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Quantum Maxwell’s demon in thermodynamic cycles
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We study the physical mechanism of Maxwell’s demon (MD), which helps do extra work in thermodynamic
cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential
with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the
motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD
with quantum coherence or one at a temperature lower than the molecule’s heat bath can enhance the ability of the
whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals
that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work
between two heat baths with different effective temperatures. The elaborate studies with this model explicitly
reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense
on a Szilard heat engine (SHE). The quantum SHE’s efficiency is evaluated in detail to prove the validity of the
second law of thermodynamics.
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I. INTRODUCTION

Maxwell’s demon (MD) is notorious since its existence
could violate the second law of thermodynamics (SLOT) [1,2]:
the MD distinguishes the velocities of the gas molecules and
then controls the motions of molecules to create a difference of
temperatures between the two domains. In 1929, Leo Szilard
proposed the “one molecular heat engine” (which we call the
Szilard heat engine, SHE) [3] as an alternative version of a
heat engine assisted by the MD. The MD first measures which
domain the single molecule stays in and then manipulates the
system to extract work according to the measurement result.
In a thermodynamic cycle, the molecule seems to extract heat
from a single heat bath at temperature T and thus do work
kBT ln 2 without evoking other changes. This consequence
obviously violates the second law of thermodynamics (SLOT).

In the early years after the discovery of the MD, there
was insufficient attention to this topic. The first revival of the
studies of MD is due to the recognition of the tradeoff between
information and entropy in the MD-controlled thermody-
namic cycles. The milestone discovery was the “Landauer
principle” [4], which reveals that erasing one bit of informa-
tion from the memory in the computing process inevitably
accompanies an increasing entropy of the environment. In the
SHE, the erasing needs work kBT ln 2 done by the external
agent. It gives a conceptual solution for the MD paradox [5] by
considering the MD as a part of the whole working substance,
and thus erasing the information stored in the demon’s memory
is necessary to restart a new thermodynamic cycle. This
observation about erasing the information of the MD finally
saves the SLOT. The recent generalization of the Landaeur
principle, including error effect in the measurement process,
has been discussed in Ref. [6].

The recent revival of studies of MD is due to the devel-
opment of quantum information science. The corresponding
quantum thermodynamics concerns quantum heat engines
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(QHEs) [7,8] with the quantum coherent system serving as the
working substance. The quantum working substance deviates
from the thermodynamic limit and preserves its quantum
coherence [9,10] to some extent, and thus it has tremendous
influence on the properties of QHEs, especially when quantum
MD is included in the thermodynamical cycle [11–13]. There
have been many attempts to generalize the SHE by quantum
mechanically approaching the measurement process [11], the
motion control [12], and the insertion and expansion processes
[14]. However, to our best knowledge, a fully quantum
approach for all processes in the SHE intrinsically integrated
with a quantum MD is still lacking. The quantum-classical
hybrid description of the SHE may result in some observations
about the MD-assisted thermodynamic process that seem to
challenge common senses in physics. Therefore, we need a
fully quantum theory for MD-assisted thermodynamics.

In this paper, we propose a quantum SHE assisted by MD
with a finite temperature difference from that of the system.
In this model, we give a consistent quantum approach to
the measurement process without using the von Neumann
projection [15]. Then we calculate the work done by the
insertion of the movable wall in the framework of quantum
mechanics. The controlled gas expansion is treated with
quantum conditional dynamics. Furthermore, we also consider
the process of removing the wall to complete a thermody-
namic cycles. With these necessary subtle considerations, the
quantum approach for the MD-assisted thermodynamic cycle
will go beyond the conventional theories about the SHE.
We show that a system that deviates from the thermody-
namic limit exhibits uncommon observable quantum effects
due to the finite size of system, which results in discrete
energy levels that could be washed out by the heat fluctu-
ation. Quantum coherence can assist the MD in extracting
more work by reducing effective temperature, while thermal
excitation of the MD at a finite temperature would reduce
its quantum measurement and conditional control of the
expansion. It means that the MD could help the molecule
do maximum work outside only when cooled to absolute zero
temperature.
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Our paper is organized as follows: In Sec. II we first
give a brief review of the classical version of SHE and
then present our model in a quantum version with MD
included intrinsically. The role of quantum coherence of MD
is emphasized with the definition of the effective temperature
for an arbitrary two-level system. In Sec. III, we consider the
quantum SHE with a quantum MD at finite temperature, mea-
suring the molecular position in a one-dimensional infinitely
deep well. The whole cycle consists of four steps: insertion,
measurement, expansion, and removal. Detailed descriptions
are given subsequently. We calculate the work done and heat
exchange in every step. In Sec. IV, we discuss quantum
SHE’s operation efficiency in comparison with the Carnot heat
engine. We restore the well-known results in the classical case
by tuning the parameters in the quantum version, such as the
width of the potential well. Conclusions and remarks are given
in Sec. VI.

II. QUANTUM MAXWELL’S DEMON IN SZILARD
HEAT ENGINE

In this section, we first revisit Szilard’s single-molecule
heat engine in brief. As illustrated in Fig. 1(a), the whole
thermodynamic cycle consists of three steps: insertion [(i) and
(ii)], measurement [(ii) and (iii)], and controlled expansion
[(iii) and (iv)] by the MD. The outside agent first inserts a piston
isothermally in the center of the chamber. Then, it finds which
domain the single molecule stays in and changes its own state
to register the information. Without losing generality, we label
the initial state of the demon as 0. Finding that the molecule
is on the right, namely L/2 < x < L, the demon changes its
own memory to state 1, but it does not change if the molecule
is on the left (0 < x < L/2). According to the information
acquired in the measurement process, the demon controls the
expansion of the domain confining the single molecule: It
allows the isothermal expansion with the piston moving from
L/2 to L if its memory registers 0 and allows the expansion
with the piston moving from L/2 to 0 if the register is on
state 1. In each thermodynamic cycle, the system does work
W = kBT ln 2 to the outside agent in the isothermal expansion.
Overall, the system extracts heat from a single heat bath to do
work and thus it would violate the SLOT if the MD were not
treated as a part of the working substance in the SHE. However,
after the cycle, MD stores one-bit information as its final state
and is on the mixture state of 0 and 1 with equal probability.
Thus, it does not return to its initial state 0. Landauer’s principle
states that to erase such a bit of information at temperature T

requires the dissipation of energy of at least kBT ln 2. The work
extracted by the system compensates for the energy of erasing
the memory. Therefore, the SLOT is saved. In this sense, the
classical version of MD paradox is only a misunderstanding
due to ignoring the erasure of the memories of the MD [5].

