## Sensitivity, IP

Fall 2021

## Overview

Sensitivity analysis

Integer Linear Programming
Review
Writing Logic Statements

Examples
Job Scheduling Problem
Plan for a move

## Terminology

- Shadow price $y_{i}=$ Dual variable

Change of the objective function from one unit increase in its right-hand side $b_{i}$

- Reduced cost $r_{j}=$ Dual slack $=\left(\mathbf{c}^{\top}-\mathbf{y}^{\top} A\right)_{j}$

Amount by which the cost coefficient of non-basic variable $c_{j}$ must be lowered for that variable to become basic

- Allowable increase/decrease
- Optimal solution $x^{*}$ and objective $\sum_{j=1}^{n} c_{j} x_{j}^{*}$ may change
- Whether a decision variable is basic or non-basic stays unchanged
- Whether a constraint is binding or non-binding stays unchanged


## Terminology

For a problem in symmetrical form, let ( $\overline{\mathbf{x}}, \overline{\mathbf{y}}$ ) be primal-dual feasible point satisfying complementary slackness. Let $\overline{\mathbf{s}}$ be corresponding primal slack and $\overline{\mathbf{r}}$ be corresponding dual slack.

- Decision variable $\bar{x}_{j}$ is basic if $\bar{x}_{j} \neq 0$ ( $\bar{r}_{j}=0$ due to CS)
- Decision variable $\bar{x}_{j}$ is non-basic if $\bar{x}_{j}=0$ ( $\bar{r}_{j}<0$ in general)
- Constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ is binding if $\sum_{j=1}^{n} a_{i j} \bar{x}_{j}=b_{i}$ $\left(\bar{s}_{i}=0\right)$
- Constraint $\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}$ is not binding if $\sum_{j=1}^{n} a_{i j} \bar{x}_{j}>b_{i}$ ( $\bar{y}_{i}=0$ due to CS)


## Example: continuous knapsack

```
ampl: include cont_knapsack.run;
CPLEX 12.6.1.0: sensitivity
CPLEX 12.6.1.0: optimal solution; objective }8
1 dual simplex iterations (1 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
\begin{tabular}{lllrrcc}
\(:\) & \multicolumn{1}{c}{\(x\)} & \multicolumn{1}{c}{ x.rc } & x.current & x.down & x.up & \(:=\) \\
1 & 2.5 & \(-3.55271 e-15\) & 24 & 20 & \(1 \mathrm{e}+20\) & \\
2 & 5 & \(-1.77636 e-15\) & 5 & \(-1 e+20\) & 12 & \\
3 & 0 & -0.4 & 2 & \(-1 e+20\) & 2.4 & \\
4 & 0 & -15 & 3 & \(-1 e+20\) & 18 &
\end{tabular}
\begin{tabular}{lllccccc}
\(:\) & _conname & _con & con.slack & _con.current & _con. down & _con.up & \(:=\) \\
1 & volume & 0 & 12.5 & 60 & 47.5 & \(1 \mathrm{e}+20\) & \\
2 & weight & 1.2 & 0 & 100 & 50 & 183.333 & \\
3 & water & -7 & 0 & 5 & 0 & 6.92308
\end{tabular}
;
```


## AMPL notation

- x - primal variable;
- x.rc - reduced cost or dual slack;
- x.current - objective coefficients ( $\mathbf{c}_{i}$ );
- _conname - shadow price or dual variable;
- _con.slack - primal slack;
- _con.current - right hand side ( $\mathbf{b}_{j}$ );
- . . . down and . . . up are the minimal and the maximal value of the corresponding parameter $\mathbf{c}_{\boldsymbol{i}}$ or $\mathbf{b}_{j}$ such that the problem stays within the allowable increase/decrease range


## How to derive sensitivity analysis: Key Idea

In order for a change to be withing the allowable range, both of these must be true at the solution point:

- Whether a decision variable is basic or non-basic stays unchanged.
- Whether a constraint is binding or non-binding stays unchanged.


