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Nanoimprint modeling needs

• Cell-level
• Hundreds of featuresHundreds of features
• Guide iterative layout design 
• Desktop processing in minutes

• Chip-level
• Many millions of featuresy
• Pre-fabrication check: overnight?
• Guide process selection

• Need for flexibility
• Rapid innovation in resist and 
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stamp materials
• Richness of geometries



We need a unified simulation approach for 
micro- and nano-embossing/imprinting 
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We need a unified simulation approach for 
micro- and nano-embossing/imprinting 
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Key: model impulse response g(x,y,t) of resist layer

Model in time:Model in space:
x

Newtonian: 
impulse 
response 

t t i

g Mechanical 
impulse 
applied Resist constant in 

time for t > 0
uniformly over 
small region at 
time t = 0

Resist

Viscoelastic: 
impulse 
response is

Resist

response is 
function of 
time.
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After Nogi et al., Trans ASME: J Tribology, 119 493-500 (1997)



Change in topography is given by convolution of 
impulse response with pressure distribution 

Stampp(x,y,t) ?
Small, unit
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Contact pressure distributions can be found 
for arbitrary stamp geometries

2.3 µm-thick polysulfone film embossed at 205 °C 
under 30 MPa for 2 mins  

Stamp design Simulated pressure Optical micrograph

160 MPa0
Cavity 200 µm

Taylor et al., SPIE 7269 (2009).



Successful modeling of polysulfone imprint
2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins  
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Representing layer-thickness reductions

pg defined in terms of:
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• True pressure p(x, y, t)
• Material compliance J(t)
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Modeling stamp and substrate deflections
Indentation Indentation and bending

λ λ

tstamp

Elastic point-load responses
Indentation Bending

Elastic point load responses
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Modeling stamp and substrate deflections
Indentation Indentation and bending

λ λ

tstamp

log
(magnitude ( g
of stamp 
deflection)
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log(λ/tstamp)
~4



Simulation method: step-up resist compliance
PMMA 495K, c. 165 °C, 40 MPa, 1 min
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Abstracting a complex pattern

Local relationships between pressure-compliance and RLT:
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Simulation results: abstracted pattern
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Simulation time

Simulation time (s) N

E t d
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Strengths of the simulation method

• A unified simulation approach
C ith l thi k• Can cope with any layer thickness

• Can integrate feature sizes ranging over many orders of magnitude

• Can model any linear viscoelastic material
• Speed

• At least 1000 times faster than feature-level FEM

Implicit periodic bo ndar conditions are sef l• Implicit periodic boundary conditions are useful
• Realistic representation of whole-wafer imprint of many chips
• Can use edge-padding for non-periodic modeling

• Suited to quick adaptation for new NIL configurations
• Use to explore the use of flexible stamps and substrates
• Explore the imprinting of non-flat substrates
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g
• Micro-contact printing; roll-to-roll



Varying stamp’s bending stiffness: simulations
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Summary: fast nanoimprint modeling

• Contributions
• Flexible modeling approach
• Pattern abstraction optional
• Suited to cell and chip scalesSuited to cell and chip scales
• 1000+ times faster than FEM

O tl k• Outlook
• We will need NIL-aware design 

checking
• Can use as an engine for 

“Mechanical Proximity Correction”
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