In most previous investigations about the MD paradox, it
is usually assumed that the system and the MD possess the
same heat bath. Thus, the whole working substance formed
by the system plus the MD would be in equilibrium, and no
quantum coherence would exist. If the demon is in contact with
a lower temperature heat bath while the system’s environment
possesses higher temperature T , the work needed in the erasing
process is smaller than kBT ln 2 [12]. Under this circumstance,

FIG. 1. (Color online) Classical and quantum Szilard’s single-
molecule heat engine. (a) Classical version: (i), (ii) A piston is inserted
in the center of a chamber. (ii), (iii) The demon finds which domain the
single molecule stays in. (iii), (iv) The demon controls the system to
do work according to its memory. (b) Quantum version: The demon is
modeled as a two-level system with two energy levels |g〉 and |e〉 and
energy spacing �. The chamber is quantum mechanically described
as an infinite potential with width L. (I), (II) An impenetrable wall
is inserted at an arbitrary position in the potential. (II), (III) The
demon measures the state of the system and then records the results
in its memory by flipping its own state or not taking action. The
measurement may result in the wrong results, illustrated in the green
dot-dashed rectangle. (III), (IV) The demon controls the expansion
for the single molecule according to the measurement. (IV), (V) The
wall is removed from the potential.

we actually construct a QHE with a nonequilibrium working
substance or an equilibrium working substance between two
different heat baths. Furthermore, when the MD is initially
prepared with quantum coherence, the quantum nature of the
whole working substance will result in many exotic features.

To tackle this problem, we study here a quantum version of
Szilard’s model with an MD accompanying it. In this model,
the chamber is modeled as an infinite square potential well
with the width L, as illustrated in Fig. 1(b). The demon is
realized by a single two-level atom with energy levels |g〉, |e〉
and level spacing �. Initially, the system is in a thermal state
with inverse temperature β. The demon has been in contact
with the low-temperature bath at the inverse temperature βD .
The demon is initially prepared in the equilibrium state

ρD
0 = pg |g〉 〈g| + pe |e〉 〈e| , (1)

with the probability in the excited state of pe = 1 − pg and in
ground state of

pg = 1/[1 + exp(−βD�)].

Actually, the inverse temperature βD could represent
an effective inverse temperature of the MD with quantum
coherence. For an environment such as a mesoscopic system,
the number of its degrees of freedom is not large. Under this
circumstance, the strong coupling to the MD leaves finite
off-diagonal elements in the reduced density matrix [16].
This remnant of coherence can be utilized to improve the
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apparent efficiency of the heat engine [9,10]. For the demon
with coherence, the density matrix usually reads as

ρD
0 =

[
pg F

F ∗ pe

]
, (2)

where the off-diagonal element F measures the quantum
coherence. The eigenvalues of the reduced density matrix
represent two effective population probabilities as

p+ (F ) � pe − coth

(
�

2
βD

)
|F |2 ,

(3)

p− (F ) � pg + coth

(
�

2
βD

)
|F |2 .

We can define an effective inverse temperature βeff =
− ln [p+ (F ) /p− (F )] /� for the two-level MD, namely,

βeff = βD + 4 |F |2
�

cosh2

(
�

2
βD

)
coth

(
�

2
βD

)
. (4)

The effective temperature Teff = 1/βeff here is lower than the
bath temperature TD . As shown in what follows, it is the
lowering of the effective temperature of the MD that results in
an increase of the heat engine efficiency.

Modeling the chamber as an infinite square potential well,
the eigenfunctions of the confined single molecule are

〈x |ψn (L)〉 =
√

2

L
sin [nπx/L] , (5)

with the corresponding eigenenergies En(L) =
(h̄nπ )2/(2mL2), where the quantum number n ranges
from 1 to ∞. The initial Hamiltonian can be written as
H0 = ∑

n En (L) |ψn (L)〉 〈ψn (L)|.
On this set of bases, the initial state of the total system is

expressed as a product state

ρ0 = 1

Z (L)

∑
n

e−βEn(L) |ψn (L)〉 〈ψn (L)| ⊗ ρD
0 , (6)

where

Z (L) =
∑

n

exp [−βEn (L)] (7)

is the partition function of the system.
With the above model, the MD-assisted thermodynamic

cycle for the quantum SHE is divided into the four steps
illustrated in Fig. 1(b): (I), (II) the insertion of a mobile solid
wall into the potential well at a position x = l (the origin is
x = 0); (II), (III) the measurement done by the MD to create
the quantum entanglement between its two internal states and
the spatial wave functions of the confined molecule; (III), (IV)
quantum control of the mobile wall to move the according
to the record in the demon’s memory; and (IV-V) the removal
of the wall so that the next thermodynamic cycle can be started.
Their descriptions are discussed in the next section.

III. QUANTUM THERMODYNAMIC CYCLES
WITH MEASUREMENT

In this section, we analyze in detail the thermodynamic
cycle of the molecule confined in an infinite square potential
well. The molecule’s position is monitored and then controlled

by the MD. The MD may have quantum coherence as in Eq. (2)
or equivalently may possess a temperature TD = 1/βD lower
than T = 1/β of the confined molecule’s heat bath. In each
step, we evaluate the work done by the outside agent and the
heat exchange in detail. In order to concentrate on the physical
properties, we put the calculations in Appendix A.

A. Step 1: Quantum insertion [(I) and (II)]

In the first process, the system is in contact with the heat
bath β, and then a piston is inserted isothermally into the
potential at position l. The potential is then divided into two
domains, denoted simply as L and R, with lengths l and L − l

respectively. The eigenstates change into the following two
sets as

〈
x
∣∣ψR

n (L − l)
〉 =

⎧⎨
⎩

√
2

L−l
sin

[
nπ(x−l)

L−l

]
l � x � L

0 0 � x � l

, (8)

and

〈
x
∣∣ψL

n (l)
〉 =

{
0 l � x � L√

2
l

sin(nπx/l) 0 � x � l
,

with the corresponding eigenvalues En (L − l) and En (l).
In the following discussions, we use the free Hamiltonian
HT = H + HD , where

H =
∑

n

[En (l) |ψn (l)〉 〈ψn (l)|

+En(L − l) |ψn (L − l)〉 〈ψn (L − l)|]
for 0 � l � L and HD = � |e〉 〈e| . Here, we take the MD’s
ground-state energy as the zero point of energy of atom.

