Simplex method

Fall 2021

Overview

Simplex-method

Reminder: linearization of MinMax

Sensitivity analysis

Farkas Lemma: Geometrical picture

Idea: certificate of optimality, expanded

(Primal) feasibility

$$
\begin{aligned}
A \mathbf{x} & \geq \mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Boundedness (aka Dual feasibility)

$$
\begin{aligned}
\mathbf{y}^{\top} A & \leq \mathbf{c} \\
\mathbf{y} & \geq 0 .
\end{aligned}
$$

Tightness:

$$
\mathbf{c}^{\top} \mathbf{x}=\mathbf{y}^{\top} \mathbf{b}
$$

Tightness can be replaced with the Complementary Slackness Condition

$$
\left[\mathbf{c}^{\top}-\mathbf{y}^{\top} A\right]_{i} x_{i}=0 \text { for all } i \in\{1 \ldots n\} \text { (a) }
$$

$$
[A x-\mathbf{b}]_{j} y_{j}=0 \text { for all } j \in\{1 \ldots m\} \text { (b) }
$$

Fact: The optimum can be achieved only in an extreme feasible point. (This is a general fact for any concave objective) Idea behind Simplex Method: Walk on (x, y) of the form (feasible extreme point, dual point) satisfying complementary slackness, looking for y that satisfies dual feasibility

Example

$$
\begin{array}{lll}
\min & -x_{1}-2 x_{2} & \\
\text { s.t. } & -x_{1}-x_{2} & \geq-4 \\
& -x_{1}+2 x_{2} & \geq-2 \\
& 2 x_{1}-x_{2} & \geq-2 \\
& x_{1} & \geq 0 \\
& & x_{2}
\end{array}
$$

Finding a basic solution

Example:

$$
\begin{aligned}
& A=-\left(\begin{array}{cccc}
3 & -i & 1 & 4 \\
0 & 1 & 3 & -6 \\
-1 & 2 & 2 & 0 \\
3 & -1 & -1 & 2 \\
6 & 0 & 3 & -2
\end{array}\right), b=\left(\begin{array}{c}
5 \\
8 \\
3 \\
1 \\
15
\end{array}\right), c=\left(\begin{array}{c}
5 \\
0 \\
-2 \\
1
\end{array}\right) \\
& x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right), y=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right) \quad \begin{array}{ll}
\text { min } c^{\top} x \geqslant b & \max b^{\top} y \\
\text { s.t } x \geqslant 0 & \text { s.t } A^{\top} y \leq c \\
y \geqslant 0
\end{array}
\end{aligned}
$$

Finding a basic solution

$$
\begin{aligned}
& I=\{1,3\}, J=\{2,3\}, \hat{I}=\{2,4,5\}, \hat{J}=\{1, y\} \\
& A_{I J}=\left(\begin{array}{cc}
-2 & 1 \\
2 & 2
\end{array}\right) \quad \overline{x_{J}}=\binom{\bar{x}_{2}}{\bar{x}_{3}}=\left(\begin{array}{cc}
-2 & 1 \\
2 & 2
\end{array}\right)^{-1}\binom{5}{3} \\
& \overline{x_{J}}=\binom{\overline{x_{1}}}{\overline{x_{4}}}=\binom{0}{0} \\
& \bar{y}_{I}=\left\{\begin{array}{l}
\overline{y_{1}} \\
\overline{y_{3}^{3}}
\end{array}\right\}=\left(\begin{array}{cc}
-2 & 2 \\
1 & -2
\end{array}\right)^{-1}\binom{5}{-2}, \quad \bar{y}_{\hat{I}}=\binom{\overline{y_{2}}}{\frac{\bar{y}_{4}}{y_{5}}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \bar{S}_{I}=\binom{\bar{S}_{1}}{\overline{S_{3}}}=\binom{0}{0}, \bar{S}_{\hat{I}}=\left(\begin{array}{cc}
1 & 3 \\
-1 & -1 \\
0 & 3
\end{array}\right)\binom{\bar{x}_{2}}{\bar{x}_{3}}-\left(\begin{array}{l}
8 \\
1 \\
15
\end{array}\right) \\
& \bar{r}_{J}=\binom{\bar{r}_{2}}{\bar{r}_{3}}=\binom{0}{0} \quad \bar{r}_{\bar{J}}=\binom{\overline{r_{1}}}{\bar{r}_{4}}=\binom{5}{1}-\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)^{-1}\binom{y_{2}}{y_{3}}
\end{aligned}
$$

