Fast simulation of pattern dependencies in thermal nanoimprint lithography

13 November 2009 Hayden Taylor and Duane Boning Massachusetts Institute of Technology

Nanoimprint modeling needs

Experiment

0.1 mm

RLT

(nm)

200

80

• Cell-level

- Hundreds of features
- Guide iterative layout design
- Desktop processing in minutes

Chip-level

- Many millions of features
- Pre-fabrication check: overnight?
- Guide process selection

Need for flexibility

- Rapid innovation in resist and stamp materials
- Richness of geometries

We need a unified simulation approach for micro- and nano-embossing/imprinting

We need a unified simulation approach for micro- and nano-embossing/imprinting

Initial polymer thickness, r_0

Key: model impulse response g(x,y,t) of resist layer

After Nogi et al., Trans ASME: J Tribology, 119 493-500 (1997)

Change in topography is given by convolution of impulse response with pressure distribution

Contact pressure distributions can be found for arbitrary stamp geometries

2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

Stamp design Cavity 160 MPa Ω

Simulated pressure

Optical micrograph

200 µm

Taylor et al., SPIE 7269 (2009).

Successful modeling of polysulfone imprint

2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

Taylor et al., SPIE 7269 (2009).

Representing layer-thickness reductions

• Material compliance J(t)

$$p_{g}(x, y, t_{h}) = (1 - \nu^{2}) \int_{0}^{t_{h}} p(x, y, t') \frac{\mathrm{d}J(t - t')}{\mathrm{d}t'} \mathrm{d}t'$$

Modeling stamp and substrate deflections

Elastic point-load responses

Modeling stamp and substrate deflections

Simulation method: step-up resist compliance

PMMA 495K, c. 165 °C, 40 MPa, 1 min Experiment

Abstracting a complex pattern

Local relationships between pressure-compliance and RLT:

Simulation results: abstracted pattern

3 min 5 min

Simulated residual layer thickness

495K PMMA, 10–15 MPa, 170 °C

Simulation time

Stamp 1 Feature-scale

Stamp 2 Abstracted

Strengths of the simulation method

A unified simulation approach

- Can cope with any layer thickness
- Can integrate feature sizes ranging over many orders of magnitude
- Can model any linear viscoelastic material
- Speed
 - At least 1000 times faster than feature-level FEM
- Implicit periodic boundary conditions are useful
 - Realistic representation of whole-wafer imprint of many chips
 - Can use edge-padding for non-periodic modeling

Suited to quick adaptation for new NIL configurations

- Use to explore the use of flexible stamps and substrates
- Explore the imprinting of non-flat substrates
- Micro-contact printing; roll-to-roll

Varying stamp's bending stiffness: simulations

Summary: fast nanoimprint modeling

Experiment

Simulation

0.1 mm

RLT

(nm)

200

80

Contributions

- Flexible modeling approach
- Pattern abstraction optional
- Suited to cell and chip scales
- 1000+ times faster than FEM

Outlook

- We will need NIL-aware design checking
- Can use as an engine for "Mechanical Proximity Correction"

Acknowledgements

Funding

• The Singapore-MIT Alliance

Colleagues

 Matt Dirckx, Eehern Wong, Melinda Hale, Aaron Mazzeo, Shawn Chester, Ciprian Iliescu, Bangtao Chen, Ming Ni, and James Freedman of the MIT Technology Licensing Office

Helpful discussions

 Derek Bassett, Roger Bonnecaze, Siddharth Chauhan, Grant Willson, Yoshihiko Hirai, Wei Wu, Roger Walton, and John Mutkoski