A chip-scale imprinter with integrated optical interference for calibrating models of NIL resists and resist-stamp boundary conditions

23 October 2013

Hayden Taylor* and Niswan Dhakal Nanyang Technological University, Singapore

Joel Yang and Zhu Di Institute for Materials Research and Engineering, Singapore

* hkt@ntu.edu.sg

Outline

- Resist model calibration by fitting simulations to imprint experiments
- The need for new tools to characterise resist-stamp material combinations
- Real-time optical monitoring of imprint
- Potential RLT sensing enhancements:
 - Plasmonic
 - Ellipsometric
- Potential applications of real-time optical imprint monitoring:
 - Endpoint detection
 - Process control
 - Defect detection (including non-fill)

Our existing simulation technique quickly finds RLT and cavity-filling distributions

Example questions:

Does changing stamp material affect residual layer uniformity? ^{1,2}

Can 'dummy fill' accelerate stamp cavity filling? ³

Simulations need to be highly scalable

- At least 10³ times faster than FEM
- Can trade off spatial resolution and speed

¹ Taylor NNT 2009, 2011; ² Taylor SPIE 7641 2010; ³ Boning et al. NNT 2010

The NIL simulation technique has been experimentally validated

Silicon test stamp:

PMMA 35 kg/mol

The technique has been validated for five thermoplastic materials

Nanoscale experiments may involve substantial slip between resist and stamp

The imprinting rate will depend strongly on any slip between resist and stamp/substrate

Real-time observation of evolving RLT could accelerate material/stamp characterisation

100 µm

Real-time observation of evolving RLT could accelerate material/stamp characterisation

RLT–colour relationships are calibrated using a known stamp topography

Videos of the imprinting process allow the temporal response of resist to be extracted

If features are sub-wavelength, plasmonic effects could enhance RLT detection

An anti-reflective stamp coating and light polarisation could enhance RLT contrast

Contrast: relative change in intensity for a 1 nm change in RLT about a given RLT **Substrate-enhanced ellipsometric contrast**: Ausserré, *Optics Express*, **15** 8329 (2007)

Potential applications include endpoint detection and cavity filling monitoring

- Endpoint detection
- Feedback control in R2R processing
- Cavity filling
- Stamp inspection/defect detection
- Probing of complex fluids (e.g. biological samples)

Conclusions and outlook

- Resist rheological behaviour can be extracted from nanoscale imprint experiments
- Resist-stamp boundary conditions are critical and require characterising
- Real-time measurement of RLT can be accomplished interferometrically using simple white light microscopy
- Optical RLT measurement sensitivity can be tuned using plasmonic or ellipsometric approaches
- Real-time RLT measurement could be applied to improve NIL yield and throughput

Collaborators and acknowledgements

• AMO, Germany

- Christian Moormann
- Ulrich Plachetka

Microresist Technology, Germany

- Arne Schleunitz
- Marko Vogler
- Freimut Reuther

• IMRE, Singapore

• Goh Wei Peng

NTU, Singapore

• Tan Boon Hwee

• IBN, Singapore

Ciprian Iliescu

Trinity College Dublin

Graham Cross