Finding a basic solution
Can use Gauss-Jordan method to calculate the inverse

$$
\begin{aligned}
& A_{I J}^{-1}=\left(\begin{array}{rr}
-2 & 1 \\
2 & 2
\end{array}\right)^{-1}=\frac{1}{6}\left(\begin{array}{rr}
-2 & 1 \\
2 & 2
\end{array}\right) \\
& \bar{x}_{J}=\binom{\bar{x}_{2}}{\bar{x}_{3}}=A_{S J}^{-1}\binom{b_{1}}{b_{3}}=\frac{1}{6}\left(\begin{array}{cc}
-2 & 1 \\
2 & 2
\end{array}\right)\binom{5}{3}=\frac{1}{6}\binom{-7}{16}
\end{aligned}
$$

Another may: $\left[-2 x_{2}+x_{3}\right.$

$$
\left\{\begin{array}{rl}
-2 x_{2}+x_{3}=5 \\
2 x_{2}+2 x_{3}=3
\end{array} \Rightarrow 3 x_{3}=8 \Rightarrow-6 x_{2}+1\right.
$$

Finding a basic solution

$$
\begin{aligned}
& \bar{y}_{1}=\binom{\bar{y}_{1}}{\bar{y}_{3}}=\left(A_{I 3}^{-1}\right)^{T}\binom{c_{2} c_{3}}{c_{3}}^{c_{3}}=\frac{1}{6}\left(\begin{array}{cc}
-2 & 2 \\
1 & 2
\end{array}\right)\binom{0}{-2}^{1 x_{3}}=\frac{1}{6}\binom{-4}{-4}=-\frac{2}{3}\binom{1}{1}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{6}\left(\begin{array}{l}
7 \\
15 \\
42
\end{array}\right) \\
& \bar{r}_{\hat{j}}=\binom{\bar{r}_{1}}{\bar{r}_{4}}=C_{\hat{j}}-A_{I \hat{j}}^{\top} \bar{y}_{I}=\binom{5}{1}-\left(-\frac{2}{3}\right)\left(\begin{array}{ll}
3 & -1 \\
4 & 0
\end{array}\right)\binom{1}{1}= \\
& =\frac{1}{3}\binom{15}{3}+\frac{1}{3}\binom{4}{8}=\frac{1}{3}\binom{19}{11}
\end{aligned}
$$

General linearization of MaxMin (or MinMax)

Similarly, for $g(y, \mathbf{x})$ increasing with y,

$$
\min _{\mathbf{x} \in \mathcal{X}} g\left(\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}, \mathbf{x}\right)
$$

is equivalent (in some sense) to

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} g(z, \mathbf{x}) \\
& \text { s.t. } z \geq f_{i}(\mathbf{x}) \quad \forall i \in\{1, \ldots, m\}
\end{aligned}
$$

General linearization of MaxMin (or MinMax)

Similarly, for $g(y, \mathbf{x})$ increasing with y,

$$
\min _{\mathbf{x} \in \mathcal{X}} g\left(\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}, \mathbf{x}\right)
$$

is equivalent (in some sense) to

$$
\begin{aligned}
& \min _{x \in \mathcal{X}} g(z, \mathbf{x}) \\
& \text { s.t. } z \geq f_{i}(\mathbf{x}) \quad \forall i \in\{1, \ldots, m\}
\end{aligned}
$$

Note also that

$$
\max f(x)=-\min (-f(x))
$$

Example

Suppose we have the problem:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}}\left|x_{1}+5 x_{2}\right| \\
\text { s.t. } x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

How can we convert it into a Linear Program?
Remember $|x|=\max \{x,-x\}$.

$$
\begin{array}{r}
\min _{x_{1}, x_{2}} \max \left\{x_{1}+5 x_{2},-x_{1}-5 x_{2}\right\} \\
\text { s.t. } x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

Form 1

Create a new variable z and make:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}, z} z \\
\text { s.t. } z \geq x_{1}+5 x_{2} \\
z \geq-\left(x_{1}+5 x_{2}\right) \\
x_{1}-3 x_{2} \geq 2 \\
x_{1} \geq 0
\end{array}
$$

Terminology

- Shadow price $y_{i}=$ Dual variable

Change of the objective function from one unit increase in its right-hand side b_{i}

- Reduced cost $r_{j}=$ Dual slack $=\left(\mathbf{c}^{\top}-\mathbf{y}^{\top} A\right)_{j}$

Amount by which the cost coefficient of non-basic variable c_{j} must be lowered for that variable to become basic

- Allowable increase/decrease
- Optimal solution x^{*} and objective $\sum_{j=1}^{n} c_{j} x_{j}^{*}$ may change
- Whether a decision variable is basic or non-basic stays unchanged
- Whether a constraint is binding or non-binding stays unchanged

Terminology

For a problem in symmetrical form, let ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) be primal-dual feasible point satisfying complementary slackness. Let $\overline{\mathbf{s}}$ be corresponding primal slack and $\overline{\mathbf{r}}$ be corresponding dual slack.