At the end of the insertion process, the system is still in
the thermal state with the temperature β and the MD is on its
own state without any change. With respect to the above split
bases, the state of the whole system is rewritten in terms of the
new bases as

ρins = [PL (l) ρL (l) + PR (l) ρR (L − l)] ⊗ ρD
0 , (9)

where

ρL (l) =
∑

n

e−βEn(l)

Z (l)

∣∣ψL
n (l)

〉 〈
ψL

n (l)
∣∣ (10)

and

ρR (L − l) =
∑

n

e−βEn(L−l)

Z (L − l)

∣∣ψR
n (L − l)

〉 〈
ψR

n (L − l)
∣∣ (11)

refer to the system localized in the left and right domains
respectively. With respect to the their sum Z (l) = Z (l) +
Z (L − l) , the temperature-dependent ratios

PL (l) = Z (l) /Z (l)

and

PR (l) = Z (L − l) /Z (l)

are the probabilities of finding the single molecule on the
left and the right sides, respectively. For simplicity, we
denote PL (l) and PR (l) by PL and PR , respectively, in the
following discussions. We emphasize that the probabilities
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FIG. 2. (Color online) Probability PL and the corresponding
classical one P C

L vs temperature 1/β for different piston positions
l = 1/3 and l = 1/4. Without losing generality, we set the parameters
as L = 1, m = π 2/2, and h̄ = 1.

are different from the classical probabilities, P c
L = l/L and

P c
R = (L − l) /L, of finding the single molecule on the left

and right sides. We numerically illustrate this discrepancy
between this classical result and ours in Fig. 2 for different
insertion positions l = 1/3 and l = 1/4. It is clear in Fig. 2
that the probability PL approaches the corresponding classical
one P c

L as the temperature increases to the high-temperature
limit. However, a large discrepancy is observed at low
temperature. This deviation from the classical one is due to
the discreteness of the energy levels of the potential well with
finite width, which disappears as level spacing diminishes
with L → ∞. In this case, the heat excitation will erase all
the quantum feature of the system and the classical limit is
approached.

In this step, work should be done to the system. In the
isothermal process, the work done by the outside agent can be
expressed as Wins = �Uins − T �Sins, with the internal energy
change

�Uins = Tr [ρinsHT − ρ0 (H0 + HD)]

and the total entropy change

�Sins = Tr (−ρins ln ρins + ρ0 ln ρ0) .

During this isothermal process, the work done outside just
compensates the change of the free energy as

Wins = T [ln Z (L) − lnZ (l)] . (12)

The same result has been obtained in Ref. [14]. By taking
inverse temperature β = 1 and L = 1, we illustrate the work
needed for the insertion of the piston into the potential in Fig. 3.
It is shown that to insert the piston at the center of the
potential, one needs the maximum work to be done. Another
reasonable fact is that no work is needed to insert the piston at
positions l = 0 and l = L. Classically, it is well known that no
work should be done to insert the piston at any position. The
classical limit for partition function means that L 	 λ, where
λ = h/

√
2πmkBT is the mean thermal wavelength. However,

for a fixed L, it follows the numerical calculation that Wins

FIG. 3. (Color online) Work done by the outside agent. (a) Wins

vs l for different system inverse temperatures β = 1, 0.5, and 0.1.
Here, we choose the same parameter as in Fig. 2. (b) Wins vs L for
different insertion positions l = 0.1L, 0.3L, and 0.5L with β = 1.

diverges when the temperature approaches infinity, namely,

lim
T →∞

Wins = ∞. (13)

This conclusion is mathematically strictly proved in
Appendix B. This is different from the conclusion
limT →∞ Wins = 0 obtained in Ref. [14], which can be
directly obtained from the result in Eq. (5) in Ref. [11] with
d = 0. Actually, in Ref. [11], Zurek took the high-temperature
limit at the beginning of the calculation of partition function
and obtained the result as kBT ln [L/ (L − d)]. We should
remark that the final result kBT ln 2 in both Refs. [11] and [14]
is correct since the infinity in whole cycle could be canceled
with each other. To explain this inconsistency, we notice
that limT →∞ ln [Z (L) /Z (l)] = ln [L/ (L − d)]. We have
limd→0 ln [L/ (L − d)] = limd→0 limT →∞ ln [Zb/Zins] = 0,
while limT →∞ kBT = ∞. Thus, the limit limT →∞ Wins = 0
cannot determined with the approximate formula
ln [L/ (L − d)]. This is similar to the generic problem: Know-
ing limx→∞ f (x) = 0 and limx→∞ g (x) = ∞, one could not
simply determine limx→∞ f (x) g (x) = 0 or ∞ according
to some approximation. The right answer depends on the
mathematical details rather than some qualitative argument.

The discrete property of the system due to the finite width
of the potential well results in a typical quantum effect, even
at a high temperature. We can understand this divergence by
some consideration in physics. The work Wins to insert a wall
is proportional to two factors: the probability of finding a
single molecule at the insertion position and the energy of the
single molecule. Taking insertion position, L/2 for example,
the probability decreases as temperature increases and finally
reaches a stable with a single molecule staying anywhere in
the potential at equal probability 1/L. However, the average
energy for the single molecule keeps increasing. This results
in a divergence of Wins for high temperature. This finite-size-
induced quantum effect is typical for a mesoscopic system. To
restore the classical results, we simply take the limit L → ∞ to
make the spectrum continuous, rather than T → ∞. Under this
limit L → ∞, we have Z (l) /Z (L) → 1, which just recovers
the classical result that

lim
L→∞

Wins = 0, (14)

as illustrated in Fig. 3(b) for different insertion positions l =
0.1L, 0.3L, and 0.5L.

