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Abstract

In this paper we describe techniques that enable the
implementation of a fast processor simulator. These
techniques have been used to implement a detailed out-
of-order processor simulator called Turandot that
executes over 350 million instructions per hour.

1. Introduction

Designing a processor involves making design
choices between a number of possible microarchitectural
and implementation features. In the case of an out-of-
order wide-issue superscalar processor, the trade-offs
become difficult, both because there are many more
design choices to be made, and because many of these
choices are sometimes counter-intuitive. It becomes nec-
essary to model the various options and then measure the
performance actually obtained before a particular option
is chosen.

This approach to processor design requires a simula-
tor that is detailed, flexible, and fast. The simulator must
be detailed enough that the design choices made using the
simulator would be unaffected by the details not model ed.
The simulator must be flexible so that a large part of the
design space can be searched. Lastly, the simulator must
be fast, so that the numbers required to make a decision
can be turned around quickly, a large part of the design
space can be searched, and a large number of inputs can
be used.

In this paper we describe the techniques used to
implement a detailed out-of-order wide-issue superscalar
simulator called Turandot. In particular, we shall focus on
those techniques that allow Turandot to execute well over
350 million instructions per hour” - in many cases, Turan-
dot executes over 400 million instructions per hour.

It is difficult to compare the performance of proces-
sor simulators, since performanceisdirectly related to the
complexity of the processor being modeled, and the detail
at which it is modeled. For instance, the next fastest com-
mercial processor simulator for which simulator perfor-
mance numbers have been reported that we are aware of
is ADAPT [2]. ADAPT has less than half the perfor-
mance of Turandot, though it is modeling a simpler pro-
cessor. The fastest academic simulator that we are aware
of isthe out-of-order processor simulator of the SimpleS-
calar toolset, sim-outorder [1]. sim-outorder has about
twice the performance of Turandot, but is ssimulating a
considerably simpler processor model.

The paper is organized as follows: we first give an
overview of the capabilities of Turandot, so asto give an
appreciation of the complexities of the processor model.
Then we describe the techniques used to obtain the per-
formance of Turandot. Thisisdonein severa parts:

e Section 3 details the performance improvements
made possible by the shift in processor design philos-
ophy,

* Section4 describes the benefits obtained from
recompiling the simulation executable for each pro-
cessor model,

» Section 5 concentrates on high level optimizations
that are specific to processor ssmulators and, finally,

* Section 6 examines somewhat more generally appli-
cable performance coding techniques.

We briefly show the time required to ssimulate various
benchmarks using Turandot in Section 7 before conclud-
ing in Section 8.

* on aRS/6000 43P-140 workstation, with a 200MHz 604e.
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Figure 1: Typical processor model

2. Turandot

Turandot is the smulator part of MET [3], atool set
designed to support the exploration of a large design
space for out-of-order wide-issue PowerPC based super-
scalar processors.

Turandot is a cycle-driven simulator, coded using C.
It is either trace-driven or execution-driven using
Aria[6]. In the execution-driven mode, Turandot will
also simulate instructions from the not-taken path.

A detailed description of Turandot can be found in
[5]. In this section, we only outline both its flexibility
and its complexity, so that one can appreciate how suc-
cessful the techniques described in this paper have been
in increasing the speed of the simulator.

To give an idea of itsflexibility, hereisalist of some
of the features it supports:

* two levels of cacheswith 1, 2, or 4 way associativity,
either separate |&D or unified.

* two levelsof TLBs, with 1, 2, or 4 way associativity,
either separate |& D or unified.

* |-cache prefetch.
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Figure 2: Typical processor pipeline

» multi-ported and interleaved D-caches.

* L1/L2 bus features, including multi-cycle transfers,
critical word first transfers, and trailing edge effects.

» dynamic load-over-store speculation, with alias
detection and recovery.

* register renaming for 4 register files: condition regis-
ter fields, general purpose registers, floating point
registers, and special purpose registers.

» upto four kinds of units and issue queues: fixed-
point, floating point, memory, and condition/branch.

* clustered fix and/or memory queues/units.

 next-fetch-address (NFA) logic for predicting next |-
fetch address.

