
Unix Guide 

 

Preface: For the purposes of this document, it will be handy to 
have examples of nested directories and files to use as 
examples. We will such define them here, with a schematic, so 
you can follow along as you read the examples.  

We will be navigating around this particular tree 

Home/your_user_name/documents/homework/week1  

Note: In this tutorial “>>” will denote your prompt in terminal. 

 

<tab> . . . .auto complete filename or command. (only works on 
unique files, etc, so if you have 3 files starting with abc you 
need to at least type one unique letter beyond that to let tab 
complete it).  

& . . . Use this after a command if you want it to open in 
background; i.e., open a new window and allow you to still use 
terminal at the same time. For example, typing the command 
>>>emacs file.py will open emacs, but as a foreground process, 
until you close emacs, you will not be able to use the terminal 
you opened it from.  

pwd . . . print working directory. This command allows you to 
see exactly which folder you are in. It is the equivalent to 
looking at the top of a windows or mac browser window and seeing 
you are in /user/documents/homework/etc. It will tell you the 
full path name of your current location. 

cd . . . change directory. This command is how you navigate 
through the UNIX system of directories (folders). There are 
various nuances to how this command is used.  

1. Simply typing cd with a space after it will change your 
directory to whatever your home directory is on a given 
network. For you it is likely /home/username/  

2. cd will always work with a full path destination. I.e., 
regardless of where you are in a tree of directories, 
typing cd /home/user/folder1/folder2/folder3 will take 
you to the given folder.  

3. If you are in a given folder, and want to change 
directories into a folder within that directory (for 
example, you are in your documents folder and want to 
move into a contained folder called homework) then you 
simply need to type >>cd homework (no slash symbols 
necessary). This syntax indicates to the computer that 
the directory you are attempting to cd into is within the 



current directory you are in. (again, to check which 
directory that is, use pwd). 

4. If you are in a directory and want to cd to the directory 
outside of it (for example, you are in homework, and want 
to get out to documents), you can type[ >>cd .. ] This 
notation tells the computer you want to cd to the folder 
that contains your current one. The reason is that a 
single period [.] has the meaning “here”. So if you typed 
>>cd . you would not change directories (or you would 
change to be exactly where you were). As stated, cd .. 
takes you one directory out. To move two directories out, 
use >>cd ../.. and to move three out, use cd ../../.. , 
and so on.  

5. You can also move down multiple directories. For example, 
if you were in “home”, you could move to homework by 
typing >>cd documents/homework. Note the lack of slash 
before documents, because documents is within /home/. 
Typing cd /home/documents/homework would achieve the same 
effect.  

 

clear . . . clear screen. Not super useful, but can be when 
trying to explain things to someone and wanting a blank canvas 

 

mv . . . move. Moves a file. Syntax:  

>>mv filename newlocation  

for example, to move a file from homework to documents, type 

>>mv filename ..  

(remembering the syntax for one folder out). Again, it is always 
correct to use the full path if needed; ie,  

>>mv filename /home/documents  

You can also rename a file in the process of moving it. The 
syntax is  

>> mv oldfilename newfilename newlocation 

Interestingly, this makes mv the command for renaming files as 
well. To rename a file, “move it,” (giving it a new name) to the 
same location (by using a period as the destination) 

The syntax for mv above assumes you are in the directory of the 
file to be moved. That form of syntax, with the filename 
following the command, will ONLY work in this case. If you were 
in /home/ and wanted to move a file in homework to documents, 
you would need to type  



>>mv /home/user/documents/homework/filename /home/user/documents  

(usually it is just easier to cd into the directory with the 
file, then move it).  

 

rm . . . remove. Removes a file. BE CAREFUL. This is not windows 
or mac, there is no recycle bin, when something is deleted, it 
is gone forever. Luckily, the astro server computers all have a 
setting enabled that will prompt you “are you sure? Y/N” before 
actually deleting anything. (Which for now you should leave on). 
In any case, the syntax is just  

>>rm filename  

(assuming you are in the directory with the file, see discussion 
in mv about this). You can remove multiple files using the * 
wildcard, for example,  

>>rm *.py  

would delete all your python files (probably not a good idea by 
the way),  

>>rm *  

would just wipe out everything, and   

>>rm *end*  

would wipe out any file that had “end” anywhere in the name [see 
discussion of wild card right below for more info].  

 

rmdir . . . remove directory. Same as above, but for 
directories.  

 

 

 

cp . . . copy. This is how you copy and paste a file. The syntax 
is  

>>cp filename newlocation  

(of course assuming you are in the directory of the file). You 
also have the option of renaming it along the way:  

>>cp oldfilename newfilename newlocation  

(you can also copy a file to the same folder you are in, with a 
new name, by specifying the new location as “.” ) 



 

Asterisk* . . . the wildcard. This one can be a bit tricky to 
understand conceptually at first, but it becomes very useful in 
day to day work. The * is basically a holder that can stand for 
any character, and any number of characters. It just means 
“anything”. So if you wanted to delete every file in a folder 
that started with a capital E, you would type  

>>rm E*  

and it would delete all files that had E[anything], regardless 
of filetype, etc. To delete all files of a certain filetype, use
 >>rm *.py  

and it will remove any file that ends in .py. (You can use any 
command with wild cards though, like mv, cp, etc, I simply use 
rm to be consistent). You can use multiple wild cards in a 
statement, for example, *fgw* would equate to any file which had 
the string fgw anywhere in its name, including at the very 
beginning (the * can also stand for nothing).  