## Types of analysis

- Case 1: Change $b_{i}$
- Case 1a: Change $b_{i}$ of non-binding constraint
- Case 1b: Change $b_{i}$ of binding constraint
- Case 1c: Find $g$ if Case 1b.
- Case 2: Change $c_{j}$
- Case 2a: Change $c_{j}$ of non-basic variable
- Case 2b: Change $c_{j}$ of basic variable
- Case 3: Change $a_{i j}$
- Case 3a: Change $a_{i j}$ of non-basic variable
- Case 3b: Change $a_{i j}$ of basic variable
- Case 4: Add a new constraint
- Case 5: Add a new decision variable


## Case 2a: Change $c_{j}$ of non-basic variable

Change $c_{j}$ of non-basic variable

- Reduced cost $r_{j} \neq 0^{1}$

$$
r_{j}=c_{j}-\sum_{i=1}^{m} a_{i j} y_{i}
$$

- Consider $c_{3}$ which has reduced cost $r_{3}=-0.4$
- Allowable increase: $-r_{j}=0.4$
- Allowable decrease: $+\infty$
- Consider changing $c_{3}$ from 2 to 2.1
- New optimal solution: Unchanged
- New optimal objective value: Unchanged
- It's possible to change several $c_{j}$ for non-basics variables at the same time!
${ }^{1} r_{j}=0$ for non-basic variable means multiple optimal solutions


## Case 2b: Change $c_{j}$ of basic variable

Change $c_{j}$ of basic variable

$$
\begin{array}{rrrrrl}
\max & 24 x_{1} & +(5+\delta) x_{2} & +2 x_{3} & +3 x_{4} & \\
\text { s.t. } & 3 x_{1} & +8 x_{2} & +14 x_{3} & +6 x_{4} & \leq 60 \\
20 x_{1} & +10 x_{2} & +2 x_{3} & +15 x_{4} & \leq 100 \\
& x_{2} & & & \geq 5 \\
& x_{1} & x_{2} & & & \\
& & x_{3} & & & \geq 0 \\
& & & & x_{4} & \geq 0
\end{array}
$$

## Case 2 b : Change $c_{j}$ of basic variable

Consider the Dual problem:

$$
\begin{array}{rrrr}
\min & 60 y_{1}+100 y_{2}+5 y_{3} & \\
\text { s.t. } 3 y_{1}+20 y_{2} & & \geq 24 \\
8 y_{1}+10 y_{2}+y_{3} & \geq 5+\delta \\
14 y_{1}+2 y_{2} & & \geq 2 \\
6 y_{1}+15 y_{2} & & \geq 3  \tag{6}\\
y_{1} & & & \geq 0 \\
& y_{2} & & \geq 0 \\
& & y_{3} & \leq 0
\end{array}
$$

Optimal solution $y_{1}=0, y_{2}=1.2, y_{3}=-7$

## Case 2b: Change $c_{j}$ of basic variable

$$
\left.\begin{array}{rl}
\min & +100 y_{2}+5 y_{3} \\
\text { s.t. } & \\
& =24 \\
+20 y_{2} &  \tag{3}\\
+10 y_{2}+y_{3} & =5+\delta \\
+2 y_{2} & \\
+15 y_{2} & \geq 2 \\
y_{2} & \\
& \\
& y_{3}
\end{array}\right)=0
$$

(4)
(6)
(7)

## Case 2 b : Change $c_{j}$ of basic variable

From (1) we get $y_{2}=\frac{24}{20}$ (satisfies (3), (4), (6)), substitute in (2)

$$
y_{3}=-7+\delta .
$$

From (7)

$$
\delta \leq 7
$$

## Case 2b: Change $c_{j}$ of basic variable

Change $c_{j}$ of basic variable

- Reduced cost $r_{j}=0$
- Consider $c_{2}$
- Allowable increase: 7
- Allowable decrease: $+\infty$
- Consider changing $c_{2}$ from $5 \rightarrow 10$
- New optimal solution: Unchanged
- New optimal objective value:

$$
\sum_{j=1}^{n} c_{j}^{n e w} x_{j}^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}+\delta x_{2}^{*}=110
$$