* various branch prediction algorithms for predicting
branch direction/target.

« dynamic decomposition of complex instructions into
simpler internal micro-instructions. For instance, a
Iswx (load-string word indexed) instruction is broken
into several instructions, each of which only load
part of the string. Even instructions as simple as stwu
(store-word and update) can be broken up into two
micro-instructions: a store-word and an update.

* varying number of pipeline stages.
* varying sizes of the various queues/buffers.

Fig. 1 shows the micro-architectural features of a
typical design-point, while Fig. 2 shows the pipeline
stagesimplemented. Thisisthe design point for which we
quote our simulator performance numbers. As can be
seen, it is fairly complex. Some of the choices made in
the model are:

» 2-way set associative separate |& D caches backed up
by a unified 4-way set associative L2 cache.

* two levels of separate |1& D side TLBs, each side con-
sisting of a direct mapped I-side TLB backed up by a



unified 2-way associative second level TLB.

* branch prediction using a link stack for link-register
branches, a branch target address cache for counter
branches and a 2-level branch history table.

 expand logic to break up all instructions that write
more than 1 general purpose register and/or read
more than 2 general purpose registers.

* register renaming that separately renames general
purpose, floating-point, condition register field and
special purpose registers.

» two each of fix, memory, float and branch/condi-
tional units, each with its own issue queue.

* load/store reorder logic that allows loads to be exe-
cuted before stores, and later re-executed if some
load and store overlapped.

* castout queues & miss queues for dealing with cache
replacement and misses.

e an L1/L2 bus with a 3 cycle transfer time, which
returns datain 2 blocks, critical block first.

3. Design-based optimizations

We have found that high frequency processors
(500MHz+) lead to simpler and faster simulators. Thisis
a consequence of the design style required to achieve
high frequencies; in particular, the processor designers
have to develop simpler pipelines, with less complexity
per stage. This necessitates designs with low control com-
plexity, fewer places where the processor can stall, as lit-
tle arbitration as possible, etc. Such design practices, in
turn, result in asimulator that is both simpler and faster.

3.1 Simple simulation loop

In the hardware we are modeling, computation
occursin parallel; various latches are simultaneously read
at the beginning of a processor cycle, and then, in paral-
lel, written to at the end of the cycle. To properly model
the processor, the simulator must ensure that the variables
representing such latches are al read before being written
during a cycle. Ensuring that this happens becomes diffi-
cult, if not impossible, when dealing with complex con-
trol flow. The usual, and computationally expensive
solution, is to model such registers using a two-list algo-
rithm (also known as master/slave latches). This approach
uses two variables per register - one of the variables is
read from, and the other written to in the course of a
cycle. At the end of the cycle, the value in the written-to
variable is copied to the read-from variable.

Figure 3: Simulation loop

The reduced control complexity of high-frequency
processors makes it feasible to dispense with master/slave
latches. Instead, we can in general ensure that al values
from the previous cycle are read-from before being writ-
ten-to by evaluating all stages of the pipeline in reverse
order of data flow. For the case of a simple five stage
pipeline, thiswould result in an evaluation loop as shown
in Fig. 3. Theresulting code is considerably faster since it
avoids the over-heads introduced by the management of
two variables in the two-list algorithm.

3.2 Collapsed stages

In high-frequency processors, the number of stages
at which an instruction can stall has been reduced. Once
an instruction passes a stage where the pipeline can be
stalled, it can typically proceed for several pipeline stages
before encountering the next pipeline stage at which it
can be stalled. This allows the simulator to model the
effect of executing severa stages in one place, thereby
decreasing the amount of work the simulator has to do.

As an example, in the processors we model, once a
fixed-point instruction isissued from the issue-queueit is
guaranteed not to stall till it enters the retirement stage.
Thus, in the simulation, once it is known that an instruc-
tion is going to be issued, all the “future” actions associ-
ated with that instruction can be evaluated immediately,
and the relevant structures can be updated. These actions
include:

» Marking the instruction as being able to retire after R
+ E + W cycles, where R is the number of register
access stages, E is the number of execution stages,
and W the number of write-back stages.
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Figure 4: Simulation processin Turandot

» Marking its output as becoming available to instruc-
tionsthat need it after E cycles.

