Duality and Sensitivity

Fall 2021

Overview

Dual Linear Program

Sensitivity Analysis
AMPL

Reminder: Definitions

LP Sym Form:

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \geq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

Certificate of
Boundedness:

$$
\begin{aligned}
& \mathbf{y}^{\top} A \leq \mathbf{c}^{\top}, \\
& \mathbf{y} \geq 0
\end{aligned}
$$

Theorem 4:

$$
\mathbf{c}^{\top} \mathbf{x} \geq \mathbf{y}^{\top} \mathbf{b}
$$

Reminder: Definitions

LP Sym Form:

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \geq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

Certificate of
Boundedness:

$$
\begin{aligned}
& \mathbf{y}^{\top} A \leq \mathbf{c}^{\top}, \\
& \mathbf{y} \geq 0 .
\end{aligned}
$$

Theorem 4:

$$
\mathbf{c}^{\top} \mathbf{x} \geq \mathbf{y}^{\top} \mathbf{b}
$$

Dual problem aims to find the certificate of boundedness that gives the highest lower bound $\mathbf{y}^{\top} \mathbf{b}$:

$$
\max \mathbf{y}^{\top} \mathbf{b}
$$

$$
\begin{array}{ll}
\text { s.t. } & \mathbf{y}^{\top} A \leq \mathbf{c}^{\top}, \\
& \mathbf{y} \geq 0 .
\end{array}
$$

Example: Find the Dual

Consider a Linear Program (not in the Symmetric Form)

$$
\begin{array}{rrrrr}
\min _{\text {s.t. }} \begin{array}{rrrr}
x_{1} & +2 x_{2} & +3 x_{3} & \\
& -x_{1} & +3 x_{2} & \\
& = & 5 \\
& 2 x_{1} & -x_{2} & +3 x_{3}
\end{array} & \geq & 6 \\
& & x_{3} & \leq & 4 \\
& x_{1} & & & \geq \\
& & x_{2} & & \leq \\
& & & x_{3} & \text { free }
\end{array}
$$

Normal course of actions:

Example: Find the Dual

Normal course of actions:
$\underset{\text { Problem }}{\text { Primal }} \rightarrow \underset{\text { Sym Form }}{\text { Primal in }} \rightarrow \underset{\text { Problem }}{\text { Dual }} \xrightarrow{\text { (optional) }}$ Sym Form

Example: Find the Dual

Normal course of actions:

$$
\underset{\text { Problem }}{\text { Primal }} \rightarrow \underset{\text { Primal in }}{\text { Prim Form }} \rightarrow \underset{\text { Problem }}{\text { Dual }} \xrightarrow{\text { (optional) }} \underset{\text { Dym Form }}{\text { Dual in }}
$$

	Primal	Dual	
Objective	\min	\max	Objective
Constraints	\geq	\geq	
	$=$	free	Decision variables
	\leq	\leq	
Decision variables	\geq	\leq	
	free	$=$	Constraints
	\leq	\geq	

A faster course of actions:

$$
\underset{\text { Problem }}{\text { Primal }} \xrightarrow[\text { table }]{\text { using }} \text { Problem } \xrightarrow{\text { Dual }} \xrightarrow{\text { (optional) }} \begin{gathered}
\text { Dual in } \\
\text { Sym Form }
\end{gathered}
$$

Example: Find the Dual

\[

\]

Example: Find the Dual

$$
\begin{array}{rrrrr}
\min & x_{1}+2 x_{2} & +3 x_{3} & & \\
\text { s.t. }-x_{1}+3 x_{2} & & =5 & \left(y_{1}\right) \\
& 2 x_{1} & -x_{2} & +3 x_{3} & \geq \\
& & x_{3} & \leq & \left(y_{2}\right) \\
& & & \left(y_{3}\right) \\
& x_{1} & & & 0 \\
& & x_{2} & & \leq \\
& & & x_{3} & \text { free }
\end{array}
$$

$$
\max 5 y_{1}+6 y_{2}+4 y_{3}
$$

$$
\begin{array}{crll}
\text { s.t }-y_{1} & +2 y_{2} & & \leq \\
3 y_{1} & -y_{2} & & \geq \\
& 3 y_{2} & +y_{3} & = \\
& & & \\
& y_{1} & & \\
& \text { free }
\end{array}
$$

$$
\begin{aligned}
y_{2} & \geq 0 \\
& y_{3}
\end{aligned}
$$

Example: Certify Optimality

Consider the following linear program:

- Write the dual problem.
- Write down the complementary slackness conditions.
- Prove that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0.4,0.8,1)$ is optimal for the primal without solving the linear program.