## Case 4: Add a new constraint

Add a new constraint

- If current solution satisfies the new constraint
- New optimal solution: Unchanged
- New optimal objective value: Unchanged
- If current solution does not satisfy the new constraint
- Dual simplex method (but don't worry about this for now)

Note: the problem might become infeasible

Note

Sensitivity analysis lets you simultaniously think about a continious set of instances of LP for which $\delta$ is within the range. The other instances still have to be considered individually.

## Review

- ILP stands for Integer Linear Programming and MILP for Mixed Integer Linear Programming (notation may change depending on the reference).
- Both ILP and MILP can be seen as:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} a_{i j} x_{i} \geq, \leq,=b_{j} \forall j \in\{1, \ldots m\} \\
& x_{i} \text { integer } \forall i \in\{1, \ldots, n\} \quad(\text { ILP }) \\
& x_{i} \text { integer or real } \forall i \in\{1, \ldots, n\} \quad(\text { MILP })
\end{array}
$$

- A special case of integer is binary. Notice that $\times$ binary can also be written as $0 \leq x \leq 1$, integer.


## Review

Integer variables, and in particular binary variables, are well suited to write logical statements. Usually we think of $x=0$ as false, and $x=1$ as true.

Super Important: Your reformulation should express no more and no less than what you are trying to express. For example, if you are trying to express an implication for one direction, you don't want to also obligate the implication on the other way or extra implications.

## Logical Statements

For the following exercises assume all variables to be binary.

## Logical Statements

For the following exercises assume all variables to be binary.

- Express: $x_{1}=0 \rightarrow x_{2}=1$.


## Logical Statements

For the following exercises assume all variables to be binary.

- Express: $x_{1}=0 \rightarrow x_{2}=1$.
- Solution: $x_{2} \geq 1-x_{1}$.


## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

- Express: ( $x_{1}$ false, $x_{2}$ true) implies $x_{3}$ false.


## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

- Express: ( $x_{1}$ false, $x_{2}$ true) implies $x_{3}$ false.
- Solution: $x_{3} \leq 2-\left(1-x_{1}\right)-x_{2}$


## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

- Express: ( $x_{1}$ false, $x_{2}$ true) implies $x_{3}$ false.
- Solution: $x_{3} \leq 2-\left(1-x_{1}\right)-x_{2}$
- Express: ( $x_{1}$ true, $x_{2}$ false) implies $x_{3}$ true.


## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

- Express: ( $x_{1}$ false, $x_{2}$ true) implies $x_{3}$ false.
- Solution: $x_{3} \leq 2-\left(1-x_{1}\right)-x_{2}$
- Express: ( $x_{1}$ true, $x_{2}$ false) implies $x_{3}$ true.
- Solution: $x_{3} \geq-1+x_{1}+\left(1-x_{2}\right)$


## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

- Express: ( $x_{1}$ false, $x_{2}$ true) implies $x_{3}$ false.
- Solution: $x_{3} \leq 2-\left(1-x_{1}\right)-x_{2}$
- Express: ( $x_{1}$ true, $x_{2}$ false) implies $x_{3}$ true.
- Solution: $x_{3} \geq-1+x_{1}+\left(1-x_{2}\right)$
- Express: $\sum_{i=1}^{n} a_{i} x_{i}>b$ implies $y$ true. For this problem assume $\sum_{i=1}^{n} a_{i} x_{i} \leq M$ for any choice of $\left(x_{1}, \ldots, x_{n}\right)$ feasible. In this question we must think of a constraint that is always feasible.


