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Coping with spatial variation in DRIE

Why non-uniformity is a problem

Controlling uniformity with the mask design

Characterizing tools’ performance

Wafer-to-wafer effects

Improving the mask design process 
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SEM picture 
of turbine blades

Aim: remove imbalance in MIT Microengine rotor

Mask layout

~10 mm

Non-uniformity problems in MEMS

e.g.: A.H. Epstein et al., Proc. Transducers ‘97
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also: 
embossing stamp fabrication for microfluidics manufacture

perhaps too: avoiding footing during SOI etch-through

Non-uniformity problems in MEMS

Thermoplastic polymer

Cover

Si stamp
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Inductively-coupled plasma in DRIE chamber

exhaust

independent control of ions’
acceleration towards wafer

wafer

chuck

Xplasma

~

gas inlet

~

vacuum chamber
~10-100 mTorr

to wafer ‘load lock’

cross-section

r.f. supply 
to excite plasma
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Time-multiplexed ‘Bosch’ processing

SF6 etchC4F8 passivation

X

~

C4F8

~ every 
~10 s

~

mask: e.g.
SiO2, 
photoresist

X

SF6

~
SaFb

+, F •
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Strategies for improving uniformity

Force etching to be reaction-limited

Lower chamber pressure 

Wafer cooling

Conservative mask design

Improved tool design

Relate mask design directly to non-uniformity

Design mask according to desired uniformity

Perturb etch rates constructively
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Previously observed chamber-scale variation

H.K. Taylor et al., submitted for publication
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Previously observed pattern-dependent variation

Average pattern density 5% throughout
Localized to differing extents

H.K. Taylor et al., submitted for publication
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A two-level model, tuned for each tool + recipe

A

B

+ 2 scalar 
variables

two-level 
model

H. Sun et al., Proc. MEMS 05 + work submitted for publication

radial 
distance

filter magnitude

characterization 
wafers

characterization
wafers
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Basis for chamber-scale model? 
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R: etch rate
Θ: surface coverage
kEi: activity constant for ions
vS0: activity constant for radicals 

ii JEkR Θ=

( ) nJvSR Θ−= 10

Ji(x, y) 

Consumption:  Jn(x, y)  

lateral 
transport generation, 

recombination 

C(x, y) 

mask 

silicon 
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‘loading’selectivityrate ct.
Synergism model: Gottscho et al., J Vac Sci Tech B 10 2133 (1992). 
Right: H.K. Taylor et al., submitted for publication

C: fluorine concentration
G: fluorine generation rate
ρ: wafer-average pattern density
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A,∝Ji

B,∝Gn

+ 2 scalar 
variables

X

Basis for chamber-scale model? 

Assuming:

ion flux independent of etched pattern
F generation (G) independent of etched pattern
neutral flux (Jn)∝ F concentration
F concentration depleted as loading increases
F concentration depends on G

H.K. Taylor et al., submitted for publication
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Time-multiplexed ‘Bosch’ processing

SF6 etchC4F8 passivation

X

~

C4F8

~ every 
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mask: e.g.
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Accounting for spontaneity in Si etching

usual condition 
for recipe used

Etch rate cut by 
~15% when ion flux 
minimized

~

x
SF6

~
SaFb

+, F •

platen 
power

5’ SF6 etch with 
no passivation steps

( )cJkER ii +Θ=
( ) nJvSR Θ−= 10

But spontaneous etching is 
readily incorporated into 
map A:
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flow rate

time

C4F8

SF6

Accounting for time-multiplexing

Ion flux 
definitely 
important

(Tstrip)

Ion flux 
important

to an extent
(TSi-etch)

Tpass

Tetch

Non-uniformity 
of CFx flux may 

matter

TSi-etch

Ttot
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Time-multiplexing model
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If we define a = Tetch/Ttot, p = Jikstrip, q = kpassJCFx , we have:

( )[ ]
p

RqqpaR Si−+
='

R’ = ma + c with  m = (p + q)RSi/p and c = –qRSi/p.

RSi is the etch rate our previous model would have predicted. 
Overall, modified rate prediction:
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Basic recipe

Rate of passivation removal

(R’)

(a)

(p + q)RSi/pqRSi/p

ρ = 1%

ρ = 40%
ρ = 95%

ρ = 5%

Here, ‘etch’ step only just 
removes passivation 
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(Short-term) memory effect in chamber

0.1% 5% 99.9% 5%
5’ 5’

several cycles

Thermal diffusivity 
of aluminum ~ 10-4 m2/s

Over 5’, characteristic 
length ~0.17 m

Over 30’, characteristic
length ~0.42 m
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(Short-term) memory effect in chamber

0.1% 5% 99.9% 5%
5’ 5’

several cycles

0.1% 5% 99.9% 5%
30’

several cycles

30’
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Pattern component of memory effect?

X

A 

Y

B

Reference 5% (A) after X

Reference 5% (B) after Y

5% (concentrated into eighth) Y

5% (even)
X

5%
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5%

5’

5’



24

5 10 15 20 25 30
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Diametrical position /4 mm

E
tc

h 
ra

te
 d

iff
er

en
ce

 A
−

B
 (μ

m
/m

in
)Reference 5% (A) after X

Reference 5% (B) after Y

5% (concentrated into eighth) Y

5% (even)
X

Pattern component of memory effect?



25

Putting two-level model into action

two-level model
takes a few seconds to run

discretized 
mask design + scalar 

constants

drafting software

highlight 
problems
on-screen

refine 
mask 
design
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CAD tool for nonuniformity prediction 

Ali Farahanchi

Discretized 
mask design

Die-scale 
variation

Chamber-scale 
variation

Combined 
prediction
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