This allows the simulator to fold together the model-
ing of register fetch, execute and write-back into the issue
stage.

4. Tailored models

Simulating a processor model under Turandot
involves the following steps, as shown in Fig. 4:

* define the processor model (usually involves picking
values for various constants and selecting between
microarchitectural features).

» compile Turandot for that model.

* preprocess the executable program to be simulated
against the model; this step precomputes and caches
much of the information required by the simulator.
See Section 4.2 for details.

» simulate the program using the compiled model exe-
cutable and the preprocessed information.

At first glance, this approach appears to add a signif-
icant amount of overhead to the simulation process. about
10 minutes for the compile step”. However, we typically
simulate billions of instructions against each model. The
10 minutes of compilation time is insignificant compared
to the hours spent actually using the model. And, as we
shall show later in this section, the speedup in the simula-

* The overhead of preprocessing is negligible.

tion time more than makes up for the extra compilation
overhead.

4.1 Compile-time flags

Many simulators with a wide range of features use
run-time parameters to specify the exact model being
simulated. These parameters are usualy used for things
such as:

* Feature selection: which microarchitectural features
will be modeled. Thiswould include choosing to use/
not use instruction prefetching, or having a unified
vs. separate second-level TLBs, and so on.

» Sizing: how big the various architectural features
will be. For instance, the number of rename registers
or cache line sizes would be controlled by sizing
parameters.

 Output control: which statistics will be printed, how
often, etc.

We replace each of these with compile-time parame-
ters with a #define constant’. This has the drawback of
forcing us to create a different executable for each set of
processor model parameters. However this approach
yields much higher performance for several reasons:

* if(...) ... statements that are used to control the simula-
tion of a particular feature are replaced by #if(...) ...
#endif preprocessor directives. This avoids the cost
of the extra branches.

* It allows us to statically allocate various data struc-
tures, based on the value of #define constants.

» We can pick algorithms and structures based on the
various #define constants;, for instance, different
cache simulation algorithms are used for 1, 2 and 4
waly associativity.

» The use of #define constants allow expressions
involving parameters to be evaluated at compile
time.

» The compiler can use the immediate form of various
machine instructions, instead of first loading the
parameter and then computing the instruction.

e Only those statistics that are actually going to be
printed are collected; since statistics gathering is a
large component of the ssimulation cost, this can be
quite important

T More often, through -D<parameter>=<value> options to the compiler.



4.2 Caching

For each instruction in the program, any datum that
is needed by the simulation and can be deduced from
either the instruction word or its address is computed
exactly once, and then cached. This includes information
such as:

» number of registers used
* execution latency
* micro-instructions the instruction expands into

» the maximum number of instructions fetched in a
block beginning at this address

Asfar as possible this computation is performed stat-
icaly before the simulation. For AIX program executa-
bles, thisincludes all code other than the shared libraries.
The shared libraries are translated dynamically. In both
cases, the computed information is cached in a table that
is indexed by the instruction address. Then, instead of
recomputing any information for an instruction, it is
obtained by reading from the table.

We make afurther optimization - when an instruction
is fetched for execution, much of the cached information
for that instruction is copied into the in-flight instruction
data structure. This avoids the need for repeated indexing
into the cache table.

5. High-level optimizations

In this section, we shall describe those performance
improvements obtained from techniques that apply pre-
dominantly to processor simulators.

5.1 Crystal ball

In atrace and execution-based simulation, we have a
“crystal bal”; i.e., we know information about what will
happen to the instruction at the time the instruction is
fetched. For instance

e For branches, we can tell whether the branch is
mispredicted or not.

* Inthe case of an instruction such as Iswx (load string
indexed), which moves a variable amount of data, we
know at fetch time how much datait will move.

This permits several optimizations. For instance, in
the case of a branch, we need to back up state to recover
the in-order state in the case the branch is mispredicted.
From the “crystal ball” we can determine at fetch time
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Figure5: Sub-queuesin in-flight queue

whether a branch is mispredicted or not, and whether the
branch will need recovery or not. We can use this infor-
mation to back up state only when necessary, instead of
backing up the state on every branch for mispredicted
branch recovery purposes.

