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Nanoimprint is the mechanical patterning of 
resist spun or sprayed on to a wafer
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– Resist viscosity ≥ 103 Pa.s
– Applied pressures ~ 5 MPa
– Thermoplastic or UV-curing
– Viscous resist squeezing
– Elastic stamp deflections

– Resist viscosity < 0.1 Pa.s
– Applied pressures ~ 5 kPa
– Droplets tailored to pattern
– Key figure of merit: filling time
– Gas trapping and dissolution

Spun-on resist Droplet-dispensed resist

S.Y. Chou et al., Appl. Phys. Lett. vol. 67 pp. 3114-3116, 1995
S. Fujimori, Jpn. J. Appl. Phys. vol. 48 p. 06FH01, 2009

M. Colburn et al., SPIE 3676, pt.1-2, 379-89, 1999
www.molecularimprints.com
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Nanoimprinting of spun-on layers
exhibits pattern dependencies

3

Not realistic 
in semiconductors

Pattern density already 
constrained to a modest 

range (typ. 40-60%)



Nanoimprinting of spun-on layers
exhibits pattern dependencies
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Two relevant timescales 
for pattern formation: 

Residual layer thickness
(RLT) homogenization 

Local cavity filling



Nanoimprinting of spun-on layers
exhibits pattern dependencies
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Objective for 
nanoimprint-friendly design:

Limit time to bring residual layer 
thickness variation within spec.

NIL for planarization

Similarly, limit time to bring NIL-
planarized surface within spec. 

Stamp
Planarizing
material
Substrate



Nanoimprint modeling and simulation needs
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• Cell-level
• Hundreds of features
• Guide iterative layout design 
• Desktop processing in minutes

• Chip-level
• Many millions of features
• Pre-fabrication check: overnight?
• Guide process selection

• Need for flexibility
• Rapid innovation in resist and 

stamp materials
• Richness of geometries



Nanoimprint compared to 
photolithography modeling
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Photolithography Nanoimprint

Feature-scale

Chip-scale

PROLITH;
“TCAD”

OPC 
software

Hirai1;
Rowland2;
Scheer3;
Reddy4

Mendels/Zaitsev5;
and this work

[1] Y. Hirai et al., Microelectronic Eng. vol. 85 p. 842, 2008.
[2] H.D. Rowland and W.P. King, J Micromech Microeng, vol. 15, p. 1625, 2004.
[3] H-C. Scheer et al., Microelectronic Eng., vol. 84, p. 949, 2007.
[4] S. Reddy et al., Phys. Fluids, vol. 17, p. 122104, 2005.
[5] N. Kehagias et al., Microelectronic Eng., vol. 85, p. 846, 2008.



We need a unified simulation approach for 
micro- and nano-embossing/imprinting 

8

polymer

stamp

polymer
substrate

w

r0
10 mm

1 mm

100 µm

10 µm

1 µm

100 nm

Initial polymer thickness, r0

Cavity 
width, w1 nm 10 nm 100 nm 1 µm 10 µm 100 µm

Biological micro-/nano-devices

Tissue engineering
Diffractive optics

Flat-panel displays

PlanarizationPhotovoltaics

MetamaterialsPhotonicsSemiconductors
Hard-disk drives



We need a unified simulation approach for 
micro- and nano-embossing/imprinting 
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Key: model impulse response g(x,y,t) of resist layer
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Model in time:Model in space:

Resist
Substrate

Newtonian: 
impulse 
response 
constant in 
time for t > 0

Viscoelastic: 
impulse 
response is 
function of 
time.

x
g

After Nogi et al., Trans ASME: J Tribology, 119 493-500 (1997)

Mechanical 
impulse 
applied 
uniformly over 
small region at 
time t = 0

Resist



Change in topography is given by convolution of 
impulse response with pressure distribution 
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Resist
Substrate

Stampp(x,y,t) ?

[ ] 1=∆∗ ttyxgtyxp ),,(),,(

Pressure Impulse 
response

Unit displacement 
in contact region

Time increment

Small, unit
disp.

?



Contact pressure distributions can be found 
for arbitrary stamp geometries

2.3 µm-thick polysulfone film embossed at 205 °C 
under 30 MPa for 2 mins  

Taylor et al., SPIE 7269 (2009).

160 MPa0

Stamp design Simulated pressure Optical micrograph

Cavity 200 µm



Successful modeling of polysulfone imprint
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2.3 µm-thick polysulfone film embossed at 205 °C under 30 MPa for 2 mins  

Taylor et al., SPIE 7269 (2009).



Representing layer-thickness reductions
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Modeling stamp and substrate deflections

15

Indentation Indentation and bending

λ λ

tstamp

Magnitude 
of stamp 
deflection

λ/tstamp
~4

(log 
scales)



Simulation method: step-up resist compliance
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PMMA 495K, c. 165 °C, 40 MPa, 1 min



Abstracting a complex pattern
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Local relationships between pressure-compliance and RLT:



Simulation results: abstracted pattern
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Simulation time
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Simulation time (s)

10 100 1000 104

10

100

1000

104

Stamp 1
Feature-scale

Stamp 2
AbstractedSimulation size, N

N

Expected: 
time ~ O(N2logN)



The physical insights of simulation can be 
encapsulated in design rules
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• Keep protrusion density ρ uniform
• Dummy fill insertion
• Importance grows with lateral length-scale (unlike CMP)
• Could vary cavity heights spatially*: expensive

* H. Hiroshima, in Proc. Micro- and Nano-Engineering, 2008.
+ Landis et al., Microelectronic Eng., vol. 84, p. 940, 2007.

• Minimize transient stamp deflections: uniform F1ρa2

• Care to avoid capillary bridging+ if some cavities unfilled
• Impose upper limit on F1ρa2 to limit filling time
• Trenches quicker to fill than square holes => impose grid

• Link to other process steps
• Exploit RLT variation to counteract etch nonuniformity

• Pattern density rules, RLT variation target, stamp 
flexibility and substrate/stamp smoothness will be 
interrelated



Varying stamp’s bending stiffness: simulations
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Features

Stamp
thickness:

5 mm

0.5 mm
0.12 mm

200 nm

4 mm

Residual 
layer
thickness



Summary: fast nanoimprint modeling
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• Contributions
• Flexible modeling approach
• Pattern abstraction optional
• Suited to cell and chip scales
• 1000+ times faster than finite 

element modeling

• Outlook
• We will need NIL-aware design 

checking
• Can use as an engine for 

“Mechanical Proximity Correction”
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