
Tutorial Six: Functional Programming

Imad Pasha
Chris Agostino

March 11, 2015

1 Introduction

Earlier in the semester we went over how to define a function within python, which you can
then call to do a specific task. Functions lend themselves well to a series of manipulations
which you want to perform on multiple objects. For example say you write a block of code
which can take an image of a galaxy, perform corrections to it, and perform some sort of
analysis. In this format, the variable for the image will be used throughout the code, and
somewhere at the top you will have a line which sets image equal to a loaded fits file. If you
wanted to run your code block on a different image of another galaxy (or the same galaxy),
you would have to go in to edit your code and change the load statement to match the new
file.

Alternatively, you could ”functionalize” this block of code. By enclosing it in a def
statement, and making a filename one of the inputs, you can then run this code once in the
interpreter, and call the function to all sorts of different images quickly.

1.1 Standalone Functions

Often when doing research you write blocks of code such as the example above, and it may
take several hundred lines of code (all within a single function, perhaps with smaller functions
defined and called within).

Python gives you the ability to save that document so that you can actually import your
own function into a different .py script. Basically, you can make one python file where you
just define a bunch of functions, and then import them into your actual research code to be
used, to reduce clutter. To import the functions written in one .py file into another, simply
ensure both files are in the same directory and in the research code import the name of the
other file (something like defined functions). You can also import specific functions from a
file by typing ”from filename import functionname”.

2 Writing Functions

Functions are all about efficiency: saving yourself repetitive work. The reason you haven’t
maybe felt the strong need for them thus far in the class is you have had relatively simple

1

coding problems, which don’t require repeated calculations.
Now imagine you have a data set and need to perform some complex calculation on them with
slightly changed parameters each time, it quickly becomes quite tedious to type out every
single time. Therefore, it behooves us to create our own functions such that we can input
almost any variable arguments and the function will return our desired value. In a previous
tutorial, we asked you to write a script which, with user inputs, uses the quadratic formula to
solve for the roots of the equation you enter. In this tutorial, you will do something similar
but the result will be a function. As a reminder, the syntax for writing a function goes a
little something like this

de f funcname (∗ args) :
perform c a l c u l a t i o n s
re turn d e s i r e d va lue s

Return statements are very important for functions, especially when you begin to assign
variable names to be equal to the output of functions.

3 Some Basic Functions

1. Write a function which takes two positions (like 2 x and 2 y coordinates) and uses the
distance function to return the distance between the points. E.g. I plug in 1,2,4,5 to
get the distance between (1,2) and (4,5).

2. Write a function which takes in a distance of a planet in AU and returns the its period
via Kepler’s Third Law. Then use the distances below and a for loop to create an array
of periods.

distances = .39, .72, 1.0, 1.52, 5.2, 9.54, 1918, 30.06, 39.52

Plot the distances against the periods on a log log scale. Then, write a function that
takes in this array and returns a dictionary of the planet corresponding to it’s period.
Keep in mind, everything is assumed to be in years here so do not worry about units.

3. Write a function which takes in two lists of strings containing first and last names
respectively, then returns one list containing both.

4 A Recursive Function

RECURSION TIME! We are going to make a function that calculates a factorial using
recursion. What is recursion? Recursion allows you to call a the function you are writing in
the middle of the function you are writing. Sound weird? It is. It is useful for things like
factorials, which are in fact defined recursively. For example, the definition of n! is

0! = 1 (1)

n! = n(n− 1)! (2)

2

Notice how n! is quite literally defined in terms of the factorial of the n below it. To calculate
a factorial, say, 3!, you do 3(2!)... so now we need to do 2!, which is 2*1!... so now we need
to do 1!, which is 1*0!... ah, finally we have one that is actually defined. so 1! is 1, 2! is 2,
and 3! is 6, working back up.

Amazingly, we can actually have our function we write call itself in the middle of its own
execution, which will allow us to recursively calculate the answer. You will be making a
function that returns the nth digit of the famous Fibonacci sequence. But before sending
you off on that, lets work through an example of recursion on the factorial.