- Decision variable \bar{x}_{j} is basic if $\bar{x}_{j} \neq 0$ ($\bar{r}_{j}=0$ due to CS)
- Decision variable \bar{x}_{j} is non-basic if $\bar{x}_{j}=0$ ($\bar{r}_{j}<0$ in general)
- Constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ is binding if $\sum_{j=1}^{n} a_{i j} \bar{x}_{j}=b_{i}$ $\left(\bar{s}_{i}=0\right)$
- Constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ is not binding if $\sum_{j=1}^{n} a_{i j} \bar{x}_{j}>b_{i}$ ($\bar{y}_{i}=0$ due to CS)

Example: continuous knapsack

```
ampl: include cont_knapsack.run;
CPLEX 12.6.1.0: sensitivity
CPLEX 12.6.1.0: optimal solution; objective }8
1 dual simplex iterations (1 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
\begin{tabular}{lllrrcc}
\(:\) & \multicolumn{1}{c}{\(x\)} & \multicolumn{1}{c}{ x.rc } & x.current & x.down & x.up & \(:=\) \\
1 & 2.5 & \(-3.55271 e-15\) & 24 & 20 & \(1 e+20\) & \\
2 & 5 & \(-1.77636 e-15\) & 5 & \(-1 e+20\) & 12 & \\
3 & 0 & -0.4 & 2 & \(-1 e+20\) & 2.4 & \\
4 & 0 & -15 & 3 & \(-1 e+20\) & 18 &
\end{tabular}
\begin{tabular}{lllccccc}
\(:\) & _conname & _con & con.slack & _con.current & _con. down & _con.up & \(:=\) \\
1 & volume & 0 & 12.5 & 60 & 47.5 & \(1 \mathrm{e}+20\) & \\
2 & weight & 1.2 & 0 & 100 & 50 & 183.333 & \\
3 & water & -7 & 0 & 5 & 0 & 6.92308
\end{tabular}
;
```


AMPL notation

- x - primal variable;
- x.rc - reduced cost or dual slack;
- x.current - objective coefficients (\mathbf{c}_{i});
- _conname - shadow price or dual variable;
- _con.slack - primal slack;
- _con.current - right hand side (\mathbf{b}_{j});
- . . . down and . . . up are the minimal and the maximal value of the corresponding parameter $\mathbf{c}_{\boldsymbol{i}}$ or \mathbf{b}_{j} such that the problem stays within the allowable increase/decrease range

How to derive sensitivity analysis: Key Idea

In order for a change to be withing the allowable range, both of these must be true at the solution point:

- Whether a decision variable is basic or non-basic stays unchanged.
- Whether a constraint is binding or non-binding stays unchanged.

Types of analysis

- Case 1: Change b_{i}
- Case 1a: Change b_{i} of non-binding constraint
- Case 1b: Change b_{i} of binding constraint
- Case 1c: Find g if Case 1b.
- Case 2: Change c_{j}
- Case 2a: Change c_{j} of non-basic variable
- Case 2b: Change c_{j} of basic variable
- Case 3: Change $a_{i j}$
- Case 3a: Change $a_{i j}$ of non-basic variable
- Case 3b: Change $a_{i j}$ of basic variable
- Case 4: Add a new constraint
- Case 5: Add a new decision variable

Case 2a: Change c_{j} of non-basic variable

Change c_{j} of non-basic variable

- Reduced cost $r_{j} \neq 0^{1}$

$$
r_{j}=c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}
$$

- Consider c_{3} which has reduced cost $r_{3}=-0.4$
- Allowable increase: $-r_{j}=0.4$
- Allowable decrease: $+\infty$
- Consider changing c_{3} from 2 to 2.1
- New optimal solution: Unchanged
- New optimal objective value: Unchanged
- It's possible to change several c_{j} for non-basics variables at the same time!
${ }^{1} r_{j}=0$ for non-basic variable means multiple optimal solutions

