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1. Motivation 2. Modeling grooved stamp deflectionS  1.c model is integrated with our existing

scheme for fast TNIL simulation [2,3]: an

Our semi-analytical model for the elastic deflections of a structured impulse response describes flowing resist

stamp captures local indentation, transverse shearing, and bending.

« Wafer-scale nonuniformity of residual

- : and a point-load response encapsulates
layer thickness (RLT) remains a The model has been calibrated against finite-element simulations POl P PS
: : : e . . stamp flexibility [4]. Stamp deflections,
challenge in thermal nanoimprint for ranges of initial wafer thicknesses and groove widths and depths. - -
lithography (TNIL) W, esq that would occur with a uniformly £ -
eIy / | thick stamp are superimposed on w,., an
The use Of baCkS|de grOOVGS etChed R|ght geometry Of N”_ Stamp S Etched groove approx|mat|on to the add|t|ona| Stamp
into a silicon stamp [1] can provide with backside grooves. Each 9] / o deformation afforded by the grooves.
long-range flexibility to conform to th‘{'ar':e Chtip Zits 0”13 ‘mefsa’ Stamp _ |t
: . which protrudes ~ 1 ym from ; Plan view of
stamp nanotopography, while retaining N staenp H [ s~ | grooved stamp
short-range stamp rigidity to limit ’ Flexure Features
: - - Sampling points
pattern—dependenmes. Stamp compliance is 3 EiX\rgsorlsc.)dFleEI simulations; | for transformation
The compliance of such stamps needs considerably increased by § 30 | e M to piecewise-
to be modeled to enable selection of backside grooves. 5 planar deflection
groove geometries. ‘Compliance enhancement 58201 @ W, ——
e AIm: achieve adequate Stamp factor’ is the ratio of peak- § i 0 | t NG ' Convert w, to
: : : T i © | ; - o
compliance without making fabrication peak deflection of the 5 ©0.05 0.2 Weo = —~——— piecewise-planar
v difficul . structured stamp to that of a s . AO01 %04 N deflection map
unnecessarily . .I Icult or Co.nsumlng d uniformly tm-thiCk stamp, S 0 0-2 0-4 5 o8 W W,
great deal of silicon area with under identical loadings. | Cals. ) o |
unnecessarily wide flexures. = Wo (stamp deformation)

3. Propagation of parasitic nanotopographies to RLT variation: 4. Limiting systematic residual

simulations incorporating a measured wafer topography layer thickness variation

—~ 1 Double-side polished (DSP) wafer, inital thickness 500 um i i
10 cam oor (a) A structured stamp with narrow flexures separating
8 ., | DSP 500 il e, ’ thicker feature-carrying mesas gives smaller systematic
= DSP, 350 um —g : 49 RLT variation than a uniformly thin stamp.
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e Measurements of the surface lations:

roughness of three virgin silicon
wafers (above) show that the
amplitude of nanotopography is
approximately proportional to its
wavelength up to scales of 210 mm.
 We simulated a thermal NIL Process Simulated reS|duaI layer thicknesses (RLTS) afterlmprlntlng Process simulated:

-40 stamp surface
(non-flatness of

60F | | | <tamn mecac - substrate/resist is

40 F Stamp mesas U u u U i not modeled but

o0 b ] would be expected
(d)

to be comparable

0 Res|st before imprinting to that of Stamp) 500 O 500 500 O 500
Cross-sectional position (um)

o)

Topography (nm) Topography (nm)

(right) in which the stamp was _ a5 e ﬂ ] 035 MPa; 100, fo} .pr(.)trusion density: Resist viscosity fit: 2_><1O5 Pa.s
assumed to have the topography é 40 < s R 2 v ]\ ‘% t\\ | thickness 400 nm (within the range of literature values for this 50K
measured from the SSP wafer. 2 g5l — ‘S’:nsﬁof_'gyr:]renpa's' PMMA). t,,= 525 pm; {;= 150 ym; s, = 1.5 ST, & =

» Simulations indicate that etched legend 4 =525 m - — g=05mm. 500 um. Stamp-average pressure 0.35 MPa; imprint
backside grooves in the stamp allow ¢ oy 0T LT0um Lstown o Batendensiyis || time 5 min.
the stamp to conform more easily to part of stamp - — cavities do notfill
the substrate, enabling substantial Mesas
reC(IjUCt!;I)?r?S in bOthRTfsa-tO;'mesa This table summarizes variation of the Mean within-| Mesa-to- S. OUtIOOk
igmgre'g trgeassmove\(:;a;;)anrhp of ?fris(lér)e:bff -t variation of ;r:nctjleac’lced r:eeja( :::)' ';‘eeja( :::)' + Structured stamps offer short-range stamp rigidity
the same original thickness. RLTs, extracted from the three cases in (e). . - combined with Ionger-range erX|b|I|ty.

+ Meanwhile, the ability of grooves Undeformed stamp topography 1.8 10.4 Longer-range flexibility enables stamps to
mechanically to ‘decouple’ adjacent t,= 100 pm 0 0.3 conform to random stamp/substrate undulations,
mesas with differing protrusion Simulated =150 w 07 improving wafer-scale RLT uniformity.
pattern densities Is investigated in RLTs g . ' ' Our simulation model allows these benefits to be
our recent work (6] no grooves > 2.3 quantified and stamp geometries selected.
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