

2-D linear elastic model succeeds with PMMA at 125 °C

Linear-elastic model succeeds at 125 °C, p_{ave} = 0.5 MPa

Linear-elastic model succeeds at 125 °C, p_{ave} = 1 MPa

Linear elastic model succeeds below yielding at other temperatures

Extracted PMMA Young's moduli from 110 to 140 °C

Material flows under an average pressure of 8 MPa at 110 °C

Yielding at 110 °C

Simple estimates of strain rate:

$$\frac{\text{penetration}}{\frac{\text{W}}{2}t_{\text{hold}}} \left\{ \begin{array}{l} \textbf{10}^{-3} \ \textbf{to} \ \textbf{10}^{-1} \ \textbf{during loading} \\ \textbf{10}^{-4} \ \textbf{to} \ \textbf{10}^{-3} \ \textbf{during hold} \end{array} \right.$$

Local contact pressure at feature corners > 8 MPa

Yielding at 110 °C

Simple estimates of strain rate:

 $\frac{\text{penetration}}{\frac{\text{W}}{2}t_{\text{hold}}} \begin{cases} 10^{-3} \text{ to } 10^{-1} \text{ during loading} \\ 10^{-4} \text{ to } 10^{-3} \text{ during hold} \end{cases}$

Local contact pressure at feature corners > 8 MPa

Modelling combined elastic/plastic behavior

Modelling combined elastic/plastic behavior

Summary and future directions

- The merits of a linear-elastic embossing polymer model have been probed
- This simulation approach completes an 800x800-element simulation in:
 - ~ 45 s (without filling)
 - ~ 4 min (with some filling)
- Our computational approach can be extended to capture yielding and plastic flow
- Is a single pressure distribution solution sufficient to model viscoelasto-plastic behaviour?
- Abstract further: mesh elements containing many features

Acknowledgements

Nici Ames, Matthew Dirckx, David Hardt, Yee Cheong Lam and Lallit Anand

The Singapore-MIT Alliance