After the insertion of the piston, the entropy of the system
changes. The system exchanges heat with the heat bath during
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this isothermal reversible process. The heat is obtained by
Qins = −T �Sins as

Qins =
(

T − ∂

∂β

)
[ln Z (L) − lnZ (l)] . (15)

Similar to the asymptotic properties of the work in Eq. (14),
Qins approaches to zero when L → ∞.

B. Step 2: Quantum measurement [(II) and (III)]

In the second step, the system is isolated from the heat
bath. The MD finds which domain the single molecule stays
in and registers the result into its own memory. In the
classical way, the memory can also be imaged as a chamber
containing a single molecule. The classical states of the single
molecule on the right and left sides are denoted as the states
0 and 1. The memory is designed always as two bistable
states with no energy difference � = 0, and no energy is
needed in the measurement process. This setup based on
the “chamber” argument seems to exclude the possibility for
quantum coherence in a straightforward way. Therefore, we
adopt the TLS as the memory to allow the quantum coherence
to take the role, as discussed in Sec. II. In the scheme here,
the demon performs the controlled-NOT operation [12]. If the
molecule is on the left side, no operation is done, whereas the
demon flips its state when finding the molecule on the right.
This operation is realized by the following unitary operator:

U =
∑

n

∣∣ψL
n (l)

〉 〈
ψL

n (l)
∣∣ ⊗ (|g〉 〈g| + |e〉 〈e|)

+ ∣∣ψR
n (L − l)

〉 〈
ψR

n (L − l)
∣∣ ⊗ (|e〉 〈g| + H.c) . (16)

We remark that the operation is unitary [17], which is different
from the previous discussion [6] of MD with the positive
operator valued measure (POVM). After the measurement, the
MD and the system are correlated. This correlation enables the
MD to control the system to perform work to the outside agent.
The density matrix of the whole system after the measurement
is

ρmea = [PLpgρ
L (l) + PRpeρ

R (L − l)] ⊗ |g〉 〈g|
+[PLpeρ

L (l) + PRpgρ
R (L − l)] ⊗ |e〉 〈e| . (17)

If the temperature of the demon is zero, namely TD = 0, the
measurement actually results in a perfect correlation between
the system and the MD,

ρmea = PLρL (l) ⊗ |g〉 〈g| + PRρR (L − l) ⊗ |e〉 〈e| . (18)

Then the demon can distinguish exactly the domain where the
single molecule stays, for example, state |g〉 representing the
molecule on left side and vice versa. At a finite temperature,
this correlation gets ambiguous. As illustrated in the dot-
dashed green box in Fig. 1(b), the demon actually gets the
wrong information about the which domain the molecule stays
in. For example, the demon thinks the molecule is on the left
with memory registering |g〉, while the molecule is actually
on the right. The MD loses a certain amount of information
about the system and lowers its ability to extract work. For case
� �= 0 at finite temperature, the above imperfect correlation
leads to a condition for the MD’s temperature under which
the total system could extract positive work. Quantitatively,

this information can be expressed in the form of mutual
information [18]:

I = pe ln pe + pg ln pg − (PLpg + PRpe) ln(PLpg + PRpe)

− (PLpe + PRpg) ln(PLpe + PRpg).

For the case TD = 0, we have maximum mutual information
Ieff = − (PL ln PL + PR ln PR), while it reaches minimum
Imin = 0 with � = 0.

The worst case is that when we first let the MD become
degenerate, that is, � = 0, the temperature approaches zero.
In this sense, the demon is prepared in a mixing state

ρD
0 (� = 0) = 1

2 (|g〉 〈g| + |e〉 〈e|)
and the state of the whole system after the measurement reads

ρmea = 1
2 [ρL(l) + ρR(L − l)] ⊗ ρD

0 (� = 0) . (19)

Thus, no information is obtained by the MD. There exists
another limiting process that the nondegenerate MD is first
prepared in the zero-temperature environment, and then �

approaches zero. Thus, the state of the MD is on state |g〉 〈g|.
In this case, we get a more accurate MD, as mentioned above.
The physical essence of the difference between the two limit
processes is in the symmetry breaking [19] (we discuss this
again later). With such symmetry breaking, the degenerate
MD could also make an ideal measurement. An intuitive
understanding for the zero-temperature MD helping to do work
is that a more calm MD can see the states of the molecule were
clearly and control the molecule more effectively.

Next, we calculate the work done in the measurement
process by assuming that the total system is isolated from the
heat bath of the molecule. The heat exchange here is exactly
zero, namely Qmea = 0, since the operation is unitary and the
total entropy is not changed during this process. However,
the total internal energy changes, which merely results from
the work done by the outside agent

Wmea = PR(pg − pe)�

to register the MD’s memory. The work needed is actually a
monotonous function of the demon’s bath temperature TD . If
the temperature of the demon is zero (the MD is prepared in a
pure state), namely TD = 0, the work reaches its maximum
Wmax

mea = PR�. The demon can distinguish exactly which
domain the single molecule stays in, state |g〉 representing
molecule on the left and vice versa. As discussed as follows,
the work done by the outside agent here is the main factor
to slow down the efficiency of the heat engine. However, the
low temperature results in a more perfect quantum correlation
between the MD and the system, thus enables the MD to
extract more work. Requirement of the work done in the
measurement and the ability of controlling free expansion are
two competing factors of the QHE. It is clear that less work is
needed if the insertion position is closer to the right boundary
of the potential. The work needed in the measurement process
approaches zero, namely Wmea → 0, when l → L. Thus, the
efficiency is promoted to reach the corresponding Carnot
efficiency when l = L for this measurement.
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C. Step 3: Controlled expansion [(III) and (IV)]

In the third step, the system is brought into contact with
the heat bath with temperature β. Then the expansion is
performed slowly enough to enable the process to be reversible
and isothermal. The expansion is controlled by the demon
according to its memory. Finding its state on |g〉, the outside
agent allows the piston to move right and the single molecule
performs work to the outside. However, the agent pays some
work to move the piston to the right if the MD’s memory is
inaccurate, for example, the situation in the green dot-dashed
box in Fig. 1(b). If in state |e〉, the piston is allowed to move to
the left side. Under this description, we avoid the conventional
heuristic discussion with adding an object in the classical
version of SHE. Here, we choose two arbitrary final positions
of the controlled expansion as lg and le for the corresponding
MD’s state |g〉 and |e〉. We prove later that the total work
extracted is independent of the expansion position chosen here.
After the expansion process, the density matrix of the whole
system is expressed as

ρexp = [PLpgρ
L(lg) + PRpeρ

R(L − lg)] ⊗ |g〉〈g|
+ [PLpeρ

L(le) + PRpgρ
R(L − le)] ⊗ |e〉〈e|. (20)

During the expansion, the system performs work −Wexp � 0
to the outside agent,

Wexp = T [lnZ(l) + PL ln PL + PR ln PR.

