Microarchitecture-Level Power-Performance
Simulators: Modeling, Validation, and
Impact on Design

Zhigang Hu, David Brooks, Victor Zyuban, Pradip Bose

- IBM Research VE B[R 3
Harvard University

Tutorial Outline

8:00-8:15 Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot

- Power-Performance Efficiency Metrics
Case Studies and Examples

- Optimal Power-Performance Pipeline Depth
Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

Power Dissipation Trends

1000 -
~ - | « Intel Data
£ [| » SIA Projection| Nuclear
A Reactor
< 100 -
> - ¢
."5 - ¢ Pentium III
§ 10 ; Hot Plate . Pentium 11
T E . Pentium Pro
S B Pentium
S] * 486
A 1 * 486 I I
1980 1990 2000

2010

The Battery Gap

Energy (mAh)

Diverging Gap Between Actual Battery Capacities and Energy Needs

5000

4000

3000

2000

1000

10kbps 64kbps 384kbps

2Mbps

Inte ractive/‘@ video-
Conferencing, |

A

Voice recognition,

Collaboration

ideo email,

Downlink V/
d omin ate Web browser,

Mobile commerce B -

-

B
P 7 Fuel Cells

PIM, SMS, MMS, Video clips 7
Voice 4
V4

_p—1

/‘/-I*

-ii—- Battery
capacity
(mAh)

=3~ Energy
requirement
(mAh)

I/-/‘/-lithium

Lithium lon Polymer

2000 2001

2002 2003 2004 2005 2006 2007

Source:
Anand
Raghunathan,
NEC Labs

Power Issues

Capacitive (Dynamic) Power Static (Leakage) Power

Vdd
I\ 3 V
Vin L .

Vin
1 Vout Tsus c
| IGate L
| ' A i
C.

Temperature D1/Dt (Vdd/Gnd Bounce)

20 cycles

o %
| i

Current (A)

Temperature
("C)

82,007
. S0.1173
B

Voltage (V)

Application Areas for Power-Aware
Computing

=i
E
¥

=

e

— Temperature/di-dt-Constrained —»

Energy-Constrained Computing >

Why architecture/system level?

e Many architectural/system decisions have huge impact
on power and performance

o Often need feedback at the early-stage of a design
— Pre-RTL, pre-circuit analysis
e Run-time, system-level feedback control

— Application/dynamic run-time characteristics allow
dynamic scaling for power reduction

— Perhaps power, temperature, and voltage sensor to
guide throttling for worst-case situations

What architects need from lower levels...

e Architects need abstract models on many levels...
— Static speed-power knobs for structures
e Parameterized models for HW structures
e Impact of implementation choices
— Given cycle-level power estimates (power vs. time)
e Chip temperature models
e Chip di/dt models
e Hardware hooks
— Dynamic speed-power knobs for structures
e Clock gating, Vdd-scaling, Vdd-gating
e Need to understand costs of these knobs

— On-chip sensors to measure power, temperature, voltage
deltas

Tutorial Outline

Introduction and Motivation
8:15-9:00 Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot

- Power-Performance Efficiency Metrics
Case Studies and Examples

- Optimal Power-Performance Pipeline Depth
Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

A Developer's Guide to Turandot/PowerTimer

e Acknowledgments: J-D Wellman, Jaime Moreno, and other IBMers in the
original Turandot/MET development team

Processor Simulator: An Overview

e Processor simulator: a tool that emulates the behavior of a real processor
e Software-based:
e Concept phase: C/C++/System C
e Design phase: VHDL
e Hardware-based:
e FPGA
e Simulators are used for:
e Workload characterization
e Performance / power target projection
e Compiler tuning
e Design space exploration and tradeoff evaluation
e Testing / debugging/ validation
e Existing simulators
e Academia simulators: SimpleScalar, RSIM, SMTSIM, etc.
e Industry simulators:
e Concept phase
e Product phase

Turandot/PowerTimer Overview

» An out-of-order superscalar processor model for the PowerPC architecture

¢ Cycle-accurate, cycle-based

e Initial version developed by a group of researchers at IBM T.]. Watson
e Power4-like machine configuration by default

e Other configurations attainable through compile-time parameters
e Performance model validated against Power4 preRTL model

e Power model added in summer 2000

e Based on circuit simulation of Power4-like circuits
e Supporting trace-driven and execution-driven modes
e Trace-driven mode now supports SMT, and is portable to AIX/Linux/Cygwin

e Interpretation-based execution mode is underway

program
trace 1

EEn Turandot

program
trace N

trace-driven mode

program
binary

trace segment

N\

program
inputs

Aria

o

<

Turandot

P

trace request

execution-driven mode

Disclaimer

1. Power4-like '= Power4
2. Simulator implementation !'= real hardware implementation

Source File Organization

Turandot root C|II'
Sources source file dir
Aria Turandot
translate opcode deps ffreader SIC
standalone opcode predecode ffreader | turandot

