
John (Jack) Sampson A05434795 jsampson@cs.ucsd.edu
Allen Chu allenchu@cs.ucsd.edu

A Comparison of the Effect of Warm-up Techniques on the Speed and Accuracy of
Simulating Using Shorter SimPoints.

• Motivations

At the heart of any approach to speed up simulation is the reduction of size of the code
to be simulated in detail. However, as the length of any given run of fully simulated
code decreases, the impact of stale or erroneous micro-architectural state on any results
garnered from that section of the simulation can increase. When the SimPoint
technique was first introduced, the expected contiguous block size for simulation was
100 million instructions, and the warm-up effects were thus not a large concern, as any
effects would be overshadowed by execution. However, as contiguous block sizes in
more recent applications of SimPoint based approaches drop closer to 10 million and
to 1 million instructions, it becomes more important to consider what degree of warm-
up of the micro-architectural state is necessary to avoid introducing error, and what
sort of delay doing such a warm-up would impose. A thorough examination of
tradeoffs between simulation speed and accuracy when using various warm-up
techniques with SimPoint promises to be useful in determining which warm-up
techniques are worth considering for use with SimPoint.

• Challenges

The overall challenge in warming is to provide an accurate state for a simulation to
begin or carry on a section of a trace. The more pressing challenge of warming is
remaining timely. The purpose of simulators such as SimPoint and SMARTS is to
decrease simulation time. If warming ends up dominating simulation time, the
ultimate goal is not realized. Warming techniques built for both accuracy and speed
are thus notably preferable to those designed for accuracy alone.

A thorough side-by-side comparison of warm-up techniques does not appear to have
been done in the context of SimPoint. This is unsurprising given that for the previous,
and even current, granularity of SimPoint sizes, several well-known warm-up
techniques have proved sufficient in practice. However, there is not as yet any
formalism to the choice of warm-up method to use. Though there do not currently
appear to be overarching complications due to error from lack of warm-up or excessive
delays due to the warm-up mechanisms used, the lack of comparative data renders
difficult any judgments as to whether this will continue to be true for smaller
simulation chunks. We already know that, qualitatively, warming serves the smaller
SimPoint chunks well; the challenge lies in coming up with a useful quantitative
assessment across several different techniques and projected over different simulation
chunk sizes.

John (Jack) Sampson A05434795 jsampson@cs.ucsd.edu
Allen Chu allenchu@cs.ucsd.edu

• Solution Space

There are a number of solutions to the problem of warm-up that we plan on
comparing. These solutions include the assume hit, stale state, calculated warm-up,
and the continuously warm approach. Simulating no warm-up will be the baseline for
speed comparison, and the known IPC and other metrics for the benchmarks we
simulate will be the baselines for accuracy.

The "assume hit" warm-up method avoids the notion of a cold start by adding a
warm-up bit to each entry of caches, branch predictors, and other history dependent
structures. This warm-up bit is set initially and is cleared once an entry in a cache or
branch predictor is used. For that first use, a hit or correct prediction is assumed as
the high accuracy of these structures makes the likelihood of a hit or correct
prediction much greater than the opposite. To offset the somewhat unreal perfection
while still avoiding a cold start, this approach can be augmented with a set miss rate
percentage such that such that a miss or incorrect prediction is sometimes triggered
for the first access.

The "stale state" warm-up method is a bit less proactive then the "assume hit"
method. "Stale state" does not attempt to mask the lack of warm-up by falsifying the
first access to a structure’s entries, but also does not reset any part of the micro-
architectural state between the end of a simulation point through the beginning of the
next simulation point. Essentially, a previous simulation section is used as a warm-up
for a current simulation section.

The "calculated warm-up" method calls for running a number of instructions
immediately previous to the start of a simulation point to accomplish warming. A
working set of architectural data such as branch addresses and accessed data is
generated. Next, the number of instructions to use for warm-up before a simulation
point is calculated, with the requirement being that the number of instructions is
sufficient to capture the working set generated. The warm-up instructions are
executed and then statistic-gathering tools are reset for the section to be simulated.