−PLpg ln Z(lg) − PRpe ln Z(L − lg)

−PLpe ln Z(le) − PRpg ln Z(L − le)]. (21)

For a perfect correlation (pg = 1), with the piston moved to
the side of the potential, namely lg = L and le = 0, the work
is simply

Wexp = T (PL ln PL + PR ln PR) − Wins,

which is the maximum work that can be extracted in this
process. In the classical limit L → ∞, the work is

Wexp = T (PL ln PL + PR ln PR) .

We restore the well-known result Wexp = −kBT ln 2, when the
piston is inserted in the center of the potential. If the demon is
not perfectly correlated to the position of the single molecule
(pg < 1), the work extracted −Wexp would be less. Therefore,
it is clear that the ability of MD to extract work closely depends
on the accuracy of the measurement.

In this step, the heat exchange is related to the change of
entropy as

Qexp = PL

(
T − ∂

∂β

)
[ln Z(l)−pg ln Z(lg) − pe ln Z(L − le)]

+PR

(
T − ∂

∂β

)
[ln Z(L − l) − pe ln Z(L − lg)

−pg ln Z(le)]. (22)

D. Step 4: Removal [(IV) and (V)]

To complete the thermodynamic cycle, the system and the
MD should be reset to their own initial states. As for the
system, the piston inserted in the first step should be removed.
In the previous studies, this process is neglected, since the
measurements are always ideal and the piston is moved to an
end boundary of the chamber. Thus, no work is required to
remove the piston. However, in an arbitrary process, we can
show the importance of removing the piston in the whole
cycle. During this process, the system keeps contact with
the heat bath with inverse temperature β and the removal is
performed isothermally. The density matrix of the total system
after removing the piston reads

ρrev =
∑

n

e−βEn(L)

Z(L)
|ψn(L)〉〈ψn(L)|

⊗ [(PLpg + PRpe)|g〉〈g| + (PLpe + PRpg)|e〉〈e|].
(23)

In this process, the work done and the heat absorbed by the
outside are

Wrev = Tr[ρrev(H + HD) − ρexpHT ] − T Tr[−ρrev ln ρrev]

+T Tr[−ρexp ln ρexp] (24)

and

Qrev = −T Tr[−ρrev ln ρrev] + T Tr[−ρexp ln ρexp], (25)

respectively. We refer to Appendix A for the exact expression
of those two formulas. The MD now is no longer entangled
with the system, and the density matrix of the demon is
factorized out as

ρD
rev = (PLpg + PRpe)|g〉〈g| + (PLpe + PRpg)|e〉〈e|. (26)

In the ideal case TD = 0, the demon is on the state

ρD
rev = PL|g〉〈g| + Pe|e〉〈e|

with entropy

SD
rev = −PL ln PL − PR ln PR.

According to Landauer’s principle, erasing the memory of the
MD dissipates at least TDSD

rev = 0 work into the environment.
In this sense, we can extracted kBT ln 2 work with MD’s help.
However, we does not violate the SLOT, since the whole
system functionalizes as a heat engine working between a
high-temperature bath and a zero-temperature bath. Actually,
the increase of entropy in the zero-temperature bath is exactly
SD

rev. Therefore, the energy dissipated actually depends on
the temperature of the environment where the information is
erased. In the previous studies, people always set the same
temperature for the system and the MD. Thus, the exact
mechanism of MD was not clear to a certain extent, especially
for SHE. Let us consider another special case, � = 0, which
directly results in pe = pg = 1/2. MD is prepared on its
maximum entropy state ρD

0 (� = 0). At the end of the cycle,
MD actually is on the same state, namely ρD

rev = ρD
0 (� = 0).

Thus, no work is paid to erase the memory.
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After this procedure, the MD is decoupled from the system
and brought into contact with its own thermal bath with inverse
temperature βD . Since

PLpe + PRpg � pe, (27)

the MD releases energy into its heat bath. We do not discuss
this thermalization process here in detail. The MD and the
system are reset to their own initial states ρ0, which allows a
new cycle to start.

IV. EFFICIENCY OF SZILARD HEAT ENGINE

For the quantum version of the SHE, the quantum coherent
based on the finite size of the chamber results in different
properties from the classical one. Work is required during the
insertion and removal processes, while the same process can
be done freely in the classical version. The microscopic model
here relates the efficiency of the measurement carried out by
the MD to the temperature of the heat bath. In the whole
thermodynamic cycle, the work done by the system to outside
is the sum of all the work done in each process,

Wtot = − (Wins + Wmea + Wexp + Wrev)

= T [(pe ln pe + pg ln pg)

− (PLpg + PRpe) ln(PLpg + PRpe)

− (PLpe + PRpg) ln(PLpe + PRpg)]

−PR(pg − pe)�. (28)

To enable the system to do work outside, the temperature of
the MD should be low enough to make sure Wtot � 0, which is
known as the positive-work condition (PWC) [8]. To evaluate
the efficiency of QHE, we need to obtain the heat absorbed
from the high-temperature heat bath. In contrast to the classical
one, the exchange of heat with the high-temperature source
persists in each step. The total heat absorbed from the high-
temperature source is the sum over all four steps,

Qtot = − (Qins + Qmea + Qexp + Qrev)

= T [(pe ln pe + pg ln pg)

− (PLpg + PRpe) ln(PLpg + PRpe)

− (PLpe + PRpg) ln(PLpe + PRpg)]. (29)

It is obviously that Qtot = T I . Here, the absorbed energy
is used to perform work to the outside, while only the
measurement process wastes Wmea, which is released to the
low-temperature heat bath. It is very interesting to notice
that Wmea → 0 as � → 0, while the total heat Qtot → 0
and Wtot → 0. To check the validity of SLOT, one should
determine the efficiency of this heat engine in a cycle,

η = 1 − PR(pg − pe)�

Qtot
. (30)

As an example, we consider the special case l = L/2, which
is similar to the case of the ordinary SHE with the piston
inserted in the center of the chamber. In this special case, the
probabilities for the single molecule staying at the two sides are

the same as those of the classical one, namely PL = PR = 1/2.
The total work extracted here can be written in a simple form,

Wtot = T (ln 2 + pe ln pe + pg ln pg) − (pg − pe)�/2. (31)

In this special case, to make the system capable of doing work
to the outside, there is a requirement for the temperature of the
demon (low-temperature bath). For example, when we choose
β = 1 and � = 0.5, the PWC is βD � 2.09. This requirement
is more strict than that of the Carnot heat engine, βD > 1. The
efficiency of this heat engine reads

η = 1 − (pg − pe)�

2T (ln 2 + pe ln pe + pg ln pg)
, (32)

which is lower than the corresponding Carnot efficiency,

ηCarnot = 1 − TD

T
.