Aria library library library \source files

Turandot Source Files

turandot.c

L

headers \ units init/flush utilities trace power stages

controls.h array.c init. macros param.macros init.power.macros Stage_commit.macros

iq.h block_bus.macros flush_arbitrary.macros trace.macros power.macros Stage_retire.macros

trauma.h block_dcache.macros flush_mispredicted.macros dep.macros power_def.macros stage_fpu_exec.macros

array.h block_icache.macros reset.macros utils emdline.macros stage_fpul_exec.macros
block_memqg.macros utils reader.macros stage_fix_exec.macros
block_nfa.macros utils trans.macros stage_fix1_exec.macros
block_prediction.macros dep_prep_process.c stage_dmiss_exec.macros
block_prefetch.macors castout_exec (in Turandot.c)

stage_mem_exec.macros
stage_mem1_exec.macros
stage_log_exec.macros
stage_br_exec.macros
stage_rename.macros
stage_dispatch.macros
stage_decode.macros
stage_ifetch.macros
flush_exec (turandot.c)

Turandot Simulation Framework

NFA + Branch

Predictor

I-TLB1 L1-I cache

. Fetch
|

I-Fetch |-

A
I-TLB2 —— L Buffer _4 DeCOdel/ Expand l
™ |: . Decode/Expand

I-Prefetch l

Rename/Dispatch
| |

— Yy Y Rename/Dispatch

L2 cache (—1ibp Issue queue Issue queue Issue queue Issue queue
Integer Load/store FP Branch
t ' ' ' ' Issue
Issue logic Issue logic Issue logic Issue logic l
Main i i
Memory I I I I y
o e) b Reg Read
—_— Reg.read Reg.read Reg.read Reg.read
| | | |
Cast-out queue (I P N N I |—|1-|—|—| |—L|-|—|—|

Exec/ Mem

Integer Load/store FP Branch
‘ units units units units l

L1-I$ cache I—I'l-l—l—I ‘_I]_I'_I_I l

Retirement queue

Load/store f— 1
— [reorder buffer Retlre
D-TLB1

I 1 store queue F— l

D-TLB2 Retirement logic
L1 miss queue F—

Simulation Flow: Reverse Pipeline Order

stores are committed to cache/memory COMMIT_STORES_DELAY cycles after retire

1. If store, remove from storeq

2.If load, remove from reorderq,
check if there is a load/store
conflict. If yes, flush the pipeline
(reset.macros)

3. Update branch history

4. Remove instruction from retireq

1.Rename
I. Check if enough rename registers
available, if not, stall until available.

I1. Rename architectural registers to
physical registers.

II1.If the instruction is a mispredicted
branch instruction, check if all
operands are ready. If yes, resolve
the branch and start fetching from
the right path from next cycle.

IV. Note: registers in different class are
renamed separately.

2. Dispatch
1. Place renamed IOPs into the
corresponding issue queue. If a given
operation can not be placed in the
issue queue (i.e. the queue is full),
stall the stage until available.

Commit

FIX_EXEC

l

'

Re'tire

FIX1_EXEC

y

'

CMPLX_EXEC

Exec

'

l

FPU_EXEC

!

Rename

FPU1_EXEC

'

'

Disbatch

DMISS_EXEC

'

'

DCASTOUT_EXEC

Deéode

!

l

MEM_EXEC

'

IFetch

MEM1_EXEC

'

:

Flush

LOG_EXEC

'

BR_EXEC

Fetch Stage

NFA/Branch Predictor

I-TLB1 L1-I cache

|)

4 Decode/Expand

I-Prefetch

i

L2 cache {eli=—@"

bus

stage_ifetch.macros
main fetch logic
array.c/h

arrays: caches, counter prediction table,
NFA, etc.

unit definitions:
block_icache.macros
block_bus.macros
block_nfa.macros
block_prefetch.macros
block_prediction.macros

1.

If @ mispredicted branch is resolved (therefore
ifetch has been on the mispredicted path), then
revert back to the true taken path, flush the
pipeline, and stall ifetch for a number of cycles.

. If ifetch is stalled for some reason, check whether

the reason has been resolved. If so, resume ifetch
from next cycle.

. Stall ifetch if I-Buffer is full, or no more fetch

blocks are allowed, or no more inflight insns are
allowed.

. Fill the trace reader buffer. Stall ifetch if no

instruction is available due to (1). no trace on the
path (2). end of trace.

