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Hot micro- and nano-embossing
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• To choose an optimal process, we need to assign values to

• Heat

• Time

• Our load and temperature are constrained by

• Equipment

• Stamp and substrate properties
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PMMA in compression

N.M. Ames, Ph.D. thesis, MIT, 2007
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PMMA in compression, 140 °C

using model of N.M. Ames, Ph.D. thesis, MIT, 2007
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PMMA in compression (Tg = 105 °C)

using model of N.M. Ames, Ph.D. thesis, MIT, 2007
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Starting point: linear elastic material model

• Embossing done at high temperature, with low elastic modulus

• Deformation ‘frozen’ in place by cooling before unloading

• Wish to compute deformation of a layer when embossed with an 
arbitrarily patterned stamp

• Take discretized representations of stamp and substrate

E(T)
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Response of material to unit pressure at one location
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General load response:

Response to unit pressure in a single element of the mesh:

x1,y1

x2,y2

Unit pressure here

Fi,j defined here

Point load response
wr = constant

load
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1-D verification of approach for PMMA at 130 °C

Extracted Young’s 
modulus ~ 5 MPa at 130 °C

• Iteratively find distribution 
of pressure consistent 
with stamp remaining 
rigid while polymer 
deforms

• Fit elastic modulus that is 
consistent with observed 
deformations
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2-D linear elastic model succeeds with PMMA at 125 °C
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Linear-elastic model succeeds at 125 °C, pave = 0.5 MPa
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Linear-elastic model succeeds at 125 °C, pave = 1 MPa

Features filled,
1MPa
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Linear elastic model succeeds below yielding at other temperatures
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Extracted PMMA Young’s moduli from 110 to 140 °C
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Material flows under an average pressure of 8 MPa at 110 °C
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Yielding at 110 °C

Simple estimates of strain rate:

stamp

polymer
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w

npenetratio 10-3 to 10-1 during loading

10-4 to 10-3 during hold

Local contact pressure 
at feature corners > 8 MPa
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Yielding at 110 °C

Simple estimates of strain rate:

N.M. Ames, Ph.D. Thesis, MIT, 2007
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at feature corners > 8 MPa
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Modelling combined elastic/plastic behavior

Compressive
stress

Compressive
strain0.4

Yield stress

Plastic flow

De << 1 De >> 1De ~ 1

Consider 
plastic 
deformation 
instantaneous

Consider flow to be 
measurable but not to modify 
the pressure distribution 
substantially during hold

Deborah number
De = tmaterial/tload, hold
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Modelling combined elastic/plastic behavior
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Plastic flow

De << 1 De >> 1De ~ 1
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radius

Tuned to represent cases from 
capillary filling to 
non-slip Poiseuille flow
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linear-elastic 
component
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Elastic: E(T)
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Summary and future directions

• The merits of a linear-elastic embossing polymer model 
have been probed

• This simulation approach completes an 800x800-element simulation in:
• ~ 45 s (without filling) 
• ~ 4 min (with some filling)

• Our computational approach can be extended to capture yielding and 
plastic flow

• Is a single pressure distribution solution sufficient to model visco-
elasto-plastic behaviour?

• Abstract further: mesh elements containing many features
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