IEOR 240, Linear Algebra Recap

Fall 2021

Overview

Vectors, Matrices and Inequalities

MaxMin Tricks

Absolute Value Tricks

Vectors

We use the notation \mathbb{R} for the real numbers, and \mathbb{R}^{n} for the n-dimensional real vectors:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

The space \mathbb{R}^{n} is one where we can perform addition and scalar multiplication a way that conforms to our intuition from \mathbb{R}^{3}.

Vectors

We use the notation \mathbb{R} for the real numbers, and \mathbb{R}^{n} for the n-dimensional real vectors:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

The space \mathbb{R}^{n} is one where we can perform addition and scalar multiplication a way that conforms to our intuition from \mathbb{R}^{3}.

$$
\mathbf{x}^{\top}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right] .
$$

Matrices

We use the notation $\mathbb{R}^{m \times n}$ for the $m \times n$-real matrices,

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right]
$$

The space $\mathbb{R}^{m \times n}$ is one where we can perform addition and scalar multiplication a way that conforms to our intuition from $\mathbb{R}^{2 \times 2}$.

Matrices

We use the notation $\mathbb{R}^{m \times n}$ for the $m \times n$-real matrices,

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right]
$$

The space $\mathbb{R}^{m \times n}$ is one where we can perform addition and scalar multiplication a way that conforms to our intuition from $\mathbb{R}^{2 \times 2}$.

$$
A^{\top}=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{m 1} \\
\vdots & \ddots & \vdots \\
A_{1 n} & \cdots & A_{m n}
\end{array}\right]
$$

Matrix Multiplication

For $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times m}$, the result of matrix multiplication is a matrix

$$
A B=C \in \mathbb{R}^{n \times m}
$$

such that $C_{i j}=\sum_{l=1}^{k} A_{i l} B_{l j}$

B

Inner Products

The canonical inner product on \mathbb{R}^{n}, for $a, b \in \mathbb{R}^{n}$:

$$
\mathbf{a}^{\top} \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i} \in \mathbb{R}
$$

Inner Products

The canonical inner product on \mathbb{R}^{n}, for $a, b \in \mathbb{R}^{n}$:

$$
\mathbf{a}^{\top} \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i} \in \mathbb{R}
$$

Geometrically:

$$
\mathbf{a}^{\top} \mathbf{b}=\mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta
$$

Geometrical sense

Consider $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{n}$ and $\mathbf{x} \in \mathbb{R}^{m}$. The matrix $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$

Geometrical sense

Consider $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{n}$ and $\mathbf{x} \in \mathbb{R}^{m}$. The matrix $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$

- Columns of the matrix in multiplication on the left:

$$
\mathbf{y}^{\top} A=\mathbf{y}^{\top}\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=\left[\begin{array}{llll}
\mathbf{y}^{\top} & \mathbf{a}_{1} & \ldots & \mathbf{y}^{\top} \mathbf{a}_{m}
\end{array}\right]
$$

Geometrical sense

Consider $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{n}$ and $\mathbf{x} \in \mathbb{R}^{m}$. The matrix $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$

- Columns of the matrix in multiplication on the left:

$$
\mathbf{y}^{\top} A=\mathbf{y}^{\top}\left[\begin{array}{llll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{m}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{y}^{\top} & \mathbf{a}_{1} & \ldots & \mathbf{y}^{\top} \mathbf{a}_{m}
\end{array}\right]
$$

- Columns of the matrix in multiplication on the right:

$$
A \mathbf{x}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \mathbf{a}_{1}+\ldots+x_{m} \mathbf{a}_{m}=\sum_{j=1}^{m} x_{j} \mathbf{a}_{j}
$$

Examples

- Vectors:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{x}_{1}^{\top}=\left[\begin{array}{ll}
1 & 2
\end{array}\right], \quad \mathbf{x}_{2}^{\top}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] .
$$

- Matrices:

$$
A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right], \quad A_{1}^{\top}=\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
3 & 1
\end{array}\right]
$$

Examples: inner products

- 2×3 matrix and 3 -dimensional vector.

$$
A_{1} \mathbf{x}_{2}=\left[\begin{array}{l}
1 \times 1+2 \times 2+3 \times 3 \\
0 \times 1+0 \times 2+1 \times 3
\end{array}\right]=\left[\begin{array}{c}
14 \\
3
\end{array}\right]
$$

- 3×2 matrix and 2-dimensional vector.

$$
A_{1}^{\top} \mathbf{x}_{1}=\left[\begin{array}{l}
1 \times 1+0 \times 2 \\
2 \times 1+0 \times 2 \\
3 \times 1+1 \times 2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]
$$

- Some other products, e.g., $x_{1}^{\top} A_{1}, x_{2}^{\top} A_{1}^{\top}$.