Case 2 b : Change c_{j} of basic variable

Change c_{j} of basic variable

$$
\begin{array}{rrrrrl}
\max & 24 x_{1} & +(5+\delta) x_{2} & +2 x_{3} & +3 x_{4} & \\
\text { s.t. } & 3 x_{1} & +8 x_{2} & +14 x_{3} & +6 x_{4} & \leq 60 \\
20 x_{1} & +10 x_{2} & +2 x_{3} & +15 x_{4} & \leq 100 \\
& x_{2} & & & \geq 5 \\
& x_{1} & x_{2} & & & \\
& & x_{3} & & & \geq 0 \\
& & & & x_{4} & \geq 0
\end{array}
$$

Case 2 b : Change c_{j} of basic variable

Consider the Dual problem:

$$
\begin{array}{rrrr}
\min & 60 y_{1}+100 y_{2}+5 y_{3} & \\
\text { s.t. } 3 y_{1}+20 y_{2} & & \geq 24 \\
8 y_{1}+10 y_{2}+y_{3} & \geq 5+\delta \\
14 y_{1}+2 y_{2} & & \geq 2 \\
6 y_{1}+15 y_{2} & & \geq 3 \tag{6}\\
y_{1} & & & \geq 0 \\
& y_{2} & & \geq 0 \\
& & y_{3} & \leq 0
\end{array}
$$

Optimal solution $y_{1}=0, y_{2}=1.2, y_{3}=-7$

Case 2b: Change c_{j} of basic variable

$$
\left.\begin{array}{rl}
\min & +100 y_{2}+5 y_{3} \\
\text { s.t. } & \\
& =24 \\
+20 y_{2} & \tag{3}\\
+10 y_{2}+y_{3} & =5+\delta \\
+2 y_{2} & \\
+15 y_{2} & \geq 2 \\
y_{2} & \\
& \\
& y_{3}
\end{array}\right)=0
$$

(4)
(6)
(7)

Case 2 b : Change c_{j} of basic variable

From (1) we get $y_{2}=\frac{24}{20}$ (satisfies (3), (4), (6)), substitute in (2)

$$
y_{3}=-7+\delta .
$$

From (7)

$$
\delta \leq 7
$$

Case 2b: Change c_{j} of basic variable

Change c_{j} of basic variable

- Reduced cost $r_{j}=0$
- Consider c_{2}
- Allowable increase: 7
- Allowable decrease: $+\infty$
- Consider changing c_{2} from $5 \rightarrow 10$
- New optimal solution: Unchanged
- New optimal objective value:

$$
\sum_{j=1}^{n} c_{j}^{n e w} x_{j}^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}+\delta x_{2}^{*}=110
$$

Case 4: Add a new constraint

Add a new constraint

- If current solution satisfies the new constraint
- New optimal solution: Unchanged
- New optimal objective value: Unchanged
- If current solution does not satisfy the new constraint
- Dual simplex method (but don't worry about this for now)

Note: the problem might become infeasible

Note

Sensitivity analysis lets you simultaniously think about a continious set of instances of LP for which δ is within the range. The other instances still have to be considered individually.

Farkas Lemma formulation (for Standard form)

Standard form LP:

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

Feasibility certificate:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Infeasibility certificate:

$$
\begin{gathered}
\mathbf{y}^{T} \mathbf{b}>0 \\
\mathbf{y}^{T} A \leq 0 .
\end{gathered}
$$

Farkas Lemma formulation (for Standard form)

Standard form LP:

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b}, \\
& \mathbf{x} \geq 0 .
\end{array}
$$

Farkas Lemma: Exactly one out of two exists: x or y
(Equivalent to Theorem 2 of alternatives from LPMATH)

Feasibility certificate:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0 .
\end{aligned}
$$

Infeasibility certificate:

$$
\begin{aligned}
\mathbf{y}^{T} \mathbf{b} & >0 \\
\mathbf{y}^{T} A & \leq 0 .
\end{aligned}
$$

Reminder from Linear Algebra

Consider $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{n}$. The matrix $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]=A \in \mathbb{R}^{m \times n}$

Reminder from Linear Algebra

Consider $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{n}$. The matrix $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]=A \in \mathbb{R}^{m \times n}$

- Columns of the matrix in multiplication on the left:

$$
\mathbf{y}^{\top} A=\mathbf{y}^{\top}\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{y}^{\top} \mathbf{a}_{1} & \ldots & \mathbf{y}^{\top} \mathbf{a}_{n}
\end{array}\right]
$$

