Towards nanoimprint lithography-aware layout design checking

25 February 2010 Hayden Taylor and Duane Boning Massachusetts Institute of Technology

Nanoimprint is the mechanical patterning of resist spun or sprayed on to a wafer

- Resist viscosity $\ge 10^3$ Pa.s

- Applied pressures ~ 5 MPa
- Thermoplastic or UV-curing
- Viscous resist squeezing
- Elastic stamp deflections

S.Y. Chou *et al., Appl. Phys. Lett.* vol. 67 pp. 3114-3116, 1995 S. Fujimori, Jpn. J. Appl. Phys. vol. 48 p. 06FH01, 2009 **Droplet-dispensed resist**

- Resist viscosity < 0.1 Pa.s
- Applied pressures ~ 5 kPa
- Droplets tailored to pattern
- Key figure of merit: filling time
- Gas trapping and dissolution

M. Colburn *et al.*, SPIE 3676, pt.1-2, 379-89, 1999 www.molecularimprints.com

Nanoimprinting of spun-on layers exhibits pattern dependencies

Not realistic in semiconductors

Nanoimprinting of spun-on layers exhibits pattern dependencies

Two relevant timescales for pattern formation:

Local cavity filling

Residual layer thickness (RLT) homogenization

Nanoimprinting of spun-on layers exhibits pattern dependencies

Objective for nanoimprint-friendly design:

Limit time to bring residual layer thickness variation within spec.

Nanoimprint modeling and simulation needs

Cell-level

- Hundreds of features
- Guide iterative layout design
- Desktop processing in minutes

Chip-level

- Many millions of features
- Pre-fabrication check: overnight?
- Guide process selection
- Need for flexibility
 - Rapid innovation in resist and stamp materials
 - Richness of geometries

[1] Y. Hirai et al., Microelectronic Eng. vol. 85 p. 842, 2008.

[2] H.D. Rowland and W.P. King, J Micromech Microeng, vol. 15, p. 1625, 2004.

[3] H-C. Scheer et al., Microelectronic Eng., vol. 84, p. 949, 2007.

[4] S. Reddy et al., Phys. Fluids, vol. 17, p. 122104, 2005.

[5] N. Kehagias et al., Microelectronic Eng., vol. 85, p. 846, 2008.

We need a unified simulation approach for micro- and nano-embossing/imprinting

We need a unified simulation approach for micro- and nano-embossing/imprinting

Initial polymer thickness, r_0

Key: model impulse response g(x,y,t) of resist layer

After Nogi et al., Trans ASME: J Tribology, 119 493-500 (1997)

Change in topography is given by convolution of impulse response with pressure distribution

Contact pressure distributions can be found for arbitrary stamp geometries

2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

Stamp design

Simulated pressure

Optical micrograph

200 µm

Taylor *et al.*, SPIE 7269 (2009).

Successful modeling of polysulfone imprint

2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins

Representing layer-thickness reductions

Modeling stamp and substrate deflections

Simulation method: step-up resist compliance

Abstracting a complex pattern

Local relationships between pressure-compliance and RLT:

Simulation results: abstracted pattern

Experimental topography 495K PMMA, 10–15 MPa, 170 °C

Simulated residual layer thickness

Simulation

Simulation time

Stamp 1 Feature-scale

Stamp 2 Abstracted

The physical insights of simulation can be encapsulated in design rules

Keep protrusion density ρ uniform

- Dummy fill insertion
- Importance grows with lateral length-scale (unlike CMP)
- Could vary cavity heights spatially*: expensive
- Minimize *transient* stamp deflections: uniform $F_1 \rho a^2$
 - Care to avoid capillary bridging⁺ if some cavities unfilled
 - Impose upper limit on $F_1\rho a^2$ to limit filling time
 - Trenches quicker to fill than square holes => impose grid
- Link to other process steps
 - Exploit RLT variation to counteract etch nonuniformity
- Pattern density rules, RLT variation target, stamp flexibility and substrate/stamp smoothness will be interrelated

* H. Hiroshima, in *Proc. Micro- and Nano-Engineering*, 2008.

+ Landis et al., Microelectronic Eng., vol. 84, p. 940, 2007.

Varying stamp's bending stiffness: simulations

Summary: fast nanoimprint modeling

Experiment

RLT

(nm)

200

80

Contributions

- Flexible modeling approach
- Pattern abstraction optional
- Suited to cell and chip scales
- 1000+ times faster than finite element modeling

Simulation

• Outlook

- We will need NIL-aware design checking
- Can use as an engine for "Mechanical Proximity Correction"

Acknowledgements

• Funding

• The Singapore-MIT Alliance

Colleagues

 Matt Dirckx, Eehern Wong, Melinda Hale, Aaron Mazzeo, Shawn Chester, Ciprian Iliescu, Bangtao Chen, Ming Ni, and James Freedman of the MIT Technology Licensing Office

Helpful discussions

 Derek Bassett, Roger Bonnecaze, Siddharth Chauhan, Grant Willson, Yoshihiko Hirai, Wei Wu, Roger Walton, John Mutkoski, Kristian Smistrup, Marc Beck, Andrew Kahng, and Dave White.