Unix Guide

Preface: For the purposes of this document, it will be handy to
have examples of nested directories and files to use as
examples. We will such define them here, with a schematic, so
you can follow along as you read the examples.

we will be navigating around this particular tree

Home/your_user_name/documents/homework/weekl

Note: In this tutorial “>>” will denote your prompt in terminal.

<tab>auto complete filename or command. (only works on
unique files, etc, so if you have 3 files starting with abc you
need to at least type one unique letter beyond that to let tab
complete 1it).

& . . . Use this after a command if you want it to open in
background; i.e., open a new window and allow you to still use
terminal at the same time. For example, typing the command
>>>emacs file.py will open emacs, but as a foreground process,
until you close emacs, you will not be able to use the terminal
you opened it from.

pwd . . . print working directory. This command allows you to
see exactly which folder you are 1in. It is the equivalent to
Tooking at the top of a windows or mac browser window and seeing
you are 1in /user/documents/homework/etc. It will tell you the
full path name of your current location.

cd . . . change directory. This command is how you navigate
through the UNIX system of directories (folders). There are
various nuances to how this command is used.

1. Simply typing cd with a space after it will change your
directory to whatever your home directory is on a given
network. For you it is likely /home/username/

2.cd will always work with a full path destination. I.e.,
regardless of where you are in a tree of directories,
typing cd /home/user/folderl/folder2/folder3 will take
you to the given folder.

3. If you are in a given folder, and want to change
directories into a folder within that directory (for
example, you are in your documents folder and want to
move into a contained folder called homework) then you
simply need to type >>cd homework (no slash symbols
necessary). This syntax indicates to the computer that
the directory you are attempting to cd into is within the

current directory you are in. (again, to check which
directory that is, use pwd).

4. If you are in a directory and want to cd to the directory
outside of it (for example, you are in homework, and want
to get out to documents), you can type[>>cd ..] This
notation tells the computer you want to cd to the folder
that contains your current one. The reason is that a
single period [.] has the meaning “here”. So if you typed
>>cd . you would not change directories (or you would
change to be exactly where you were). As stated, cd
takes you one directory out. To move two directories out,
use >>cd ../.. and to move three out, use cd ../../.. ,
and so on.

5. You can also move down multiple directories. For example,
if you were in “home”, you could move to homework by
typing >>cd documents/homework. Note the lack of slash
before documents, because documents 1is within /home/.
Typing cd /home/documents/homework would achieve the same
effect.

clear . . . clear screen. Not super useful, but can be when
trying to explain things to someone and wanting a blank canvas

mv . . . move. Moves a file. Syntax:
>>mv filename newlocation

for example, to move a file from homework to documents, type
>>mv filename

(remembering the syntax for one folder out). Again, it is always
correct to use the full path if needed; ie,

>>mv filename /home/documents

You can also rename a file in the process of moving it. The
syntax 1is

>> mv oldfilename newfilename newlocation

Interestingly, this makes mv the command for renaming files as
well. To rename a file, “move it,” (giving it a new name) to the
same location (by using a period as the destination)

The syntax for mv above assumes you are in the directory of the
file to be moved. That form of syntax, with the filename
following the command, will ONLY work in this case. If you were
in /home/ and wanted to move a file in homework to documents,
you would need to type

>>mv /home/user/documents/homework/filename /home/user/documents

(usually it 1is just easier to cd into the directory with the
file, then move 1it).

rm . . . remove. Removes a file. BE CAREFUL. This 1is not windows
or mac, there is no recycle bin, when something is deleted, it
is gone forever. Luckily, the astro server computers all have a
setting enabled that will prompt you “are you sure? Y/N” before
actually deleting anything. (which for now you should leave on).
In any case, the syntax is just

>>rm filename

(assuming you are 1in the directory with the file, see discussion
in mv about this). You can remove multiple files using the *
wildcard, for example,

>>rm *.py

would delete all your python files (probably not a good idea by
the way),

>>rm *
would just wipe out everything, and
>>rm *end*

would wipe out any file that had “end” anywhere in the name [see
discussion of wild card right below for more info].

rmdir . . . remove directory. Same as above, but for
directories.

Cp . . . copy. This is how you copy and paste a file. The syntax
is
>>cp filename newlocation

(of course assuming you are in the directory of the file). You
also have the option of renaming it along the way:

>>cp oldfilename newfilename newlocation

(you can also copy a file to the same folder you are in, with a
new name, by specifying the new location as “.”)

Asterisk®* . . . the wildcard. This one can be a bit tricky to
understand conceptually at first, but it becomes very useful in
day to day work. The * 1is basically a holder that can stand for
any character, and any number of characters. It just means
“anything”. So if you wanted to delete every file in a folder
that started with a capital E, you would type

>>rm E*

and it would delete all files that had E[anything], regardless
of filetype, etc. To delete all files of a certain filetype, use
>>rm *.py

and it will remove any file that ends in .py. (You can use any
command with wild cards though, Tike mv, cp, etc, I simply use
rm to be consistent). You can use multiple wild cards in a
statement, for example, *fgw* would equate to any file which had
the string fgw anywhere in its name, including at the very
beginning (the * can also stand for nothing).

grep . . . “search”. Grep will search a file for a certain
phrase or word. The syntax is >>grep “phrase” filename. There is
a useful flag (or option) for grep so it will also display the
Tine the phrase was found on.