Reminder from Linear Algebra

Consider $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{n}$. The matrix $\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]=A \in \mathbb{R}^{m \times n}$

- Columns of the matrix in multiplication on the left:

$$
\mathbf{y}^{\top} A=\mathbf{y}^{\top}\left[\begin{array}{lll}
\mathbf{a}_{1} & \ldots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{y}^{\top} \mathbf{a}_{1} & \ldots & \mathbf{y}^{\top} \mathbf{a}_{n}
\end{array}\right]
$$

- Columns of the matrix in multiplication on the right:

$$
A \mathbf{x}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+\ldots+x_{n} \mathbf{a}_{n}=\sum_{j=1}^{n} x_{j} \mathbf{a}_{j}
$$

Conic combination of vectors

For $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, a linear combination is a vector $\mathbf{v} \in \mathbb{R}^{n}$ that can be represented as

$$
\mathbf{v}=\sum_{i=1}^{m} w_{i} \mathbf{a}_{i} \text { or } v=\mathbf{v}^{\top} A
$$

for some $w_{1}, \ldots, w_{m} \in \mathbb{R}$

Conic combination of vectors

For $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, a linear combination is a vector $\mathbf{v} \in \mathbb{R}^{n}$ that can be represented as

$$
\mathbf{v}=\sum_{i=1}^{m} w_{i} \mathbf{a}_{i} \text { or } v=\mathbf{v}^{\top} A
$$

for some $w_{1}, \ldots, w_{m} \in \mathbb{R}$ A conic combination is a vector $\mathbf{v} \in \mathbb{R}^{n}$ that can be represented as

$$
\mathbf{v}=\sum_{i=1}^{m} w_{i} \mathbf{a}_{i} \text { or } v=\mathbf{v}^{\top} A
$$

for some $w_{1}, \ldots, w_{m} \geq 0$

Conic combination of vectors

As the set of all linear combinations produces a linear span, the set of all conic combinations produces a cone.

Geometric interpretation

Standard form LP:

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

Feasibility certificate:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Infeasibility certificate:

$$
\begin{aligned}
\mathbf{y}^{\top} \mathbf{b} & >0 \\
\mathbf{y}^{T} A & \leq 0 .
\end{aligned}
$$

Geometric interpretation

Standard form LP:

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

Feasibility certificate:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Infeasibility certificate:

$$
\begin{aligned}
\mathbf{y}^{T} \mathbf{b} & >0 \\
\mathbf{y}^{T} A & \leq 0 .
\end{aligned}
$$

Geometric interpretation

Standard form LP:

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

Feasibility certificate:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Infeasibility certificate:

$$
\begin{aligned}
\mathbf{y}^{\top} \mathbf{b} & >0 \\
\mathbf{y}^{T} A & \leq 0 .
\end{aligned}
$$

Geometric interpretation

Standard form LP:

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

Feasibility certificate:

$$
\begin{array}{r}
A \mathbf{x}=\mathbf{b} \\
\mathbf{x} \geq 0
\end{array}
$$

Infeasibility certificate:

$$
\begin{array}{r}
\mathbf{y}^{T} \mathbf{b}>0 \\
\mathbf{y}^{T} A \leq 0 .
\end{array}
$$

Geometric interpretation

Standard form LP:

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

Feasibility certificate:

$$
\begin{array}{r}
A \mathbf{x}=\mathbf{b} \\
\mathbf{x} \geq 0
\end{array}
$$

Infeasibility certificate:

$$
\begin{array}{r}
\mathbf{y}^{T} \mathbf{b}>0 \\
\mathbf{y}^{T} A \leq 0 .
\end{array}
$$

Geometric interpretation

Standard form LP:

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

Feasibility certificate:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

Infeasibility certificate:

$$
\begin{array}{r}
\mathbf{y}^{T} \mathbf{b}>0 \\
\mathbf{y}^{T} A \leq 0 .
\end{array}
$$

Geometric interpretation

Standard form LP:

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

Feasibility certificate:

$$
\begin{array}{r}
A \mathbf{x}=\mathbf{b} \\
\mathbf{x} \geq 0
\end{array}
$$

Infeasibility certificate:

$$
\begin{aligned}
\mathbf{y}^{\top} \mathbf{b} & >0 \\
\mathbf{y}^{T} A & \leq 0 .
\end{aligned}
$$

Thank you for your attention!