Here, the efficiency is a monotonic function of the energy
spacing � and reaches its maximum

ηmax = 1 − 2TD

T
� ηCarnot

with � = 0.
In the general case, we show the work done by the system

and the efficiency of the heat engine versus the position
of the wall l and the temperature of demon βD in Figs. 4
and 5. As illustrated in Fig. 4(c), for small insertion positions,
for example, l = 0.16 and 0.36, the system cannot extract
positive work. There exists a critical insertion position lcri to
extract positive work, namely,

T
(
P cri

L ln P cri
L + P cri

R ln P cri
R

) + P cri
R � = 0, (33)

where P cri
R = PR (lcri) and P cri

L = PL (lcri). This critical value
of insertion position is lcri = 0.447 for the typical parameter
chosen here. Due to the requirement of work in the measure-
ment process, the work extracted is not a symmetric function of
the insertion piston l, namely Wtot (0.5 − l) �= Wtot (0.5 + l),
as illustrated in Figs. 4(b) and 4(c). Since the high-energy

FIG. 4. (Color online) Work vs insertion position l and MD’s
inverse temperature βD . (a) Total work as a function of βD for l = 0.2,
0.5, and 0.8. (b) Total work as a function of insertion position l for
βD = 2.0, 3.0, and 4.0. (c) Contour plot for total work as function of
l and βD . The position for maximum work extracted is denoted by
the white dashed line.
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FIG. 5. (Color online) Efficiency vs insertion position l and
inverse temperature βD . (a) Efficiency as a function of βD for l = 0.4,
0.5, and 0.6. (b) Efficiency as a function l for βD = 2, 3, and 4. (c)
Contour plot of efficiency vs l and βD .

state |e〉 of the demon is utilized to register the right side
for a single molecule, more work is need when l < L/2.
Due to the requirement of work done by the outside agent
in the measurement process, the optimal position to extract
maximum work is not at the center of the potential. The
maximum work can be extracted for a given MD’s inverse
temperature when

P wmax
L pe + P wmax

R pg

P wmax
L pg + P wmax

R pe

= e−β�, (34)

where P wmax
L = PL (lwmax) and P wmax

R = PR (lwmax). It is clear
that the position for the maximum work depends on the
temperature of the demon βD .

In Fig. 5, we show the efficiency of this single-molecule heat
engine. We consider only the positive work situation and set
efficiency as 0 for all the negative work area. Figure 5(a) shows
the monotonous behavior of efficiency as the MD’s inverse
temperature. Efficiency is also a monotonous function of the
insertion position l, illustrated in Figs. 5(b) and 5(c), which is
not similar to the total work extracted. It worth noticing that the
efficiency reaches its maximum at l = 1, while no work can be
extracted. Since the measurement is the only way of wasting
energy, it is the only way to improve the efficiency by reducing
Wmea with decreasing PR . The efficiency of QHE reaches the
well-known Carnot efficiency ηCarnot, when PR = 0. At the
same time, the total work extracted approaches zero, namely,
Wtot = 0. We meet this dilemma, since the measurement
results in an imperfect correlation between MD and the system.

Before concluding this paper, we draw attention to two limit
processes [19]:

lim
βD→+∞

lim
�→0

ρD = (|g〉 〈g| + |e〉 〈e|) /2, (35)

lim
�→0

lim
βD→+∞

ρD = |g〉 〈g| . (36)

Note that taking the two limits in different orders leads to
completely different results, the latter being a reflection of the
spontaneous symmetry-breaking phenomenon. This difference

for the MD’s initial state results in different work extracted,
namely,

lim
βD→+∞

lim
�→0

Wtot = 0, (37)

lim
�→0

lim
βD→+∞

Wtot = kBT ln 2. (38)

The former one means that MD actually gets no information
about the position of the molecule and extracts no work, while
the latter one shows that MD obtains the exact information
on the position of the molecule and enables the system to
perform maximum work to the outside agent. The same
phenomenon has also been revealed in the process of dynamic
thermalization [19].

V. CONCLUSIONS

In summary, we have studied a quantum version of SHE
with a quantum MD at a finite temperature lower than that
of the system. Overall, we simplify the MD as a two-level
system, which carries out the measurement in quantum
fashion and controls the system to do work to the outside
agent. In this sense, the MD-assisted thermodynamic cycle
is divided into four steps: insertion, measurement, expansion,
and removal, which are all described in the framework of
quantum mechanics. In each step, we also consider the special
case to restore the well-known results in the classical version
of SHE. We explicitly analyzed the total work extracted and
the corresponding efficiency. To resolve the MD paradox, we
compared the obtained efficiency of the heat engine with that
of the Carnot heat engine. It is found the efficiency is always
less than that of the Carnot heat engine, since the quantum MD
is included as the a part of the the whole working substance
and its functions are also correctly quantized. Thus, nothing
violates the SLOT.

In comparison with the classical version of SHE, the
following quantum natures are discovered in the quantum
thermodynamic cycles: (1) The finite-size effect of the po-
tential well is found as the reason for the nonvanishing work
required in the insertion and removal of the middle wall, while
the corresponding manipulations could be achieved freely in
the classical case. (2) The quantum coherence is allowed
to exist in the MD’s density matrix. It is the decrease of
effective temperature caused by this coherence that actually
improves the efficiency of SHE. (3) In the measurement
process, the finite temperature of MD actually results in the
incorrect decision to control the single molecule’s motion. This
incorrectness decreased the MD’s ability to extract work. (4)
In the whole thermodynamic cycle, the removing process is
necessary in returning to the initial state for the whole working
substance. This fact is neglected in previous studies, even for
the classical SHE.

