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Outline: droplet-dispensed NIL simulation
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• Modeling objectives and key 
phenomena in droplet-dispensed NIL 
(JFIL)

• Capillary-driven droplet-spreading 
model

• Scalable model for merging of 
droplet arrays

• Integrated full-field simulation of JFIL
• Template edge effects

• Wafer edge effects

• Template curvature and avoiding gas 
entrapment



Droplet-dispensed simulation involves template 
approach, spreading and holding phases
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Droplet spreading is driven by capillary and 
external loads, and can be highly directional

• Feature, droplet and chip length scales span 6 to 7 orders of 
magnitude – multiscale modeling is essential

• Virtual work concept used to capture work done by capillary forces 4



Droplet spreading is driven by capillary and 
external loads, and can be highly directional
• When droplet spreads beneath arrays of parallel lines, the resist 

impulse response is anisotropic, modeled with the following 
proportion of resist displacement directed parallel to the lines:

0.75 0.25 tanh 1.5 log
0.5

5

Parallel 
lines 0.2 mm

Cavity height
RLT



The spreading and merging behavior of regular 
arrays of droplets can be aggregated
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Example shown:
• Resin viscosity: 

10 mPa.s
• External load: 

40 kPa
• 1 pL droplets 

on 120 μm 
pitch

• Resin-template 
and resin-wafer 
contact angles: 
15°

• Relationship 
captures both 
filling and RLT 
changes with 
time



Gas entrapment between merging droplets can 
be avoided by controlling template curvature

• Fix curvature, bring 
stamp down under 
constant load, and 
droplets merge. 

• If gas is entrapped, 
dissolution model 
would be needed; 
but aim is to avoid 
entrapment
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The time evolution of residual layer and cavity 
filling can be compared for multiple processes
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• Example pattern, 30 mm x 40 mm 
template = single imprint field

• 1 pL droplets; target RLT 25 nm
• Constant approach velocity of 50 

μm/s until load of 50 N reached
• Load then maintained while 

template curvature relaxed over 
1 second

Template edge

Animation of template cavity-filling 
over a six-second period

Empty Full



The time evolution of residual layer and cavity 
filling can be compared for multiple processes
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Template design near edge has a strong 
effect on edge RLT uniformity

• Pattern density and droplet distribution near template 
edge may be tuned to compensate for pressure 
nonuniformities there and achieve uniform RLT
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Extrusion of resist at template edge can 
be simulated and optimized
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• Material squeezed out from edge of template costs 
silicon real estate: simulations can predict this

• A slight surplus of template cavity volume in the border 
may be used to suppress resist extrusion



Outlook

• JFIL simulation algorithm incorporating effects of pattern-
dependent capillary pressures, external loads, and 
template bowing. Easily scales to >10,000 droplets.

• Predicts RLT uniformity and template filling evolution
• Provides insights into template edge extrusion and 

likelihood of gas entrapment
• Simulation speed and resolution can be tuned

• For a 30x40 mm field simulated on an Intel i7, 8 GB RAM:
~5 seconds at 1 mm resolution; ~5 mins at 0.1 mm resolution

• Detailed (pre-)production data needed for model calibration
• Locations and frequencies of defects within imprint fields, and spatial 

maps of RLT 
• Data needed for multiple template curvature relaxation cases and 

spread/hold times 12
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