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Nanoimprint is the mechanical patterning of
resist spun or sprayed on to a wafer

Spun-on resist
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— Resist viscosity 2 10° Pa.s

— Applied pressures ~ 5 MPa
— Thermoplastic or UV-curing

— Viscous resist squeezing
— Elastic stamp deflections

S.Y. Chou et al., Appl. Phys. Lett. vol. 67 pp. 3114-3116, 1995

S. Fujimori, Jpn. J. Appl. Phys. vol. 48 p. 06FHO01, 2009

Droplet-dispensed resist
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— Resist viscosity < 0.1 Pa.s

— Applied pressures ~ 5 kPa

— Droplets tailored to pattern

— Key figure of merit: filling time
— Gas trapping and dissolution

M. Colburn et al., SPIE 3676, pt.1-2, 379-89, 1999
www.molecularimprints.com 2



.
Nanoimprinting of spun-on layers
exhibits pattern dependencies

Pattern density already
constrained to a modest
range (typ. 40-60%)
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Two relevant timescales
for pattern formation:

Local cavity filling

Residual layer thickness
(RLT) homogenization
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Nanoimprinting of spun-on layers
exhibits pattern dependencies

Objective for
7 nanoimprint-friendly design:

Phppddidiivig Limit time to bring residual layer

' I thickness variation within spec.

NIL for planarization
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planarized surface within spec.




.
Nanoimprint modeling and simulation needs

Experiment

e Cell-level
 Hundreds of features
« Guide iterative layout design

RLT  Desktop processing in minutes
(nm)
200 e Chip-level
 Many millions of features
» Pre-fabrication check: overnight?
« Guide process selection
80 * Need for flexibility

« Rapid innovation in resist and
stamp materials
=== 0.1 mm » Richness of geometries
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Nanoimprint compared to

photolithography modeling

Photolithography Nanoimprint
Hirai:
Feat | PROLITH; Rowland?:
Reddy”
Chip-scale OPC Mendels/Zaitsev~;
software

[1] Y. Hirai et al., Microelectronic Eng. vol. 85 p. 842, 2008.

[2] H.D. Rowland and W.P. King, J Micromech Microeng, vol. 15, p. 1625, 2004.

[3] H-C. Scheer et al., Microelectronic Eng., vol. 84, p. 949, 2007.

[4] S. Reddy et al., Phys. Fluids, vol. 17, p. 122104, 2005.

[5] N. Kehagias et al., Microelectronic Eng., vol. 85, p. 846, 2008. 7



We need a unified simulation approach for
micro- and nano-embossing/imprinting

Initial polymer thickness, r,
A W
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Biological micro-/nano-devices A
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I/Tissue engineering \
Diffractive optics
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Flat-panel displays

s Photovoltaics )

Semiconductors Photonics Metamaterials

Hard-disk drives | | | | > Cavity
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We need a unified simulation approach for

micro- and nano-embossing/imprinting

Initial polymer thickness, r,

A

10 mm

1 mm

100 pm

10 pm

| | | " Cavity
100nm 1 pm 10pum 100 um Wwidth, w




Key: model impulse response g(x,y,t) of resist layer

Model in space: Model in time:
+ X
/ Ig Mechanical :\lrr?gvutlc;neian:
iImpulse .
i = n(m response
Resist applied .
uniformly over constant in
small region at time fort>0
l timet=0
rD
| Viscoelastic:
| Impulse
Em% 40 response is
function of
* | time.
I 1 .
—— Resist
—— Substrate

After Nogi et al., Trans ASME: J Tribology, 119 493-500 (1997) 10
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Change in topography is given by convolution of
Impulse response with pressure distribution

_ Stamp
Small, unit

disp.

Resist

Time increment

|
[p(x,y,t)*g(x,y,D)|at =1
. T J (\§ T Y ‘

Pressure Impulse Unit displacement
? response In contact region
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Contact pressure distributions can be found
for arbitrary stamp geometries

2.3 um-thick polysulfone film embossed at 205 °C
under 30 MPa for 2 mins

Stamp design Simulated pressure Optical micrograph

S 4 k
S s svcienm™ ¢ .

160 MPa

Taylor et al., SPIE 7269 (2009).



Successful modeling of polysulfone imprint

2.3 um-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

topography (um)

Taylor et al.,
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Representing layer-thickness reductions

Tall cavities Shallower cavities
O R A A AR AR

stamp

polymer

substrate

stamp

a2
polymer
\BAAAAEAEA A EA substrate

'/—Limiting value of r:

1 cavities completely filled

time
14



Modeling stamp and substrate deflections

Indentation Indentation and bending
T I

Magnitude (log
of stamp bending scales)
deflection
indentation Mt
- stamp

]
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Simulation method: step-up resist compliance

PMMA 495K, c. 165 °C, 40 MPa, 1 min

Experiment
(RLT) = A A om
nm "
0.1 mm l
200
Simulation
' .5/\-'-/\-/\.’\. i B B
: N
80 e
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Abstracting a complex pattern

Local relationships between pressure-compliance and RLT:

A A A
r|k r\ rk rk

substrate substrate
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Simulation results: abstracted pattern

Test-stamp pattern Bl cavity Simulated residual layer thickness

I 180 nm
Experimental topography Simulation
495K PMMA, 10-15 MPa, 170 °C

I 20 nm
4 ;";“M ySTHS g 3 min
: N - / 5 min
M o

1 mm

Silicon
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Simulation time

Simulation time (s) - N ]
A
i i Expected:
104 =t Lo 1 time ~ O(N2logN)
e
1000 = e
| i ® | i @ Stamp 1
100 —-—---—-- :L————‘% —————— — - Feature-scale
o @
o«
1 T T

10 100 1000 104

Simulation size, N Abstracted
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.
The physical insights of simulation can be

encapsulated in design rules

o Keep protrusion density p uniform
 Dummy fill insertion

« Importance grows with lateral length-scale (unlike CMP)
« Could vary cavity heights spatially*: expensive

 Minimize transient stamp deflections: uniform Flpa2
« Care to avoid capillary bridging™ if some cavities unfilled
 Impose upper limit on F,pa”to limit filling time
* Trenches quicker to fill than square holes => impose grid

 Link to other process steps
e EXxploit RLT variation to counteract etch nonuniformity

e Pattern density rules, RLT variation target, stamp
flexibility and substrate/stamp smoothness will be

Interrelated

* H. Hiroshima, in Proc. Micro- and Nano-Engineering, 2008.
+ Landis et al., Microelectronic Eng., vol. 84, p. 940, 2007. 20



Varying stamp’s bending stiffness: simulations

Stamp
thickness:

5mm

0.5 mm

y  0.12 mm

4_'

- .

200 nm

4 mm

Features

Residual
layer
thickness
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Summary: fast nanoimprint modeling

Experiment

« Contributions
 Flexible modeling approach
 Pattern abstraction optional

(lzlr';]r) « Suited to cell and chip scales
e 1000+ times faster than finite
200 element modeling
 Outlook
* We will need NIL-aware design
55 checking

e Can use as an engine for
“*Mechanical Proximity Correction”

= (.1 mm
22
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