Finally, we should stress that the model studied here
could help to resolve many paradoxical observations due to
heuristic arguments with hybridization of classical-quantum
points of views about thermodynamics. For instance, it could
be recognized that the conventional argument about the MD
paradox only concerns a classical version of MD at the
same temperature as that of the system. Our results can en-
lighten comprehensive understanding about some fundamental
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problems in thermodynamics, such as the relationship between
quantum unitarity and SLOT [20]. Also, the nonequilibrium
properties related to Jarzynski and Crooks’s theorem [21] can
be discussed in this model.
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APPENDIX A: DETAILED CALCULATION
IN EACH STEP

In this appendix, we present a detailed calculation for the
work done and efficiency of SHE. Following the calculations
for the four steps, the reader can deeply understand the physical
essences of the MD in some subtle fashion.

Step 1: Insertion. In this process, the changes of
internal energy �Uint = Tr [ρinsHT − ρ0 (H0 + HD)] and to-
tal entropy �Sins = Tr [−ρins ln ρins] − Tr [−ρ0 ln (ρ0)] are
explicitly given by

�Uint =
∑

n

pn (l) En (l) +
∑

n

pn(L′)En(L′) −
∑

n

pn (L) En (L) = ∂

∂β
[ln Z (L) − lnZ (l)] , (A1)

where L′ = L − l and

�Sins = [lnZ (l) − ln Z (L)] + β
∑

n

[
pn (l) En (l)

+pn(L′)En(L′) − pn (L) En (L)

]
=

(
1 − β

∂

∂β

)
[lnZ (l) − ln Z (L)], (A2)

where

pn(y) = exp(−βEn(y))

Z(y)
.

For the isothermal process, the work done by the outside agent and the heat exchange are simply Wins = �Uint − T �Sins and
Qins = −T �Sins, namely,

Wins = T [ln Z (L) − lnZ (l)] , (A3)

Qins =
(

T − ∂

∂β

)
[ln Z (L) − lnZ (l)] . (A4)

Step 2: Measurement. The measurement is realized by a controlled-NOT unitary operation, which has been illustrated clearly
in Sec. II. After the measurement process, the density matrix for the total system is

ρmea = [PLpgρ
L (l) + PRpeρ

R(L′)] ⊗ |g〉 〈g| + [PLpeρ
L (l) + PRpgρ

R(L′)] ⊗ |e〉 〈e| .
The entropy is not changed in this step. The work done by the outside agent is

Wmea = �Umea = PR(pg − pe)�. (A5)

Step 3: Controlled expansion. At the ending of expansion, the state for the total system reads

ρexp = [PLpgρ
L(lg) + PRpeρ

R(Lg)] ⊗ |g〉 〈g| + [PLpeρ
L(Le) + PRpgρ

R(le)] ⊗ |e〉 〈e| .
where Lg = L − lg and Le = L − le

We move the wall isothermally. The work done by the outside agent can be obtained by the same methods used in the insertion
process as

Wexp = Tr[ρexp(H + HD)] − Tr [ρmea (H + HD)] − T Tr[−ρexp ln ρexp] + T Tr [−ρmea ln ρmea]

=
∑

n

[PLpgpn(lg)En(lg) + PRpepn(Lg)En(Lg) + PLpepn(Le)En(Le) + PRpgpn(le)En(le)] + (PLpe + PRpg)�

−
[∑

n

(PLpn (l) En (l) + PRpn(L′)En(L′)) + (PLpe + PRpg)�

]
+ T

∑
n

[PLpgpn(lg) ln PLpgpn(lg)

+PRpepn(Lg) ln PRpepn(Lg) + PLpepn(Le) ln PLpepn(Le) + PRpgpn(le) ln PRpgpn(le)]

− T
∑

n

[PLpgpn(l) ln PLpgpn(l) + PRpepn(L′) ln PRpepn(L′)

+PLpepn(l) ln PLpepn(l) + PRpgpn(L′) ln PRpgpn(L′)] (A6)

= PLT [ln Z (l) − pg ln Z(lg) − pe ln Z(Le)] + PRT [ln Z(L′) − pe ln Z(Lg) − pg ln Z(le)]. (A7)
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The internal energy changes can be also evaluated as

�Uexp =
∑

n

[PLpgpn(lg)En(lg) + PRpepn(Lg)En(Lg) + PLpepn(Le)En(Le) + PRpgpn(le)En(le)] + (PLpe + PRpg)�

−
[∑

n

(PLpn (l) En (l) + PRpn(L′)En(L′)) + (PLpe + PRpg)�

]

=
∑

n

[PLpgpn(lg)En(lg) + PRpepn(Lg)En(Lg) + PLpepn(Le)En(Le) + PRpgpn(le)En(le)]

−
∑

n

[PLpn (l) En (l) + PRpn(L′)En(L′)]

= PL

∂

∂β
[ln Z (l) − pg ln Z(lg) − pe ln Z(Le)] + PR

∂

∂β
[ln Z(L′) − pe ln Z(Lg) − pg ln Z(le)]. (A8)

Then, we obtain the heat exchanges in this process as Qexp = −T �Sexp = Wexp − �Uexp or

Qexp = PL

(
T − ∂

∂β

)
[ln Z

(
l
) − pg ln Z(lg) − pe ln Z(Lg)] + PR

(
T − ∂

∂β

)
[ln Z(L′) − pe ln Z(Lg) − pg ln Z(le)].