 

grep . . . “search”. Grep will search a file for a certain 
phrase or word. The syntax is >>grep “phrase” filename. There is 
a useful flag (or option) for grep so it will also display the 
line the phrase was found on.  

>>grep –n “phrase” .  

to search say, all your python files in a folder, you can  

>>grep –n “phrase” *.py  

(which will search all .py files in the directory) 

 

 

 

ls . . . list files. This is a very important command which will 
allow you to see all files in a given directory. Generally it is 
used without arguments (the things that come after the command), 
for example, if you were in your homework folder and typed 

`    >>ls  

it would show you all files in that folder, similar to the way 
you would see them in a gui interface. However, as always, full 
path names work, so if you were in /home/, you could type  

>>ls /home/user/documents/homework and get the same 
results. There are many useful flags for ls.  



>>ls –a will list all files in a directory, including 
“hidden” ones that don’t normally show up with ls (these 
are never normal files, they usually begin with a period 
like “.alias” and are set up and permissions files you 
normally don’t have to worry about).  

>>ls –ltc will sort by most recently edited/modified. 

>>ls –s will include file sizes, and  

>>ls –Ss will sort by size 

>>ls –r will reverse the sort 

>>ls –X will sort by extensions 

 

>>man<command> . . . Manual. Every UNIX command has a manual 
description of how to use it, and which flags and options can be 
applied to it. So anytime you remember a command (say, cp) but 
don’t remember how to structure the arguments, or a specific 
flag for an option, you can type  

>>man(cp)  

and it will come up. You can scroll down through the description 
to find the flag you are looking for. To escape the manual, just 
hit “q”.  

 

mkdir . . . make directory. This command will make a new 
directory in the directory you are in. For example, if you are 
in homework, typing  

>>mkdir week1  

will make a new directory within homework called week1. 

 

ssh . . . secure shell. This is how you login to astro computers 
from elsewhere, or switch which astro computer you are on. In 
terminal, say you are on aquarius.  

>>ssh nemesis 

Will prompt for a password, then put you onto nemesis (which for 
example has ipython while aquarius does not). Keep in mind that 
these are “networked” or server-based computers. I.e., your 
home/user/ folder, and everything within (along with anyone 
else’s for that matter), are accessible from any computer in the 
network. The reason to switch is mainly related to which 
packages are installed on which, and whether some are running 



slow due to high traffic. To learn more about sshing into the 
servers from your own computers, check out the Link in the 
resources page.  

lpr . . . print. That’s basically it. To print a file like pdf 
from terminal type  

 >>lpr filename  

Assuming you are in the right directory, and this should print 
to the astro lab printer.  

 

cat . . . catalogue. Syntax is 

 >>cat filename 

And the output is allowing you to see the contents of a file.  

Similarly, typing 

 >>more filename  

Will pop open the beginning of a file, and show you what 
percentage of it is on screen. Hit enter to advance through the 
file until it ends, and you will automatically be returned to 
terminal. 

 

 

tar . . . archive. The tar command is used to create .tar files, 
which are compressed file storage units similar to .zip, or .rar 
as you would have on a pc or mac (and programs like winrar can 
open tar files). This is a convenient way of packaging up 
multiple files to scp or email over to another location. Syntax: 

 >>tar –cf name.tar file1 file2 file3 

Will create a .tar archive named “name” containing those three 
files. You can also use * to specify all files in a given 
directory, etc. to extract the files out of a tar, use 

 >> tar –xf name.tar 

And the archive will unpack and the individual files/directories 
within will be accessible. 

ALIASING 

One thing you will learn extremely quickly as a programmer is 
that typing things sucks. That’s why we have tab completion. 
That’s also why there is a trick called aliasing that will allow 



you to customize the commands you use commonly in order to allow 
you to move around with ease.  

To start, cd to your user directory, /home/user/. Inside, if you 
were to run “>>ls –a” you would see a file called .aliasfile  

You can open this file any way you like (vim, emacs, etc), and 
you will see that there are actually a crap ton of aliases 
already there, that are given by default. Some of these may be 
useful (for example, this is where they have set “rm” to 
actually mean “rm –i”, which means interrogate before deleting. 
However, I wouldn’t recommend taking the time to memorize all 
the aliases, since that defeats the purpose of having them! You 
can leave them alone or delete the ones you really don’t want 
(or want to change).  

Anyways, now is your opportunity to set some aliases of your 
own. The syntax is 

alias yourcommand “what the full real command should be” 

For example, if you were too lazy to write ls –a everytime you 
wanted to list all files, and wanted to just type “la” instead, 
you would write 

alias la “ls –a”  

One of the most useful ways of using aliases are for cd’s. For 
example, you could do: 

 alias hmrk “cd /home/user/documents/homework”  

     alias docs “cd /home/user/documents”  

and then, no matter where you were in any directory tree, typing  

 >>hmwrk  

Would immediately whiz you to your homework folder. Keep in mind 
though that the alias is simply a shortcut for the long command 
you give it. So you if you delete directories, or move 
directories around, then the alias needs to be updated to still 
work. Usually I don’t recommend aliasing every folder then, but 
rather only doing the main ones you may use very often.  

 

 