5.2 Single queue

All in-flight instructions, and the data pertinent to
them, are maintained in a single queue. There is no copy-
ing of data (or pointers to data) as an instruction proceeds
through the pipeline.

Instead, in-order queues such as the instruction-fetch
buffer, the retirement queue or the various decode latches
are maintained as sub-queues of this queue by “ pointers’
to the beginning and end of each sub-queue in the queue,
asillustrated in Fig. 5.

For those queues that need to be maintained sepa-
rately (such as the various issue-queues), space is alo-
cated in the queue entry so that the instructions can be
chained together

5.3 .Pseudo-event scheduling

Turandot is a cycle-driven timer. We do not have any
event queues. However, in certain situations where events
occur infrequently or unpredictably an event queues-like
structure make sense. For instance, interactions between
the various levels of the memory hierarchy fit into this
category.

We optimize the execution time of such queues by
maintaining the earliest cycle on which the next event
will occur. This allows us to ignore the queue most of the
time by simply checking if the current cycle equals the
current time, and skipping if it does not. On the rare occa-
sions where we do not skip, we then perform the extra
work to see if an event actually needs processing.



5.4 Set-associative cache algorithm

We use different algorithms for simulating 1, 2 and 4
waly set-associative caches. The details of the 2 and 4 way
algorithms are described in [4]. Bri€fly, by changing the
way the cache directories are probed, and the way LRU

information is maintained, we can simulate set-asso-
ciative caches with performance approaching that of sim-
ulating a direct mapped cache.

6. Low-level optimization

In this section, we describe those performance
improvements obtained from techniques that can be
applied to speed up programs in general.

6.1 Memory allocation

We do not use dynamic memory allocation at all.
Instead, we use statically declared arrays of structures.
This is made possible by the fact that the code is written
such that, given the #define values, it is possible to com-
pute the maximum number of each data-type used.

Using arrays of structures also has another benefit;
instead of using pointers, we can now use offsets into the
array of the relevant type. This has several benefits,
including better anti-aliasing and lowered memory usage.

6.2 Optimize for cachelocality

We work fairly aggressively on reducing the number
of data cache misses. We achieve this principaly by
reducing the size of the working set.

We read (or produce) the instruction trace in small
chunks into a buffer. We have found that, while a large
buffer would permit us to amortize the cost of the trace
read over a much larger number of instructions read per
call to the trace reader, reading the large number of
instructions wipes out the cache. It is more efficient to use
a small buffer (say, around 16 instructions) and decrease
the number of cache misses than to use a large buffer and
decrease the number of calls to the trace reader.

Additionally, the various data-structures are opti-
mized for space. Thisincludes packing data as densely as
possible by using the minimum number of bits wherever
possible. For instance, if the maximum number of
instructions in flight is less than 256, we use a single
byte; otherwise we use 2 bytes.

Also, as mentioned above, instead of storing a
pointer to a structure, we store the offset within the stati-
cally declared array of those structures. This usually
allows us to use 1 or 2 byte offsets, as opposed to the 4
bytes required for storing a full pointer.

The use of #define constants allow us to pick data
sizes that support the current options, not the worst case/
For instance, assume that we wanted to support upto 256
rename registers, but for a particular model we need only
128. In that case, we would alocate space only for 128
rename registers, not 256.

6.3 Alias avoidance

Since the code is written in a high-level language, it
must be compiled; for best performance, we must make
our source code such that it is as easy as possible for the
compiler to generate good object code. One of the biggest
hindrances to the ability of the compiler to generate good
code is the presence of aliases. Consequently, as far as
possible, we try to avoid any feature that could interfere
with the compilers ability to distinguish between two
addresses.

In particular, we have no pointers. Instead, as we
have mentioned, all memory is statically allocated. As a
matter of fact, we go even further. All the simulation code
resides in a single procedure, and al variables are auto
(i.e. stack-allocated local) variables. This, coupled with
the fact that we are using strict ANSI C, allows the com-
piler to do an almost perfect job of anti-aliasing.