Example: Certify Optimality

The dual problem is

$$
\begin{aligned}
\max -y_{1}+4 y_{2}+2 y_{3} & \\
& -y_{2} \\
3 y_{1} & \geq-1 \\
y_{1}-5 y_{2}-2 y_{3} & \geq 0 \\
-y_{1} & \\
y_{1} & \\
& \geq-2 \\
&
\end{aligned}
$$

Example: Certify Optimality

The complementary slackness conditions are

$$
\begin{aligned}
x_{1} \cdot\left(1-y_{2}\right) & =0 \\
x_{2} \cdot\left(3 y_{1}-y_{3}\right) & =0 \\
x_{3} \cdot\left(y_{1}-5 y_{2}-2 y_{3}\right) & =0 \\
x_{4} \cdot\left(2-y_{1}\right) & =0 \\
y_{1} \cdot\left(1-3 x_{2}-x_{3}+x_{4}\right) & =0 \\
y_{3} \cdot\left(x_{2}+2 x_{3}-2\right) & =0
\end{aligned}
$$

Plugging $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0.4,0.8,1)$ into the above system of equations yields that $\left(y_{1}, y_{2}, y_{3}\right)=(2,-2,6)$. This is the certificate of optimality.

Terminology

- Sensitivity analysis
- General definition

How the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs

- Linear program How "small" changes in parameter $c_{j}, b_{i}, a_{i j}$ affect the current optimal solution x^{*} and optimal objective value $\sum_{i=1}^{n} c_{j} x_{j}^{*}$

Terminology

Given a feasible solution $\bar{x}_{1}, \ldots, \bar{x}_{n}$:

- Decision variable \bar{x}_{j} is basic if $\bar{x}_{j} \neq 0$
- Decision variable \bar{x}_{j} is non-basic if $\bar{x}_{j}=0$
- Constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ is binding if $\sum_{j=1}^{n} a_{i j} \bar{x}_{j}=b_{i}$
- Constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ is not binding if $\sum_{j=1}^{n} a_{i j} \bar{x}_{j}>b_{i}$

Terminology

- Shadow price $y_{i}=$ Dual variable

Change of the objective function from one unit increase in its right-hand side b_{i}

- Reduced cost $r_{j}=$ Dual slack $=\left(\mathbf{c}^{\top}-\mathbf{y}^{\top} A\right)_{j}$

Amount by which the cost coefficient of non-basic variable c_{j} must be lowered for that variable to become basic

- Allowable increase/decrease
- Optimal solution x^{*} and objective $\sum_{j=1}^{n} c_{j} x_{j}^{*}$ may change
- Whether a decision variable is basic or non-basic stays unchanged
- Whether a constraint is binding or non-binding stays unchanged

Complementary Slackness

If x^{*} is optimal for the Primal problem and y^{*} is optimal for the Dual problem, then:

1. $\left[\mathbf{c}^{\top}-\left(\mathbf{y}^{*}\right)^{\top} A\right]_{j} x_{j}^{*}=r_{j}^{*} x_{j}^{*}=0 \quad \forall j=1 \ldots n$
2. $\left[A \mathbf{x}^{*}-\mathbf{b}\right] i y_{i}^{*}=s_{i}^{*} y_{i}^{*}=0 \quad \forall i=1 \ldots m$

Where r_{j}^{*} is the Reduced Cost and s_{i}^{*} is the slack of a Primal constraint.