## Logical Statements

Remember that $A \rightarrow B$ also implies that $\neg B \rightarrow \neg A$. For the following exercises assume all variables to be binary.

- Express: ( $x_{1}$ false, $x_{2}$ true) implies $x_{3}$ false.
- Solution: $x_{3} \leq 2-\left(1-x_{1}\right)-x_{2}$
- Express: ( $x_{1}$ true, $x_{2}$ false) implies $x_{3}$ true.
- Solution: $x_{3} \geq-1+x_{1}+\left(1-x_{2}\right)$
- Express: $\sum_{i=1}^{n} a_{i} x_{i}>b$ implies $y$ true. For this problem assume $\sum_{i=1}^{n} a_{i} x_{i} \leq M$ for any choice of $\left(x_{1}, \ldots, x_{n}\right)$ feasible. In this question we must think of a constraint that is always feasible.
- Solution: $\sum_{i=1}^{n} a_{i} x_{i} \leq(1-y) b+y M$


## Logical Statements

- $\sum_{i=1}^{n} a_{i} x_{i} \neq b$ implies $z$ true. Here you can assume

$$
-M \leq \sum_{i=1}^{n} a_{i} x_{i} \leq M
$$

## Logical Statements

- $\sum_{i=1}^{n} a_{i} x_{i} \neq b$ implies $z$ true. Here you can assume

$$
-M \leq \sum_{i=1}^{n} a_{i} x_{i} \leq M
$$

- Solution:

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} x_{i} & \leq\left(1-y_{1}\right) b+y_{1} M \\
\sum_{i=1}^{n} a_{i} x_{i} & \geq\left(1-y_{2}\right) b-y_{2} M \\
z & \geq \frac{y_{1}+y_{2}}{2}
\end{aligned}
$$

## Logical Statements

Let's say we have two constraints $\sum_{i=1}^{n} a_{i 1} x_{i} \geq b_{1}$ and $\sum_{i=1}^{n} a_{i 2} x_{i} \geq b_{2}$ where the $x$ 's and a'are all $\geq 0$. Write a constraint or set of constraints to enforce that at least one of the two inequalities is enforced at all times.

Solution: Let's introduce " $y$ " binary variable. A set of constraints that solves the problem is:

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i 1} x_{i} \geq y \cdot b_{1} \\
& \sum_{i=1}^{n} a_{i 2} x_{i} \geq(1-y) b_{2}
\end{aligned}
$$

Because both left sides are always $\geq 0$.

## Logical Statements

Let $x$ be a non-negative real variable, and assume that if $x>0$ then we always have that $x>\epsilon$. Let $z$ be a binary variable and assume that $x \leq M$.

## Logical Statements

Let $x$ be a non-negative real variable, and assume that if $x>0$ then we always have that $x>\epsilon$. Let $z$ be a binary variable and assume that $x \leq M$.

- $x=0$ if and only if $z$ false.


## Logical Statements

Let $x$ be a non-negative real variable, and assume that if $x>0$ then we always have that $x>\epsilon$. Let $z$ be a binary variable and assume that $x \leq M$.

- $x=0$ if and only if $z$ false.
- Solution: The two next inequalities do the job.

$$
\begin{aligned}
& x \leq z \cdot M \quad(x>0 \rightarrow z=1) \\
& z \leq \frac{x}{\epsilon} \quad(x=0 \rightarrow z=0)
\end{aligned}
$$

## Logical Statements

For the typical production problem, where $z$ could represent the decision of activating a machine and $K>0$ could be the cost of activating it, we only need to write:

$$
\begin{array}{ll}
\min & (\ldots)+K \cdot z \\
\text { s.t. } & \text { production } \leq M \cdot z \\
& (\ldots), z \text { binary. }
\end{array}
$$

Because the part $z=0 \rightarrow$ production $=0$ is implied directly by the constraint, and production $=0 \rightarrow z=0$ is obtained by the fact that we are minimizing.