6.4 L oad over branch movement

In general, a compiler cannot reschedule aload oper-
ation in the then or else sides of anif(...) to execute before
theif(...) is evaluated. This constraint arises from the fact
that the compiler cannot in general determine whether the
address being loaded from was in fact a valid address;
moving the load before the if might result in a segment
fault in certain situations. However, it is often beneficial
to do this.

In general, we should explicitly code so that the load
is performed before the if when the following conditions
hold:

« theload isof an array element’,
* it issafeto perform the load before the if,

« thereisnot much code above theif, or not much code
in the block containing the |oad.

* or apointer dereference



Benchmark Instructions Cycles/hour | Instructions’hour Cycles/sec. I nstructions/sec.
compress 34.4M 250 M 489 M 72K 136 K
gce 1212.1 M 259 M 371 M 72K 103K
go 429M 275 M 372M 76 K 103K
ijpeg 11324 M 285 M 590 M 79K 163K
li 191.4 M 243 M 460 M 67 K 127K
m88ksim 1174 M 260 M 444 M 72K 123K
perl 1.2M 243 M 345M 67 K 95K
vortex 2527.1M 211 M 482 M 58 K 134K

Figure 6: Performance of Turandot

6.5 Branch removal

Branches hurt processor performance in many ways.
A genera rule of thumbisthat it is always good to reduce
the number of branches wherever possible. There are sev-
eral ways of doing this of which we shall describe two.

First, we can avoid branches by converting the con-
trol dependence into an expression evaluation. For
instance,

if(a&& b){
X ++;

}
can be converted into the semantically equivalent

X+=a&& b;

thereby avoiding abranch.”

The other approach to avoiding branches is to guard
several unlikely branches by asingle branch which istrue
if and only if one of the other branchesis true. For exam-
ple, taking a case that occurs in branch prediction simula-
tion:

if( branch_cond ) {
[*** use branch history table ***/

elseif( branch_through_Ir ) {
[*** uselink stack for prediction ***/

}
elseif( branch_through_ctr ) {
[*** use branch-tar get address cache ***/

}
This can be optimized by re-writing as follows:

* There are compilers which will automatically do this transformation;
however, they will not capture all opportunities.

if( branch_of_some kind ) {
if( branch_cond ) {
[*** use branch history table ***/

}
elseif( branch_through_Ir ) {
[*** uselink stack for prediction ***/

elseif( branch_through_ctr ) {
[*** use branch-tar get address cache ***/

}
}

Now, assume branches are about 20% of all instruc-
tions. Thus, in the origina code, 80% of the time we
would be executing 3 branches, all of which would be not
taken. In the re-written code, we execute exactly one
branch for non-branch instructions, and we execute one
extra branch for the remaining 20% of instructions that
are branches. This results in a considerable reduction in
the total nhumber of branches taken (about 1.4 branches
per iteration).

7. Performance

The run-time performance of Turandot simulating
various programs in execution-driven mode is shown in
Fig. 6. The processor model used was the typical model
described in Section 2. The programs picked are from the
SPECIint95 suite, compiled using xlc with optimization
level -02. Theinput used for each program was one of the
provided training inputs. The programs were run to com-
pletion. The numbers were collected on a RS/6000 43P-
140 workstation, with a 200MHz PowerPC 604e proces-
sor.

As can be seen, Turandot can simulate the execution
of between 345 to 590 million instructions per hour.
Alternatively, Turandot simulates between 211 and 286
million cycles per hour. By either measure, the perfor-
mance is quite respectable.



8. Conclusion

In this paper, we show that it is possible to imple-
ment a detailed and flexible ssmulator for high-frequency
out-of-order wide-issue superscalar processors with fairly
high run-time performance.

We have outlined many of the techniques we have
used to achieve high performance. These range from
techniques that take advantage of the increasing simplic-
ity of processor control logic to various coding tech-
niques that are more generally applicable. Perhaps the
most novel of these techniques is the one described in
Section 4.2 - precomputing and caching information
associated with an instruction word and address.

We have used these techniques to implement a
detailed flexible simulator, Turandot, that can simulate
over 350 million instructions per hour. Turandot has
made it possible for usto perform in a reasonable amount
of time studies that require the simulation hundreds of
different processor configurations for billions of cycles.
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