
Tutorial Three: Loops and Conditionals

Imad Pasha
Chris Agostino

February 18, 2015

1 Introduction

In lecture Monday we learned that combinations of conditionals and loops could make our
code much more powerful. In last week’s tutorial, you loaded up a spectrum, performed
some basic array manipulation on it, and viewed it. Today we are going to continue with
spectral analysis, this time performing a step known as ”centroiding”. The code you will
need to write to load up, correct, and centroid a spectrum will require you to use both loops
and conditionals.

2 Emission Spectra

In the spectrum you worked with last week, (A neon emission spectrum), there were sharp
emission peaks at very distinct wavelengths. This occurs because when atoms are energized
and release photons, they can only do so at several quantized energies (wavelengths). Think
of the bohr model of the atom. An energized electron can drop from the 4th to the 2nd energy
level, or the 3rd to 2nd, or the 2nd to 1st, etc. Because those energy levels are quantized,
the energies of the photons emitted when an electron falls n levels is also quantized. Every
atom has a specific arrangement of electron orbitals that makes it such that the combination
of wavelengths it can output due to electron cascading is unique (so a trained spectroscopist
can look at almost any emission spectrum and recognize the element!).

However, when we view spectra like the one you saw last week, we notice that the
sharp peaks do in fact have a certain width, despite the description above indicating they
should be perfect vertical lines at some defined wavelengths. There are numerous reasons
for the widening: spectrometers introduce some widening, fast moving gas has doppler shifts
associated with some photons, etc.

In any case, if we are to perform any sort of scientific analysis on a spectrum, we need to
know for each of those peaks what our best guess for the single ”right” wavelength for that
line should be. One typical method of determining this is centroiding.

1



3 Centroiding

Centroiding amounts to finding the ”center of mass” of a given peak. The formula for
determining the centroid of a range of values (such as intensity/signal) is

xcm =

∑
xiIi∑
Ii

. (1)

It basically represents a ”weighted average” of the peak. Note: we can’t simply choose the
x value where the peak hits its maximum because the limitations of the spectrometer result
in the true ”peak value” not lining up with the real wavelength we are looking for. This
weighted average of the whole peak provides a better guess.

4 Writing the Code

Goal: Write a script that will go through the spectrum array and find centroids for all the
peaks.

Strategy: Determine how to find the centroid of a single peak, then use loops and con-
ditionals to automatically find centroids for the whole array.

4.1 Centroid of one peak

It’s relatively simple to understand how to centroid a single peak, when done manually.

1. There is a neon spectrum located on the tutorial page (not the same as last weeks!) –
load it and extract an array with the pixel numbers and an array with the intensities
(see tutorial 2).

2. Plot the spectrum, and pick one of the peaks to centroid. Use the ”magnifying glass”
icon in the plot window to zoom in on the peak and see at around what pixel number
it ’starts’ and ’ends’. (note those numbers, you’ll need them).

3. Go back to your code and use the center of mass formula (eqn. 1) to determine a center
of mass for the peak. Hint: remember that you can use the sum or np.sum function to
sum an array or part of an array.

4. Use the function plt.axvline(x, ’-.’) to plot a vertical dotted line at the value of the
centroid you just found over the original spectrum. (Make sure the line plt.show()
comes after your last plotting command or you won’t see the dotted line). Check that
it seems to be at the weighted center of the peak.

4.2 Many peaks

The spectrum we have given you only has 20 or so peaks, so it’s conceivable to centroid
them all manually. If you had a full Neon spectrum it could have hundreds to thousands

2



of lines! We want to automate the centroid finding process. First we have to automate the
peak finding process.

1. Find the pixel positions of the peaks in the spectrum. There are multiple ways to do
this; feel free to try your own way. One possible method is to find everywhere in the
array where a value is higher than both the one before and the one after it, all while
being over some threshold. (A conditional statement might be useful here)! You will
need to iterate over the signal array to implement it. Also keep in mind that you need
to initialize your list/array outside the for loop.

• Note: you will be wanting to append values to the end of the list/arrays you are
working with. Lists and arrays have slightly different syntax for this: for lists, use
listname.append(new value), while for arrays use arrayname = np.append(arrayname,
new value).

2. This spectrum is very sharp, so the window size within which to calculate the centroid
is a few pixels on either side of the peak. Experiment with values between 5 and 10
pixels.

3. Write a block of code that produces a list or array of peak positions, and then use a
for loop to iterate through each peak position, calculating the centroid in the vicinity
of that peak, appending them to a new list/array of of ”centroids”.

4. Define a function that simply uses plt.axvline, taking an x coordinate as input (and
just hard code the ’-.’ option.

5. Use a for-loop to quickly plot vertical dashed lines (using the function you just made)
for all your centroids over the original spectrum (you don’t need the plot of the single
centroid you did earlier anymore).

Figure 1: The final product: a spectrum with the centroids of the peaks marked. More
importantly, you now have an array with the exact centroid values in it.

3



Figure 2: A zoomed in figure demonstrates how the lines lie near the center of the peaks
measured.

That was by no means a trivial task. But now we have a piece of code which we can use
to automatically find the centroids of the peaks in a spectrum over some threshold. As of
now, you could run this code on different spectra, but you’d have to edit your code to load
the right file and set an appropriate threshold, save it, then run it in python. You could also
just indent everything in the code, stick it all in one function that takes a string filename
and a threshold as inputs. Then theoretically, you wouldn’t have to edit your code to run it
on different spectra.

5 Homework

The homework this week is to finish the tutorial above, as it likely took more than an hour.
We would like you to turn in the final python file that performs the centroiding (remember
to comment your code). Also upload an image titled ”your username tut3.png” of the final
plot- the spectrum with all centroids marked by dashed lines (see fig. 1). Both files should
be in a zip before uploading.

Next week we will be going more in depth into plotting and reviewing everything we’ve
covered so far. Please read up through Chapter 5 of the textbook, which is on plotting.

6 Optional Homework!

If you found the above relatively straightforward and want more to do, (or you’re just really
bored or want extra practice), here’s a little something for you.

6.1 The Centroid Window

You may have noticed that the choice of the range of pixels over which we calculated the
centroid for each peak was rather arbitrary. We can actually be a bit more systematic about

4



how we select that window.

6.2 FWHM

FWHM, or ”Full-width at Half-Maximum” is, as it states, a measure of how wide a certain
peak is at half of its maximum value(fig. 3). Finding the FWHM of a peak isn’t too
difficult: find the peak, divide the intensity by two, and then find the first place before and
after the peak that are that value (look up np.where!). Change your code to calculate the

Figure 3: Full Width Half Maximum

centroid of each peak in a window the width of that peak’s FWHM. This is where functional
programming comes in handy. You can write a function to generate a FWHM for any peak,
and then call that function for each peak you are centroiding to determine the range of pixels
that are considered in the center of mass determination. This method rightfully uses small
windows for narrower peaks and wider windows for wider peaks.

Furthermore, if you wanted to experiment and do a little research, you could try out a
second method for turning a wide peak into a single value. The method is to fit a gaussian
curve to the peak, and then take the maximum of the gaussian. (This is quite a bit more
complicated).

5