## Job Scheduling Problem

(Exercise 10.7 from Introduction to Linear Programming, Bertsimas \& Tsitklis) We consider the production of a single product over $T$ periods. If we decide to produce at period $t$, a setup cost of $c_{t}$ is incurred. For $t=1, \ldots, T$ let $d_{t}$ be the demand for this product in period $t$, and let $p_{t}, h_{t}$ be the unit production and storage cost resp. for period $t$.

1. Formulate a MILP in order to minimize the total cost of production, storage, and setup.

## Job Scheduling Problem

Variables:

## Job Scheduling Problem

Variables:

- $z_{t}$ : binary variable that indicates if we produce in month $t$.


## Job Scheduling Problem

Variables:

- $z_{t}$ : binary variable that indicates if we produce in month $t$.
- $x_{t}$ : production on month $t$.


## Job Scheduling Problem

Variables:

- $z_{t}$ : binary variable that indicates if we produce in month $t$.
- $x_{t}$ : production on month $t$.
- $I_{t}$ : inventory on month $t$ (Also $I_{0}$ is included).


## Job Scheduling Problem

Variables:

- $z_{t}$ : binary variable that indicates if we produce in month $t$.
- $x_{t}$ : production on month $t$.
- $I_{t}$ : inventory on month $t$ (Also $I_{0}$ is included).

Formulation:

## Job Scheduling Problem

Variables:

- $z_{t}$ : binary variable that indicates if we produce in month $t$.
- $x_{t}$ : production on month $t$.
- $I_{t}$ : inventory on month $t$ (Also $I_{0}$ is included).

Formulation:

$$
\begin{array}{ll}
\min & \sum_{t=1}^{T}\left(z_{t} c_{t}+x_{t} p_{t}+I_{t} h_{t}\right) \\
\text { s.t. } & x_{t} \leq z_{t}\left(\sum_{i=1}^{T} d_{i}\right), \\
& I_{t}=I_{t-1}+x_{t}-d_{t}, \quad \forall t \in\{1, \ldots, T\} \\
& I_{0}=0, \quad z_{t} \text { binary, } \quad \forall t \in\{1, \ldots, T\} \\
& x_{t} \geq 0, \quad \forall t \in\{1, \ldots, T\} \\
& I_{t} \geq 0, \quad \forall t \in\{1, \ldots, T\}
\end{array}
$$

## Job Scheduling Problem

2. Suppose we allow demand to be lost in every period except for period $T$, at a cost of $b_{t}$ per unit lost of demand. Show how to modify the model to handle this option.

## Job Scheduling Problem

2. Suppose we allow demand to be lost in every period except for period $T$, at a cost of $b_{t}$ per unit lost of demand. Show how to modify the model to handle this option.
3. Solution: we need to add a new variable $\ell_{t}$ that is the demand lost in period $t$. We have to take into account the fact that it may be optimal to not satisfy demand in period $t$ even if we could in order to use the saved storage for the next period.

## Job Scheduling Problem

Model:

$$
\begin{array}{ll}
\min & \sum_{t=1}^{T}\left(z_{t} c_{t}+x_{t} p_{t}+I_{t} h_{t}\right)+\sum_{t=1}^{T-1} \ell_{t} b_{t} \\
\text { s.t. } & x_{t} \leq z_{t}\left(\sum_{i=1}^{T} d_{i}\right), \\
& I_{t}=I_{t-1}+x_{t}-d_{t}+\ell_{t}, \quad \forall t \in\{1, \ldots, T-1\} \\
& I_{T}=I_{T-1}+x_{T}-d_{T} \\
& \ell_{t} \leq d_{t}, \quad \forall t \in\{1, \ldots, T-1\} \\
& I_{0}=0, \quad \ell_{t} \geq 0, \quad \forall t \in\{1, \ldots, T-1\} \\
& z_{t} \text { binary, } \quad \forall t \in\{1, \ldots, T\} \\
& x_{t} \geq 0, \quad \forall t \in\{1, \ldots, T\}, I_{t} \geq 0, \quad \forall t \in\{1, \ldots, T\} .
\end{array}
$$

## Job Scheduling Problem

3. Suppose that production capacity can occur in at most five periods, but no two such periods can be consecutive. Show how to modify the model to handle this option.