AMPL setup for sensitivity analysis

Type the following commands into the console:

1. Set the solver to be CPLEX: option solver cplex;
2. Enable sensitivity analysis: option cplex_options 'sensitivity';
3. Turn off presolve (needed for sensitivity analysis):
option presolve 0;
4. Load model and solve as usual.
model paint.mod;
solve;

AMPL sensitivity analysis output

- Display the objective function, constraint or variable:

```
display <name>;
```

For example:

```
display totalProfit;
```

- Display all variables:

```
display _varname, _var, _var.rc, _var.down, _var.current, _var.up;
```

- Display all constraints:

```
display _conname, _con, _con.slack, _con.up, _con.current, _con.down;
```


Example: continuous knapsack

You want to set up an emergency bag in case of an earthquake.
Four items can be packed: gold, water, pillow, brick, with the following data

	Gold	Water	Pillow	Brick
Value	24	5	2	3
Volume	3	8	14	6
Weight	20	10	2	15

and you want to pack at least 5 units of water. Suppose your pack has the maximum volume of 60 and you can bear at most 100 weight. Find how much each item to pack to maximize the value.

Example: continuous knapsack

$$
\begin{array}{rrrrrr}
\max & 24 x_{1} & +5 x_{2} & +2 x_{3} & +3 x_{4} & \\
\text { s.t. } & 3 x_{1} & +8 x_{2} & +14 x_{3} & +6 x_{4} & \leq \\
& 20 x_{1} & +10 x_{2} & +2 x_{3} & +15 x_{4} & \leq \\
& & x_{2} & & & \\
& x_{1} & & & & \geq 0 \\
& & x_{2} & & & \geq 0 \\
& & & x_{3} & & \geq 0 \\
& & & & x_{4} & \geq
\end{array}
$$

Optimal solution $x_{1}=2.5$ and $x_{2}=5$

Example: continuous knapsack

```
ampl: include cont_knapsack.run;
CPLEX 12.6.1.0: sensitivity
CPLEX 12.6.1.0: optimal solution; objective }8
1 dual simplex iterations (1 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
\begin{tabular}{lllrrcc}
\(:\) & \multicolumn{1}{c}{\(x\)} & \multicolumn{1}{c}{ x.rc } & x.current & x.down & x.up & \(:=\) \\
1 & 2.5 & \(-3.55271 e-15\) & 24 & 20 & \(1 e+20\) & \\
2 & 5 & \(-1.77636 e-15\) & 5 & \(-1 e+20\) & 12 & \\
3 & 0 & -0.4 & 2 & \(-1 e+20\) & 2.4 & \\
4 & 0 & -15 & 3 & \(-1 e+20\) & 18 &
\end{tabular}
\begin{tabular}{llllllll}
\(:\) & _conname & _con & _con.slack & _con.current & _con. down & _con. up & \(:=\) \\
1 & volume & 0 & 12.5 & 60 & 47.5 & \(1 \mathrm{e}+20\) & \\
2 & weight & 1.2 & 0 & 100 & 50 & 183.333 & \\
3 & water & -7 & 0 & 5 & 0 & 6.92308 &
\end{tabular}
;
```


Example: continuous knapsack

$$
\begin{array}{rrrr}
\min & 60 y_{1}+100 y_{2} & +5 y_{3} & \\
\text { s.t. } & 3 y_{1}+20 y_{2} & & \geq 24 \\
8 y_{1}+10 y_{2} & +y_{3} & \geq 5 \\
14 y_{1}+2 y_{2} & & \geq 2 \\
6 y_{1}+15 y_{2} & & \geq 3 \\
& y_{1} & & \\
& y_{2} & & \geq 0 \\
& & y_{3} & \geq 0
\end{array}
$$

Optimal solution $y_{1}=0, y_{2}=1.2, y_{3}=-7$.

Diet example

All the necessary files are on bCourses.

How to derive sensitivity analysis: Key Idea

In order for a change to be withing the allowable range, both of these must be true:

- Whether a decision variable is basic or non-basic stays unchanged.
- Whether a constraint is binding or non-binding stays unchanged.

