
Week 5
Astronomical Imaging in Python

2D arrays

• The astronomical images we deal with, at a basic level, are 2D
arrays with each pixel representing a “photon bin.”

• Once you have extracted this 2D array from a FITS file, you can
work with it in the way we talked about last week.

Indexing a 2D array

• When indexing a 2D array, we have a broader set of options for
what we may want to index

• For example, we may want to pull an individual value, a whole row
or column, a group of rows and columns, or select a small area of
image.

Syntax
• The syntax for pulling a single element is the double bracket:  

pull = image_name[456][345] #In row then column format

• To pull a range of elements, we use comma notation:  
pull = image_name[456:500,323:350]

• We specify the row range with a colon, then the column range
(separated by a comma). The above would pull a sub-array (2D)
that was a rectangle on the original image

Syntax
• We can use our colon shortcuts to index whole rows/columns:  

pull_col = image_name[: , 350] #pulls the 350th column  
pull_row = image_name[40 , :] #pulls 40th row

• We can do the same to specify a range of columns or rows

• Exercise: create a 10x10 array using arange.reshape (length 100),
and then pull the second, third, and forth columns. Then pull the
5th, 6th, and 7th row.

 Image Transformations
• Sometimes we need to flip our images vertically, horizontally, or

both.

• To flip an image vertically we can use either:  
image = image[: : -1] #or  
image = image[: : -1, :]

• The reasoning here is that you are setting the image equal to itself
indexed in reversed order along the axis specified (the first version
is just a short hand version of the second)

Image Transformations
• Similarly, if we want to reverse an image horizontally (left/right):  

image = image[: , : : -1]

• To do both, we can simply apply these transformations in one ([::-1,::-1]).

• The vertical (up down) flip is especially handy, because if you change
matplotlib to put the origin in the lower corner, you need to flip your
arrays for your image to plot in the same orientation as before.

• Try flipping your 10x10 array from earlier both vertically and horizontally
to see what it looks like.

Pyfits and Astropy

• These are the plotting libraries that allow us to import fits images
into our code.

• You’ll need to try to get these installed before Wednesday… on a
mac this is trivial but on a PC it might take a bit of work.

• If you really have trouble, we have ways of getting you the array
from a fits file raw, so you will have a workaround

Mac/Linux Users

• Try opening terminal and typing “pip pyfits”

• People with canopy should have pip installed, and everything will
just work automatically.

• If it says you don’t have pip installed, https://pip.pypa.io/en/latest/
installing.html <— go there, download the get-pip.py file, and run it
in terminal. pip will install, then you can pip pyfits to install it.

https://pip.pypa.io/en/latest/installing.html

Windows
• Go to http://www.stsci.edu/institute/software_hardware/pyfits/

Download and download the version for windows and python 2.7.

• If I’m not mistaken you can open canopy’s terminal (from the bar at
the top), and cd to the directory where the file above downloaded,
and then type: >> python setup.py install

• Try before Wednesday. If you have trouble, come to tutorial a bit
early and we’ll try to work it out. If not, no worries, we will get you
the raw data.

http://www.stsci.edu/institute/software_hardware/pyfits/Download

What is FITS?
• Stands for Flexible Image Transfer System, and is the preferred

“image” format amongst astronomers and physicists.

• I say “image” because a FITS file contains more than just an image,
the way a jpeg or png does.

• Once a FITS file is loaded into python, you have access (via dot
notation) to a ton of different things called attributes. The image
itself is stored in the “data” attribute. The other primarily used
attribute is the “header”.

Loading a FITS file
• Import pyfits as pf

• hdu = pf.open(‘path/filename’) #Don’t need full path if in same
directory

• This command opens the fits file and stores everything in the
variable hdu (you can call it whatever- HDU stands for header data
units)

• Now all the attributes are stored via dot notation in hdu

Accessing the header/image

• We can now set variables for the header and image:  
head = hdu[0].header  
image = hdu[0].data

• The reason we index HDU at 0 first is because some actually have
multiple images/data stored, so we generally want to make sure we
are getting the first. (Just a safety measure).

The Header
• The header is a dictionary with a lot of useful information about the

image you are working with, such as the time and date of the
exposure, the exposure length, RA/DEC (where the telescope was
pointed in the sky), what kind of filter was being used, etc.

• It makes sense to store these as a dictionary, not an array, because
we want to be able to index head[‘RA’] or head[‘DEC’] rather than
some arbitrary index (somehow knowing RA is the 50th element, etc).

• Note- dictionaries are NOT case sensitive, so head[‘dec] ==
head[‘DEC’]

The Image
• We now have a variable called image with the raw 2D array. We can

immediately plot it using a new plotting command called imshow:  
 
plt.imshow(image, origin=‘lower’,cmap=‘gray_r’)

• image was the only needed argument- the origin command moves
the origin to the right corner, and c map choses a color palate (in
this case reversed gray). There are a few other commands we will
work with to make our plotted images come out with the right
contrast.

Manipulation

• Our image is just a 2D array, so we can flip it, index it, pull values
from it for analysis, etc., the same way we would for a 2D array!

• For example since I used origin=‘lower’, I first need to set image =
image[: : -1]

• Example!