## Job Scheduling Problem

3. Suppose that production capacity can occur in at most five periods, but no two such periods can be consecutive. Show how to modify the model to handle this option.
4. Solution: We can just add the following constraints:

- $\sum_{t=1}^{T} z_{t} \leq 5$.
- $z_{j}+z_{j+1} \leq 1 \quad \forall j \in\{1, \ldots, T-1\}$.


## Plan for a move: problem

(Exercise 10.5 from Introduction to Linear Programming, Bertsimas \& Tsitklis.) Suppose you are planning to move your new house. You have $n$ items of size $a_{j}, j=1, \ldots, n$ that need to be moved. You have rented a truck that has size $Q$ and you have bought $m$ boxes. Box $i$ has size $b_{i}, i=1, \ldots, m$. Formulate an integer programming problem in order to decide if the move is possible.

## Plan for a move: solution

This problem needs extra assumptions, i will assume the following two: First, Let's imagine that the truck deliverers are so good at Tetris that for any combination of boxes with total volume less than $Q$ they are able load the truck. Second, we can put as many objects in a box as long we do not surpass its volume (but of course let's imagine we can not divide the objects).

## Plan for a move: solution

Variables:

- $z_{i}$ : Binary variable that represents if box $i \in\{1, \ldots, m\}$ is taken in the truck or not.


## Plan for a move: solution

Variables:

- $z_{i}$ : Binary variable that represents if box $i \in\{1, \ldots, m\}$ is taken in the truck or not.
- $x_{j}^{i}$ : Binary variable that represents if item $j \in\{1, \ldots, n\}$ is stored in box $i$ or not.


## Plan for a move: solution

Formulation:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} z_{i} \text { (Could have been anything) } \\
\text { s.t. } & \sum_{i=1}^{m} x_{j}^{i}=1, \quad \forall j \in\{1, \ldots, n\} \quad \text { (Also } \geq \text { works) } \\
& \sum_{j=1}^{n} a_{j} x_{j}^{i} \leq z_{i} b_{i}, \quad \forall i \in\{1, \ldots, m\} \quad \text { (Box Capacity) } \\
& \sum_{j=1}^{n} z_{i} b_{i} \leq Q, \quad \forall i \in\{1, \ldots, m\} \quad \text { (Truck Capacity) } \\
& z_{j} \text { binary, } \quad \forall i \in\{1, \ldots, m\} \\
& x_{j}^{i} \text { binary, } \quad \forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}
\end{array}
$$

AMPL

- A restriction phrase for a parameter declaration may be the word integer or binary or a comparison operator followed by an arithmetic expression.
- A restriction phrase for a parameter declaration may be the word integer or binary or a comparison operator followed by an arithmetic expression.
- While integer restricts a parameter to integral (whole-number) values, binary restricts it to zero or one.


## AMPL

- A restriction phrase for a parameter declaration may be the word integer or binary or a comparison operator followed by an arithmetic expression.
- While integer restricts a parameter to integral (whole-number) values, binary restricts it to zero or one.
- Example:

$$
\text { param promote }\{1 . . T, 1 . . T\} \text { binary; }
$$

## AMPL

- A restriction phrase for a parameter declaration may be the word integer or binary or a comparison operator followed by an arithmetic expression.
- While integer restricts a parameter to integral (whole-number) values, binary restricts it to zero or one.
- Example:

$$
\text { param promote }\{1 . . T, 1 . . T\} \text { binary; }
$$

- Example:

$$
\text { param promote }\{1 . . T, 1 . . T\} \text { integer; }
$$

Thank you for your attention!