>>grep -n “phrase”
to search say, all your python files in a folder, you can

>>grep -n “phrase” *.py

(which will search all .py files 1in the directory)

Is . . . Tist files. This is a very important command which will
allow you to see all files in a given directory. Generally it is
used without arguments (the things that come after the command),
for example, if you were in your homework folder and typed

>>1s

it would show you all files in that folder, similar to the way
you would see them in a gui interface. However, as always, full
path names work, so if you were in /home/, you could type

>>1s /home/user/documents/homework and get the same
results. There are many useful flags for 1s.

>>1s -a will Tist all files in a directory, including
“hidden” ones that don’t normally show up with 1s (these
are never normal files, they usually begin with a period
Tike “.alias” and are set up and permissions files you
normally don’t have to worry about).

>>1s -1tc will sort by most recently edited/modified.
>>1s -s will include file sizes, and

>>1s -Ss will sort by size

>>1s -r will reverse the sort

>>1s -X will sort by extensions

>>man<command> . . . Manual. Every UNIX command has a manual
description of how to use 1it, and which flags and options can be
applied to it. So anytime you remember a command (say, cp) but
don’t remember how to structure the arguments, or a specific
flag for an option, you can type

>>man (cp)

and it will come up. You can scroll down through the description
to find the flag you are Tooking for. To escape the manual, just
hit “q”.

mkdir . . . make directory. This command will make a new
directory in the directory you are in. For example, if you are
in homework, typing

>>mkdir weekl

will make a new directory within homework called weekl.

ssh . . . secure shell. This is how you login to astro computers
from elsewhere, or switch which astro computer you are on. In
terminal, say you are on aquarius.

>>ssh nemesis

will prompt for a password, then put you onto nemesis (which for
example has ipython while aquarius does not). Keep in mind that
these are “networked” or server-based computers. I.e., your
home/user/ folder, and everything within (along with anyone
else’s for that matter), are accessible from any computer in the
network. The reason to switch is mainly related to which
packages are installed on which, and whether some are running

slow due to high traffic. To learn more about sshing into the
servers from your own computers, check out the Link in the
resources page.

Tpr . . . print. That’s basically it. To print a file like pdf
from terminal type

>>Tpr filename

Assuming you are in the right directory, and this should print
to the astro lab printer.

cat . . . catalogue. Syntax is

>>cat filename
And the output 1is allowing you to see the contents of a file.
Similarly, typing

>>more filename

will pop open the beginning of a file, and show you what
percentage of it is on screen. Hit enter to advance through the
file until it ends, and you will automatically be returned to
terminal.

tar . . . archive. The tar command is used to create .tar files,
which are compressed file storage units similar to .zip, or .rar
as you would have on a pc or mac (and programs 1like winrar can
open tar files). This is a convenient way of packaging up
multiple files to scp or email over to another location. Syntax:

>>tar —-cf name.tar filel file2 file3

wWill create a .tar archive named “name” containing those three
files. You can also use * to specify all files in a given
directory, etc. to extract the files out of a tar, use

>> tar -xf name.tar

And the archive will unpack and the individual files/directories
within will be accessible.

ALTASING

One thing you will Tearn extremely quickly as a programmer is
that typing things sucks. That’s why we have tab completion.
That’s also why there 1is a trick called aliasing that will allow

you to customize the commands you use commonly in order to allow
you to move around with ease.

To start, cd to your user directory, /home/user/. Inside, if you
were to run “>>1s -a” you would see a file called .aliasfile

You can open this file any way you like (vim, emacs, etc), and
you will see that there are actually a crap ton of aliases
already there, that are given by default. Some of these may be
useful (for example, this is where they have set “rm” to
actually mean “rm -i”, which means interrogate before deleting.
However, I wouldn’t recommend taking the time to memorize all
the aliases, since that defeats the purpose of having them! You
can leave them alone or delete the ones you really don’t want
(or want to change).

Anyways, now is your opportunity to set some aliases of your
own. The syntax is

alias yourcommand “what the full real command should be”

For example, if you were too lazy to write 1s -a everytime you
wanted to Tist all files, and wanted to just type “la” instead,
you would write

alias la “lIs -a”

one of the most useful ways of using aliases are for cd’s. For
example, you could do:

alias hmrk “cd /home/user/documents/homework”
alias docs “cd /home/user/documents”

and then, no matter where you were in any directory tree, typing
>>hmwrk

wWould immediately whiz you to your homework folder. Keep in mind
though that the alias 1is simply a shortcut for the Tong command
you give it. So you if you delete directories, or move
directories around, then the alias needs to be updated to still
work. Usually I don’t recommend aliasing every folder then, but
rather only doing the main ones you may use very often.