Examples: inner products

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right] \\
& x_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

Inequalities notation

Consider $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$. The i-th component of a_{j} is $a_{i j}$.

Inequalities notation

Consider $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$. The i-th component of a_{j} is $a_{i j}$.

$$
\mathbf{x}=\mathbf{1} \quad \text { means } \quad\left\{\begin{array}{l}
x_{1}=1 \\
\vdots \\
x_{m}=1
\end{array}\right.
$$

Inequalities notation

Consider $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$. The i-th component of a_{j} is $a_{i j}$.

$$
\begin{aligned}
& \mathbf{x = 1} \quad \begin{array}{l}
\text { means } \quad\left\{\begin{array}{l}
x_{1}=1 \\
\vdots \\
x_{m}=1
\end{array}\right. \\
\mathbf{x}<0 \quad \text { means }
\end{array} \begin{array}{l}
x_{1}<0 \\
\vdots \\
x_{m}<0
\end{array}
\end{aligned}
$$

Inequalities notation

Consider $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ and $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=A \in \mathbb{R}^{n \times m}$. The i-th component of a_{j} is $a_{i j}$.

$$
\begin{aligned}
\mathbf{x}=\mathbf{1} \quad \text { means } \quad\left\{\begin{array}{l}
x_{1}=1 \\
\vdots \\
x_{m}=1
\end{array}\right. \\
\mathbf{x}<0 \quad \text { means } \quad\left\{\begin{array}{l}
x_{1}<0 \\
\vdots \\
x_{m}<0
\end{array}\right. \\
A \mathbf{x} \geq 0 \quad \text { means } \quad\left\{\begin{array}{l}
\sum_{j=1}^{m} x_{j} a_{1 j} \geq 0 \\
\vdots \\
\sum_{j=1}^{m} x_{j} a_{n j} \geq 0
\end{array}\right.
\end{aligned}
$$

Arbitrage idea

The idea can be formulated as:

$$
\max \left\{\min \left\{\text { Profit }_{-} S_{1}, \ldots, \text { Profit_}_{6} S_{6}\right\}\right\}
$$

Can be re-written as:
$\max z$
s.t. $z \leq$ Profit_S $_{i} \quad \forall i \in\{1, \ldots, 6\}$

General linearization of MaxMin (or MinMax)

Given that $g(y, \mathbf{x})$ is increasing with y for any $\mathbf{x} \in \mathcal{X}$,

$$
\max _{\mathbf{x} \in \mathcal{X}} g\left(\min \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}, \mathbf{x}\right)
$$

is equivalent (in some sense) to

$$
\begin{aligned}
& \max _{\mathbf{x} \in \mathcal{X}} g(z, \mathbf{x}) \\
& \text { s.t. } z \leq f_{i}(\mathbf{x}) \quad \forall i \in\{1, \ldots, m\}
\end{aligned}
$$

General linearization of MaxMin (or MinMax)

Given that $g(y, \mathbf{x})$ is increasing with y for any $\mathbf{x} \in \mathcal{X}$,

$$
\max _{\mathbf{x} \in \mathcal{X}} g\left(\min \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}, \mathbf{x}\right)
$$

is equivalent (in some sense) to

$$
\begin{aligned}
& \max _{\mathbf{x} \in \mathcal{X}} g(z, \mathbf{x}) \\
& \text { s.t. } z \leq f_{i}(\mathbf{x}) \quad \forall i \in\{1, \ldots, m\}
\end{aligned}
$$

Proof by contradiction

General linearization of MaxMin (or MinMax)

Similarly, for $g(y, \mathbf{x})$ increasing with y,

$$
\min _{\mathbf{x} \in \mathcal{X}} g\left(\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}, \mathbf{x}\right)
$$

is equivalent (in some sense) to

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathcal{X}} g(z, \mathbf{x}) \\
& \text { s.t. } z \geq f_{i}(\mathbf{x}) \quad \forall i \in\{1, \ldots, m\}
\end{aligned}
$$

General linearization of MaxMin (or MinMax)

Similarly, for $g(y, \mathbf{x})$ increasing with y,

$$
\min _{\mathbf{x} \in \mathcal{X}} g\left(\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}, \mathbf{x}\right)
$$

is equivalent (in some sense) to

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathcal{X}} g(z, \mathbf{x}) \\
& \text { s.t. } z \geq f_{i}(\mathbf{x}) \quad \forall i \in\{1, \ldots, m\}
\end{aligned}
$$

Note also that

$$
\max f(x)=-\min (-f(x))
$$

Example

Suppose we have the problem:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}}\left|x_{1}+5 x_{2}\right| \\
\text { s.t. } x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

How can we convert it into a Linear Program?