Types of analysis

- Case 1: Change b_{i}
- Case 1a: Change b_{i} of non-binding constraint
- Case 1b: Change b_{i} of binding constraint
- Case 1c: Find g if Case 1b.
- Case 2: Change c_{j}
- Case 2a: Change c_{j} of non-basic variable
- Case 2b: Change c_{j} of basic variable
- Case 3: Change $a_{i j}$
- Case 3a: Change $a_{i j}$ of non-basic variable
- Case 3b: Change $a_{i j}$ of basic variable
- Case 4: Add a new constraint
- Case 5: Add a new decision variable

Case 2a: Change c_{j} of non-basic variable

Change c_{j} of non-basic variable

- Reduced cost $r_{j} \neq 0^{1}$

$$
r_{j}=c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}
$$

- Consider c_{3} which has reduced cost $r_{3}=-0.4$
- Allowable increase: $-r_{j}=0.4$
- Allowable decrease: $+\infty$
- Consider changing c_{3} from 2 to 2.1
- New optimal solution: Unchanged
- New optimal objective value: Unchanged
${ }^{1} r_{j}=0$ for non-basic variable means multiple optimal solutions

Case 2 b : Change c_{j} of basic variable

Change c_{j} of basic variable

$$
\begin{array}{rrrrrl}
\max & 24 x_{1} & +(5+\delta) x_{2} & +2 x_{3} & +3 x_{4} & \\
\text { s.t. } & 3 x_{1} & +8 x_{2} & +14 x_{3} & +6 x_{4} & \leq 60 \\
20 x_{1} & +10 x_{2} & +2 x_{3} & +15 x_{4} & \leq 100 \\
& x_{2} & & & \geq 5 \\
& x_{1} & x_{2} & & & \\
& & x_{3} & & & \geq 0 \\
& & & & x_{4} & \geq 0
\end{array}
$$

Case 2 b : Change c_{j} of basic variable

Consider the Dual problem:

$$
\begin{array}{rrrr}
\min 60 y_{1}+100 y_{2}+5 y_{3} & \\
\text { s.t. } 3 y_{1}+20 y_{2} & & \geq 24 \\
8 y_{1}+10 y_{2}+y_{3} & \geq 5+\delta \\
14 y_{1}+2 y_{2} & & \geq 2 \\
6 y_{1}+15 y_{2} & & \geq 3 \tag{6}\\
y_{1} & & & \geq 0 \\
& y_{2} & & \geq 0 \\
& & y_{3} & \leq 0
\end{array}
$$

Optimal solution $y_{1}=0, y_{2}=1.2, y_{3}=-7$

Case 2b: Change c_{j} of basic variable

$$
\left.\begin{array}{rl}
\min & +100 y_{2}+5 y_{3} \\
\text { s.t. } & \\
& =24 \\
+20 y_{2} & \tag{3}\\
+10 y_{2}+y_{3} & =5+\delta \\
+2 y_{2} & \\
+15 y_{2} & \geq 2 \\
y_{2} & \\
& \\
& y_{3}
\end{array}\right)=0
$$

(4)
(6)
(7)

Case 2 b : Change c_{j} of basic variable

From (1) we get $y_{2}=\frac{24}{20}$ (satisfies (3), (4), (6)), substitute in (2)

$$
y_{3}=-7+\delta .
$$

From (7)

$$
\delta \leq 7
$$

Case 2b: Change c_{j} of basic variable

Change c_{j} of basic variable

- Reduced cost $r_{j}=0$
- Consider c_{2}
- Allowable increase: 7
- Allowable decrease: $+\infty$
- Consider changing c_{2} from $5 \rightarrow 10$
- New optimal solution: Unchanged
- New optimal objective value:

$$
\sum_{j=1}^{n} c_{j}^{n e w} x_{j}^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}+\delta x_{2}^{*}=110
$$

Case 4: Add a new constraint

Add a new constraint

- If current solution satisfies the new constraint
- New optimal solution: Unchanged
- New optimal objective value: Unchanged
- If current solution does not satisfy the new constraint
- Dual simplex method (but don't worry about this for now)

Note: the problem might become infeasible

Note

Sensitivity analysis lets you simultaniously think about a continious set of instances of LP for which δ is within the range. The other instances still have to be considered individually.

Thank you for your attention!