4.1 A recursive factorial function

de f f a c t o r i a l (n) :
i f n==0:

re turn 1
e l s e :

r e c u r s i v e = f a c t o r i a l (n−1)
r e s u l t = n ∗ r e c u r s i v e
re turn r e s u l t

Above we have a fully functional, recursive factorial function. Note that the word recursive
used as a variable name is not ”special”, we could’ve use any variable names for anything
in the function. Notice how if you plug in an n greater than 0, it calls itself on one below
your n, and if THAT is greater than 0, it does it again, and again, until finally, n-1 is 0.
Then when it plugs in n=0, it finally returns one. But all of this is in the control flow of
the function, so each time it re calls itself, it multiplies n by the output of the function itself
called on n-1, in result. This is really mind-boggling, but think about it slowly for a while.
Check it yourself to see that it works. Once you’re ready, you can try it yourself!

4.2 The Fibonacci Sequence

The Fibonacci sequence is familiar to most of you, it goes 1,1,2,3,5,8,13,....
It is defined by the following rules:

fibonacci(0) = 0 (3)

fibonacci(1) = 1 (4)

fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2) (5)

That is, each n in fibonacci is the sum of the previous two, excluding 0 and 1.
Write a recursive function like the one above to determine the fibonacci number of any

n. Before you run your new function, it might be helpful to implement some safeguards.
Safeguards protect our code from things like infinte recursion (somewhat like an infinite while
loop). As the n entered is a positive integer, things will be fine. Your first step is to check if
it’s greater than 0- this isn’t new, just have an if statement for it first thing, and if it isn’t,
print an error string and return none. You also want to check the datatype entered- which
i’ll tell you you can do like this:

3

i f not i s i n s t a n c e (n , i n t) :
p r i n t ” Fibonacc i i s only f o r i n t e g e r s , sorry ’
r e turn none

With those safeguards in place, you can check out your function and see if it properly returns
the sequence.

4.3 Recursion with lists

Say we have some sort of sorted list with numbers going from smallest to largest. like

numbers = [3 , 8 , 15 , 19 , 24 , 29 , 32 , 35 , 37 , 40 , 43 , 45 , 47 , 95]

similar to an average physics course’s midterm distribution. Now let’s say we want to
reverse said list such that the numbers go from largest to smallest. There is an inherent
python function which reverses lists but that’s no fun so in this problem we ask you to write
a function, preferably a recursive one, that takes in a list and returns the reversed form of
it.
In a similar manner, do this on the list of distances given in the Kepler problem to confirm
you have succeeded.
Though you do not need to do this, think of a way in which you could sort a given list of
unsorted numbers using recursion

5 Global and Local Variables

Thus far in our coding adventure, most of the variables we have declared are what are called
”global” variables- that is, they can be accessed/retrieved in any part of your code. For
example, when you define an empty list and then start a for-loop, you can access that list
within the for-loop to append to it, as we have often done. There are certain variables that
when declared are only ”local”, or accessible within a certain part of your code. For example,
when you implicitly declare a variable ”i” in a for loop by saying ”for i in blah”, that ”i”
is only usable within the for loo. If later in your code you try to use i, python won’t know
what you mean.

The other main place where we have locally defined variables is in functions. When you
define a function, you can declare whatever variables you like within it to accomplish the
intermediary tasks needed to achieve the output. But none of those variables are global to
your code- you can’t reference and use them outside your function. I.e., if I had the recursion
function above, I couldn’t try to use the variable ”recursive” anywhere in the body of my
code- it is limited to use within the function.

Now, as we have seen, you specify which arguments your functions can take. However,
any globally defined variable in your code can be used within a function in your code, without
passing it as an argument. NEVER DO THIS. The whole point of a function is that it is
self sufficient- ideally, the ONLY things your function should need in order to work are the
arguments you pass to it. (I.e., if your function were the only thing in the whole python
file, it should still work when you try to use it). So try to make sure your functions have as
arguments everything they need in order to function.

4