Step 4: Removal. The piston is removed in this process. After that, the system returns to its initial state and is not entangled
with MD. The last step would be to remove the wall in the trap. The system is on the state as

ρrev =
∑

n

exp [−βEn (L)]

Z(L)
|ψn (L)〉 〈ψn (L)| ⊗ [(PLpg + PRpe) |g〉 〈g| + (PLpe + PRpg) |e〉 〈e|]. (A9)

Then, the work done and the heat absorbed are respectively

Wrev = Tr [ρrev (H + HD)] − Tr[ρexp(H + HD)] − T Tr [−ρrev ln ρrev] + T Tr[−ρexp ln ρexp] (A10)

or

Wrev =
∑

n

pn (L) En (L) + (PLpe + PRpg)�

−
∑

n

[PLpgpn(lg)En(lg) + PRpepn(Lg)En(Lg) + PLpepn(Le)En(Le) + PRpgpn(le)En(le)] − (PLpe + PRpg)�

+ T

[∑
n

pn (L) ln pn (L) + (PLpg + PRpe) ln(PLpg + PRpe) + (PLpe + PRpg) ln(PLpe + PRpg)

]

−T
∑

n

{PLpgpn(lg) ln[PLpgpn(lg)] + PRpepn(Lg) ln[PRpepn(Lg)] + PLpepn(Le) ln [PLpepn(Le)]

+PRpgpn(le) ln[PRpgpn(le)]}
= T [− ln Z (L) + (PLpg + PRpe) ln(PLpg + PRpe) + (PLpe + PRpg) ln(PLpe + PRpg) − PL ln PL − PR ln PR

−pe ln pe − pg ln pg + PLpg ln Z(lg) + PRpe ln Z(Lg) + PLpe ln Z(Le) + PRpg ln Z(le)] (A11)

and

Qrev = −T Tr [−ρrev ln ρrev] + T Tr[−ρexp ln ρexp]

= T

[∑
n

pn (L) ln pn (L) + (PLpg + PRpe) ln(PLpg + PRpe) + (PLpe + PRpg) ln(PLpe + PRpg)

]

−T
∑

n

{PLpgpn(lg) ln[PLpgpn(lg)] + PRpepn(Lg) ln[PRpepn(Lg)]

+PLpepn(Le) ln [PLpepn(Le)] + PRpgpn(le) ln[PRpgpn(le)]}
= T {− ln Z (L) + (PLpg + PRpe) ln(PLpg + PRpe) + (PLpe + PRpg) ln(PLpe + PRpg)

−PL ln PL − PR ln PR − pe ln pe − pg ln pg + PLpg ln Z(lg) + PRpe ln Z(Lg) + PLpe ln Z(Le) + PRpg ln Z(le)}
−

∑
n

[pn (L) En (L) − PLpgpn(lg)En(lg) − PRpepn(Lg)En(Lg) − PLpepn(Le)En(Le) − PRpgpn(le)En(le)]
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= T [(PLpg + PRpe) ln(PLpg + PRpe) + (PLpe + PRpg) ln(PLpe + PRpg) − PL ln PL − PR ln PR − pe ln pe − pg ln pg]

−
(

T − ∂

∂β

)
ln Z (L) + PLpg

(
T − ∂

∂β

)
ln Z(lg) + PRpe

(
T − ∂

∂β

)
ln Z(Lg)

+PLpe

(
T − ∂

∂β

)
ln Z(Le) + PRpg

(
T − ∂

∂β

)
ln Z(le). (A12)

The total work extracted by outside agent is the sum of work extracted in each step as

Wtot = −(Wins + Wmea + Wexp + Wrev) = T [(pe ln pe + pg ln pg) − (PLpg + PRpe) ln(PLpg + PRpe)

− (PLpe + PRpg) ln(PLpe + PRpg)] − PR(pg − pe)�. (A13)

The total heat absorbed can also be obtained as

Qtot = −(Qins + Qexp + Qrev) = T

[
(pe ln pe + pg ln pg) − (PLpg + PRpe) ln(PLpg + PRpe)

−(PLpe + PRpg) ln(PLpe + PRpg)

]
. (A14)

APPENDIX B: PROOF OF THE LIMITATION

In this appendix, we mathematically consider the limit
behavior of the insertion work

Wins(β) = 1

β
ln

∑∞
n=1 exp(−βn2α2/L2)

2
∑∞

n=1 exp(−4βn2α2/L2)
(B1)

as β → 0. To this end, we first estimate the series

S(k) ≡
∞∑

n=1

e−kn2
, (B2)

where k is a positive real number. Actually, we can approx-
imate the series S(k) with integrals of f (x) = exp(−kx2)
over two domains (1,∞) and (0,∞) respectively. After re-
expressing the two integrals back to two sums approximately
in Figs. 6(a) and 6(b), we observe∫ ∞

1
e−kx2

dx <

∞∑
n=1

e−kn2
<

∫ ∞

0
e−kx2

dx.

When we noticed that
∫ ∞

0 exp(−kx2)dx = √
π/(4k), it is easy

to prove that the deviation

c(k) ≡
∫ ∞

0
e−kx2

dx −
∞∑

n=1

e−kn2

=
√

π

4k
− S(k) (B3)

satisfies

0 < c(k) <

∫ 1

0
e−kx2

dx <

∫ 1

0
dx = 1. (B4)

This estimate about the bound of c(k) is coarse for practice,
but a more precise estimate shows that

lim
k−→0

c(k) = 1
2 . (B5)

The detailed calculation can be found in Appendix. This result
could be verified by the numerical simulation. Therefore, we
conclude that

lim
k−→0

S(k) →
√

π

4k
− 1

2
. (B6)

Next, we use the above result in Eq. (B6) to estimate
Wins(β). With the above definition, we rewrite Wins(β) as

Wins(β) = 1

β
ln

1 − 2c(z)
√

z/π

1 − 4c(4z)
√

z/π
, (B7)

where z = βα2/L2. Now, let us consider the high-temperature
case, in which c(z)

√
z/π and c(4z)

√
z/π are much less than

unity. A straightforward calculation gives

Wins = 1

β
ln{[1 − 2c(z)

√
z/π ][1 + 4c(4z)

√
z/π + O(β)]}

= 1

β
ln[1 + (4c(4z) − 2c(z))

√
z/π + O(β)]

= 1

β
[(4c(4z) − 2c(z))

√
z/π + O(β)]

= 2a√
πL

2c(4z) − c(z)√
β

+ O(1). (B8)

Finally, we mathematically strictly prove our claim that the
work for insertion diverges as temperature tends to infinity,
namely,

lim
β−→0

Wins = lim
β−→0

a√
πβL

= ∞. (B9)

(a) (b)

FIG. 6. (Color online) Comparison between summation and
integral over two domains (a) (0,∞) and (b) (1,∞). The summation
is marked as thee filled area in both panels.
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