The "continuously warm" method selectively keeps some structures, such as a the
cache, warm while in fast-forward mode. The only concern of a "continuously warm"
method is its effect on the fast-forward execution time. The purpose of the fast-
forward is to skip over sections of instructions extremely quickly to save time in the
simulation. Continuously warming structures should not affect the fast-forward to an
extent that the overall simulation time is noticeably degraded.

There are other possible warm-up techniques that may be compared as well. One of
these is using Memory Reference Reuse Latency to do warming. Haskins and
Skadron introduced a parallel to the “calculated warm-up” above by measuring the
number of instructions that elapse between memory references in order to time when
warm-up should begin. The closer memory references that are preceded by a sample
will be more highly associated with the sample itself as opposed to the references

John (Jack) Sampson A05434795 jsampson@cs.ucsd.edu
Allen Chu allenchu@cs.ucsd.edu

farther away. So those references should be included in the warm-up while the
references farther away have no need to be included because they are irrelevant.
Another method to consider is the dynamic warm-up mechanism from DiST. This
method proposes using immediate instructions succeeding a simulated section. The
number of instructions for warm-up used is dynamically determined by comparing
simulation results with the next section to be simulated. When they are both similar
enough, warm-up is considered complete.

• Opportunity

In a somewhat circular fashion, it is because simulations are taking less time to run
and skipping over long stretches of their data that quantifying the effectiveness of
warm-up techniques is a worthwhile endeavor, and it is because simulations are
becoming faster and skipping over long stretches of their data that we can hope to
gather sufficient data, in a reasonable time frame, for meaningful comparison. Thus,
the particular opportunity is that, as it is not yet a pressing concern for those using
SimPoint to guide simulation, warm-up has not already been studied ad nauseum in
the context of SimPoint, but it has been studied enough in other contexts that there
exist interesting solutions which warrant the effort of a thorough comparison.

• Methodology

We plan on using SimpleScalar 3.0 to model our architecture for simulation.

Extensions are available for Skadron and Haskins’s Memory Reference Reuse Latency
approach, and we aim to use those.

We look to use work done on SMART to assist in implementing some of the warm-up
techniques.

The following metrics will be gathered. Data gathered will stem from these metrics.
- Mean overall IPC
- Mean error
- Mean cache miss rates
- Mean branch misprediction rates
- Mean Per-Phase Variance on the above
- additional time needed for warming (measured in system time spent in simulator)

We plan on gathering data from running as much of the SPEC benchmarks as time will
allow using SimPoints with chunk lengths of 1 million and 10 million instructions, over
all of the warm-up techniques discussed.

Given the amount of CPU time needed to complete all these simulation runs, we aren’t
certain as to which machines we should be seek to be running our jobs on and welcome
advice as to which resources we should look into scheduling time on.

John (Jack) Sampson A05434795 jsampson@cs.ucsd.edu
Allen Chu allenchu@cs.ucsd.edu

• Papers referenced for background material and motivation:

Greg Hamerly, Erez Perelman, and Brad Calder. How to Use SimPoint to Pick
Simulation Points. ACM SIGMETRICS Performance Evaluation Review, 2004.

S. Girbal, G. Mouchard, A. Cohen, and O. Temam. DiST: A simple, reliable and scalable
method to significantly reduce processor architecture simulation time. In ACM Intl. Conf.
on Measurement and Modeling of Computer Systems (SIGMETRICS'03), San Diego,
California, June 2003.

Roland Wunderlich, Thomas Wenisch, Babak Falsafi and James Hoe. SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling. In
Proceedings of the 30th International Symposium on Computer Architecture, June 2003

J.W. Haskins and K. Skadron. "Minimal Subset Evaluation: Rapid Warm-up for
Simulated Hardware State." In Proceedings of the 2001 International Conference on
Computer Design, pp. 32-39, Sept. 2001.

J.W. Haskins, Jr. and K. Skadron. “Memory Reference Reuse Latency: Accelerated
Warmup for Sampled Microarchitecture Simulation.” In Proceedings of the 2003 IEEE
International Symposium on Performance Analysis of Systems and Software, pp. 195-
203, Mar. 2003.

