
Week Three
Conditionals, Loops, and Functions

Conditionals

• A conditional defines a certain “condition” in your code, which the
computer determines as being “met”, or “not met.”

• The primary conditional is the “IF” statement.

• When you begin a line with “if” and indent a block of code, python
will only run that code if the condition you define is met.

Conditionals
• For example:

• The statement will print only if some variable ‘x’ happens to be
greater than five when python arrives at this line of code.

• Remember to include the colon at the end of the if statement line,
and to indent any lines of code you want to include in the
conditional statement.

if x > 5:
 print ‘You win the game.’

Conditionals

• You are not limited to using only one condition- you can use the
special word ‘and’ to require multiple conditions to be met, or you
can use ‘or’ to require only one of several possible conditions be
met. You can also use parenthesis to group any combination of
these together, and use contractions like <= and >=.

• Example

Conditionals
• What happens if the condition is not met? We can include an else

statement:

if x > 5:
print ‘Yay!’

else:
print ‘Aw’

Conditionals
• If you want to include cases for multiple possible conditions, use

the ‘elif’ statement:

if (x > 5) and (x>1):
print ‘case 1’

elif (x<10) and (x>5):
print ‘case 2’

Loops

• Loops allow us to set off a block of code to be repeated under
various conditions.

• Two main kinds of loops: While-loops, and For-loops

While-Loops
• A while loop is a block of indented code that will continue to run

over and over so long as the conditional statement at the top is
evaluated as true.

• Example

• Note: Be careful defining while loops! If the code doesn’t have
some mechanism within the loop to make sure the conditional will
eventually be broken, then your code will hang in the while-loop
forever!

For-Loops
• For-Loops allow us to iterate over a certain range of values within a block of code.

• We can iterate over integer numbers (such as a range), or over elements in a list
or array.

• We define some variable (anything we want, “i”, ‘j’, and ‘k’ are common) to be the
iterator, and include that variable in our block of code somewhere so that it runs
slightly differently for each ‘i’ it plugs in.

• Example

• Always keep track of whether you are iterating over elements or indices (via
range)

Functions
• So far, the functions we have used are built into python or part of a

package (e.g., numpy, matplotlib). Python also allows you to define
your own functions

• You can specify which arguments your function takes, and what it
returns

• Unlike a script (just code in a file), your function doesn’t “run” when
your code is run; instead you have to actively call your function (and
if your function returns something, you have to set a variable).

Script vs. Function
Example script:
x=5
y=7
print x+y

Example function:
def add(num1, num2):
 x=num1
 y=num2

 sum = x+y
 return sum

print add(5,7)
var = add(12,15)

Functional Programming

• It is easy to make functions to do small things, but often times it
becomes really helpful to use them on big chunks of your code (like
a pipeline).

• Say your job was to pull in some images, do some corrections, do
an analysis, and then plot the output. It would be wise to write
separate functions to load images/perform corrections, do the
analysis, and then plot nicely.

