Modeling and simulation of stamp Abstract
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1. Motivation 2. Modeling grooved stamp deflectionS  the model is integrated with our existing

scheme for fast TNIL simulation [2,3]: an
Impulse response describes flowing resist
and a point-load response encapsulates
stamp flexibility [4]. Stamp deflections,

Waf | r v of dual Our semi-analytical model for the elastic deflections of a structured
2 er-s.ca S NI (_) IO stamp captures local indentation, transverse shearing, and bending.
layer thickness (RLT) remains a The model has been calibrated against finite-element simulations

challenge in thermal nanoimprint initi i i . .
o g TN P for ranges of initial wafer thicknesses and groove widths and depths. w..... that would occur with a uniformly t_-
ithography ( ) | thick stamp are superimposed on w_., an
into a silicon stamp [1] can provide with backside grooves. Each o / - deformation afforded by the grooves.
long-range flexibility to conform to thl{'ar:e chip 3“5 0”13 ‘mefsa’ Stamp _ Itm
- . which protrudes ~ 1 pm from &l Plan view of
stamp nanotopography, while retaining the stamp / NG _— grooved stamp
ST - - Flexure Features
short-range stamp rigidity to limit
- ' . . = e EE i latinna: Sampling points
pattern dependenmes. Stamp compliance is = f%rggo:ség: simulations; 5 _® Pl Al
The compliance of such stamps needs considerably increased by § O P P Y < to piecewise-
to be modeled to enable selection of backside grooves. 5 pana deflection
groove geometries. ‘Compliance enhancement S W,  ——
Aim: achieve adequate stamp factor’is the ratio of peak- & L Convert w, to
compliance without making fabrication peak deflection of the 5 e M piecewise-planar
: oo : structured stamp to that ofa € deflection map
unnecessarily difficult or consuming a 3 + W,

uniformly t_-thick stamp,

great deal of silicon area with under identical loadings.

unnecessarily wide flexures.

3. Simulation results

t, =t =150 ym Stn:ctured
stamp ALY D A U L
Right: A structured stamp with narrow flexures separating ”H“lH fij Optical micrographs of
thicker feature-carrying mesas gives smaller systematic RLT Experiments of Pedersen [5]; WL %1 imprinted resist, after using a
variation than a uniformly thin stamp. p: protrusion density. 20007 Pl AN 0 stamp with initial wafer
Resist viscosity fit: 2x10° Pa.s (within the range of literature < 15004 8:2 e - . thickness t, = 500 um and
values for this 50K PMMA). t,, = 525 pm; t;= 150 pm; s, = 1.5 5 R I N Jak - flexure thickness t, = 240 ym.
mm; g = 500 um. Stamp-average pressure 0.35 MPa; imprint ™ 1000+ o 8:2 R 1 il "f
time 5 min. Our simulations .. = = | m Color gradients near step-
_ 2000 —/———1 ~ lF'e’(“rei _ changes In protrusion-density
Below: Imprinting an array of mesas with contrasting density. < 8:2 ' BB .~ 0.5 pindicate that RLT is
Thinner flexures accelerate cavity-filling and reduce peak RLT 5 15007 ——— | 04 | ——— = perturbed over a distance of
ranges by decoupling differently patterned adjacent mesas on ™ 10001 _ | 823 o : 0.5-1 mm from each step.
the stamp. Longer flexures have a stronger decoupling effect. _50'0 0 5(')0 _50'0 0 5(')0 e e Stamp-average imprint
Resist viscosity: 2x10° Pa.s. s, = 2 mm. Cross-sectional position (um) ) @ . pressure was ~ 0.4 MPa.
0=67% T 0 = 20%
t(um) |7 N 1 mm__ Region of stamp: stripes of Step-change in p
--- 500 (t.= t) Reference case: - - Jr mesas with protrusion-density
g m
200 all mesas on stamp . e mE  contrast from 20% to 67%.
100 with equal e il “®  Stamp-average pressure 5. Outlook
— B0 protrusion density | .~ C 1 MPa L
: » Structured stamps offer short-range stamp rigidity
Protrusion density = 20% T 20% ’i 7% "> . Protrusion density = 67% and longer-range flexibility.
"Prop’n cavity RLT range | : " Prop'ncavity RLT range Longer-range flexibility enables stamps to
volume filled (nm) . RLT after 30 s (nm) . volume filled (nm) _conform to random stamp/sub_stratg undulations,
120 300 1 - —— iImproving wafer-scale RLT uniformity.
gls,, . t, ! Where the protrusion pattern differs between
=1/6 100{ 250 oo adjacent stamp mesas, simulations indicate that
! flexures enable earlier completion of stamp-cavity
30077, = filling and a tighter range of within-mesa RLT,
gls, : compared to a uniformly t_-thick stamp.
=1/3 100 Soe o Structured stamps could therefore offer faster
9+ - —! - T - — imprinting times.
0 _ 100 O _ 100 -4 0__ 4 0 _ 600 0 _ 600 Our simulation model allows these benefits to be
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guantified and stamp geometries selected.
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