Modeling and mitigating pattern and process dependencies in nanoimprint lithography

23 June 2011 Hayden Taylor Singapore-MIT Alliance for Research and Technology

formerly based at: Microsystems Technology Laboratories, MIT

Collaborators and acknowledgements

- Funding
 - Singapore-MIT Alliance
 - Danish National Advanced Technology Foundation
- NIL Technology
 - Kristian Smistrup
 - Theodor Nielsen
 - Brian Bilenberg
- University of California, San Diego
 - Andrew Kahng
 - Yen-Kuan Wu

- MIT
 - Duane Boning
 - Cai Gogwilt
 - Matt Dirckx
 - Eehern Wong
 - Melinda Hale
- Helpful discussions
 - Hella Scheer
 - Yoshihiko Hirai
 - Dave White

Spun-on vs droplet-dispensed resist in NIL

- Resist viscosity $\ge 10^3$ Pa.s
- Applied pressures ~ 5 MPa
- Thermoplastic or UV-curing
- Viscous resist squeezing
- Elastic stamp deflections

S.Y. Chou *et al., Appl. Phys. Lett.* vol. 67 pp. 3114-3116, 1995 S. Fujimori, Jpn. J. Appl. Phys. vol. 48 p. 06FH01, 2009

Droplet-dispensed resist

- Resist viscosity < 0.1 Pa.s
- Applied pressures ~ 5 kPa
- Droplets tailored to pattern
- Key figure of merit: filling time
- Gas trapping and dissolution

M. Colburn *et al.*, SPIE 3676, pt.1-2, 379-89, 1999 www.molecularimprints.com

NIL pattern and process dependencies have systematic and random components

Nanoimprinting of spun-on layers exhibits pattern dependencies

Two relevant timescales for pattern formation:

Local cavity filling

Residual layer thickness (RLT) homogenization

We need a unified simulation approach for micro- and nano-embossing/imprinting

We need a unified simulation approach for micro- and nano-embossing/imprinting

Taylor, NNT 2009

Key: model impulse response g(x,y,t) of resist layer

Taylor, NNT 2009. After Nogi et al., Trans ASME: J Tribology, **119** 493-500 (1997)

Change in topography is given by convolution of impulse response with pressure distribution

Taylor, NNT 2009

Contact pressure distributions can be found for arbitrary stamp geometries

2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

Stamp design Simulated pressure **Optical micrograph** Cavity 200 µm 160 MPa Ω

Taylor et al., SPIE 7269 (2009).

Successful modeling of polysulfone imprint

2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

Representing layer-thickness reductions

Modeling stamp and substrate deflections

Simulation method: step-up resist compliance

PMMA 495K, c. 165 °C, 40 MPa, 1 min

Experiment

Abstracting a complex pattern

Local relationships between pressure history and RLT:

HK Taylor and DS Boning, NNT 2009; SPIE 7641 (2010)

Our NIL simulation technique has been experimentally validated

PMMA 495K (200 nm), 180 C, 10 min, 16 MPa, 10 replicates

Simulation time

Strengths of the simulation method

A unified simulation approach

- Can cope with any layer thickness
- Can integrate feature sizes ranging over many orders of magnitude
- Can model any linear viscoelastic material
- Speed
 - At least 1000 times faster than feature-level FEM
- Implicit periodic boundary conditions are useful
 - Realistic representation of whole-wafer imprint of many chips
 - Can use edge-padding for non-periodic modeling

Suited to quick adaptation for new NIL configurations

- Use to explore the use of flexible stamps and substrates
- Explore the imprinting of non-flat substrates
- Micro-contact printing; roll-to-roll

Varying stamp's bending stiffness: simulations

- Long-range compliance to allow the stamp to conform to random wafer nanotopography
- Short-range rigidity to limit systematic pattern dependencies
- Making the stamp soft (*i.e.* polymeric) or thin satisfies the first aim but not the second
- Structuring the stamp can meet both needs

Structured stamps provide long-range compliance and short-range rigidity

- A mechanical model of a structured stamp is needed:
 - To ensure adequate long-range compliance...
 - while keeping fabrication affordable...
 - and maximizing the stamp area available for product features.

 $= w_{D}$ (stamp deformation)

T Nielsen, *et al.*, Proc. 18th IEEE Conf. MEMS 2005, pp. 508–511 HK Taylor, K Smistrup, and DS Boning, MNE 2010

Even a small flexure-gap increases wafer-scale stamp compliance several-fold

HK Taylor, K Smistrup, and DS Boning, MNE 2010

Simulations using a measured wafer topography illustrate long-range compliance

Roughness spectra of three virgin silicon wafers

Simulations using a measured wafer topography illustrate long-range compliance

Simulations using a measured wafer topography illustrate long-range compliance

		Mean <i>within</i> - mesa std. dev. (nm)	Mesa-to- mesa std. dev. (nm)
Undeformed stamp topography		1.8	10.4
Simulated RLTs	t _g = 100 μm	1.0	0.3
	t _g = 150 μm	1.1	0.7
	no grooves	1.3	2.3

HK Taylor, K Smistrup, and DS Boning, NNT 2010

Die-scale simulations show that structuring the stamp reduces local pattern dependencies

RH Pedersen, *et al.*, *J. Micromech. Microeng.*, vol. 18, p. 055018, 2008. HK Taylor, K Smistrup, and DS Boning, MNE 2010.

Structured stamps also allow for 'decoupling' of differently patterned adjacent mesas

HK Taylor, K Smistrup, and DS Boning, MNE 2010

Cavity-filling time depends on length-scale of pattern-density variation, and stamp stiffness

Lower-density region fills by:

Lateral flow

Lateral flow and stamp deflection

HK Taylor, NNT 2010

Cavity-filling time depends on length-scale of pattern-density variation, and stamp stiffness

Stamp stiffness: 160GPa (Si) Resist viscosity: 10⁴ Pa.s Stamp-average pressure: 5 MPa

If imprinted layer is an etch-mask, RLT specifications depend on resist properties

- (*h* + *r*_{max})/*r*_{max} must be large enough for mask to remain intact throughout etch process
- Largest allowable $r_{max} r_{min}$ is likely determined by lateral etch rate and critical dimension specification

Time to satisfy target for RLT uniformity scales as ~W² for Δρ above a threshold

31

We postulate a cost function to drive the insertion of dummy fill into rich designs

- Abutting windows of size *W*_i swept over design
- Δρ_i is maximal density contrast between abutting windows in any location
- Objective is to minimize sum of contributions from *N*+1 window sizes
- *h*: protrusion height on stamp
- *r*₀: initial resist thickness

We postulate a cost function to drive the insertion of dummy fill into rich designs

A simple density-homogenization scheme offers faster filling and more uniform RLT

Metal 1 of example integrated circuit: min. feature size 45 nm

Stamp protrusion pattern density: *without* dummy fill

100 µm

HK Taylor, NNT 2010

Characteristic feature pitch (nm)

Predominant feature orientation

A simple density-homogenization scheme offers faster filling and more uniform RLT

Density: without fill

Density: with fill

If stamp cavities do not fill, smaller RLTs are possible but RLT may be less uniform

Increasing 'keep-off' distance may reduce IC parasitics, but degrades RLT performance

37

Summary: modeling and mitigation of process and pattern dependencies in NIL