Example

Suppose we have the problem:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}}\left|x_{1}+5 x_{2}\right| \\
\text { s.t. } x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

How can we convert it into a Linear Program?
Remember $|x|=\max \{x,-x\}$.

$$
\begin{array}{r}
\min _{x_{1}, x_{2}} \max \left\{x_{1}+5 x_{2},-x_{1}-5 x_{2}\right\} \\
\text { s.t. } x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

Form 1

Create a new variable z and make:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}, z} z \\
\text { s.t. } z \geq x_{1}+5 x_{2} \\
z \geq-\left(x_{1}+5 x_{2}\right) \\
x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

Form 2

Each number can be divided in its positive and negative parts:

- $35=(35)-(0)$
- $-15=(0)-(15)$

Or in general $x=z^{+}-z^{-}$where $z^{+} \geq 0$ and $z^{-} \geq 0$.

Form 2

Using this intuition:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}, z^{+}, z^{-}} z^{+}+z^{-} \\
\text {s.t. } z^{+}-z^{-}=x_{1}+5 x_{2} \\
x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0, z^{+} \geq 0, z^{-} \geq 0
\end{array}
$$

Why does this work?

General linearization of Abs

Given a function $g(y, \mathbf{x})$ increasing with y for any $\mathbf{x} \in \mathcal{X}$,

$$
\min _{\mathbf{x} \in \mathcal{X}} g(|f(\mathbf{x})|, \mathbf{x})
$$

is equivalent (in some sense) to

$$
\begin{array}{r}
\min _{\mathbf{x} \in \mathcal{X}} g\left(z^{+}+z^{-}, \mathbf{x}\right) \\
\text { s.t. } z^{+}-z^{-}=f(\mathbf{x}) \\
z^{+} \geq 0 ; z^{-} \geq 0
\end{array}
$$

General linearization of Abs

Given a function $g(y, \mathbf{x})$ increasing with y for any $\mathbf{x} \in \mathcal{X}$,

$$
\min _{\mathbf{x} \in \mathcal{X}} g(|f(\mathbf{x})|, \mathbf{x})
$$

is equivalent (in some sense) to

$$
\begin{array}{r}
\min _{\mathbf{x} \in \mathcal{X}} g\left(z^{+}+z^{-}, \mathbf{x}\right) \\
\text { s.t. } z^{+}-z^{-}=f(\mathbf{x}) \\
z^{+} \geq 0 ; z^{-} \geq 0
\end{array}
$$

Proof by contradiction

Sketch of proof

We will show that for the optimal solution, either $z^{+}=0$ or $z^{-}=0$.
Suppose $\bar{z}^{+}>0, \bar{z}^{-}>0$ and $\overline{\mathbf{x}}$ form the optimal solution for the later problem. Then $\bar{z}^{+}-\bar{z}^{-}=f(\overline{\mathbf{x}})$.
Introduce $a=\min \left\{\bar{z}^{+}, \bar{z}^{-}\right\}$and $\hat{z}^{+}=\bar{z}^{+}-a, \hat{z}^{-}=\bar{z}^{-}-a$.
Observe that $\left(\hat{z}^{+}, \hat{z}^{-}, \overline{\mathbf{x}}\right)$ is a feasible solution:

$$
\hat{z}^{+}-\hat{z}^{-}=\bar{z}^{+}-a-\bar{z}^{-}+a=\bar{z}^{+}-\bar{z}^{-}=f(\overline{\mathbf{x}})
$$

and that it is better than the optimal one:

$$
\bar{z}^{+}+\bar{z}^{-}>\hat{z}^{+}-\hat{z}^{-} \Longrightarrow g\left(\bar{z}^{+}+\bar{z}^{-}, \overline{\mathbf{x}}\right)>g\left(\hat{z}^{+}+\hat{z}^{-}, \overline{\mathbf{x}}\right),
$$

which is a contradiction with the assumption of optimality.

General Form

- Problem: We have the following nonlinear problem:

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & \sum_{i=1}^{n}\left|x_{i}\right| \\
\text { s.t. } & A \mathbf{x}=b
\end{array}
$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.

- Description: The objective is a non-smooth non-linear function which seems very hard to be optimized. However, this is not true!

Tricks

Two ways of linearizing the absolute value in an optimization problem:

- Trick 1: Introduce new variables z_{i} for $i=1,2, \ldots, n$. Add constraints $z_{i} \geq x_{i}$ and $z_{i} \geq-x_{i}$ for $i=1,2, \ldots, n$. Then minimize the function $\sum_{i=1}^{n} z_{i}$.
- Trick 2: Introduce new variables x_{i}^{+}and x_{i}^{-}for $i=1,2, \ldots, n$. Add constraints $x_{i}=x_{i}^{+}-x_{i}^{-}$and $x_{i}^{+} \geq 0$, $x_{i}^{-} \geq 0$ for $i=1,2, \ldots, n$. Then minimize the function $\sum_{i=1}^{n}\left(x_{i}^{+}+x_{i}^{-}\right)$.

Thank you for your attention!