. Use address of the first insn in this fetch block to:

1.Check ITLB1 / ITLB2. If miss, stall ifetch for a
number of cycles according to the miss type.

2.Check L1 ICACHE / IPrefetch / L2 ICACHE. If
miss, stall ifetch and charge appropriate miss
penalties.

3. Lookup NFA for next fetch address.

. For each insn in current fetch block:

1. Decode (see process_iword), expand into IOPs
(internal insns), and insert IOPs into I-Buffer.

2. If branch, perform branch prediction.

. Update NFA. 9

Decode/Expand Stage

NFA/Branch Predictor

1. Expand instructions into IOPs and insert
them into I-Buffer, in program order.
(This code is in stage_ifetch.macros but
logically it belongs to decode stage)

2. Handle millicode instructions (insns that
expand to more than two IOPs), such as
string ops. Stall decode if necessary.

3. Form instruction groups according to

Power4 grouping rules (see IBM JR&D
Power4 paper).

stage_ifetch.macros
expand instructions
stage_decode.macros

millicode handling and instruction group
formation

10

Rename/Dispatch Stage

NFA/Branch Predictor

1. Rename

I-TLB1 L1-I cache

I_T'LBZ 4 I r—— [. Check if enough physical registers
—>1 — — available, if not, stall until available.

I1. Rename operands to physical registers,

| Rename/Dispatch | . .
I nd allocate physical registers for each
e 4 2 dlocate physical registers for e2

Issue queue Issue queue Issue queue Issue queue
sl | M il o IILIf the insn is a branch, check if all
operands are ready. If so, resolve the

I

L2 cache

. — =T

Memory branch and start fetching from the true
path from next cycle.

IV.If the insn is a mispredicted branch,
checkpoint rename map for later

stage_rename.macros

rename instructions recovery.
2. Dispatch
stage_dispatch.macros 1. For load/store, allocate reorderg/storeq
dispatch instructions into corresponding slots if necessary. If no slot is available,
issue queues. stall dispatch.

2. Dispatch IOPs into corresponding issue
queues. Stall dispatch if no issue queue
slot is available.

11

Issue/Execution Stage: FXU, FPU, LOG, CMPLX

——

Issue queue
Integer

—

Issue queue
Load/store

*

——

Issue queue
FP

—

B -

Issue queue
Branch

—

Issue logic

Issue logic

Issue logic

Issue logic

| Reg.read || Reg.read | | Reg.read | | Reg.read |
|

[o o o e

Load/store FP
units units

Integer
units

stage_fix_exec.macros/stage_fix1_exec.macros
fix point instruction execution
stage_fpu_exec.macros/stage_fpul_exec.macros
floating point instruction execution
stage_log_exec.macros
stage_cmplx_exec.macros
logic and complex instruction execution

1. Check if any non-pipelined instruction
is in progress, if so, stall the pipeline
2. Issue ready insns in oldest-first order

3. Set result to be available after a
number of cycles depending on the
instruction latency

4. Remove insn from issue queue.

12

Issue/Execution Stage: BR

NFA/Branch Predictor +—

Issue queue Issue queue Issue queue Issue queue
Integer Load/store FP Branch
— B — —
Issue logic Issue logic Issue logic Issue logic

Reg.read || Reg.read | | Reg.read | | Reg.read

Integer
units

Load/store
units

FP
units

Branch
units

llllllllllllllu_l_lli

stage_br_exec.macros
branch execution

1. (if INORDER_BRANCHES), check if
there are memory ops before this
branch. If so, stall.

2. If operands are not ready, exit.
3. Collect branch stats.

4. If branch is mispredicted, perform
some bookkeeping for preparation of
pipeline flush.

5. Remove branch from branch issue
queue.

13

Issue/Execute Stage: MEM

I-TLB1

L1-I cache

l)

I-TLB2
I-Prefetch

I

L2 cache

;

Main
Memory

Cast-out queue

L1-D cache

I-Buffer

NFA/Branch Predictor +—

.4 Decode/Expand I—

| Rename/Dispatch |
I

——

Issue queue
Integer

—

Issue queue
Load/store
R

e Yo

Issue queue
FP

——

Issue queue
Branch

Issue logic

Issue logic

Issue logic

Issue logic

'_— | Reg.read || Reg.read | | Reg.read | | Reg.read |
| | | |

Integer
units

Load/store
units

FP
units

Branch
units

i o o

)

D-TLB1

Load/store
reorder buffer

store queue k—

D-TLB2

miss queue P—

=y

Retirement queue

'

Retirement logic

1. If MEM is already stalled for some reason,
check if that is resolved. If so, resume MEM.

2. Calculate #insns executable this cycle, exit if
none.

3. For each insn in mem issue queue:

1. If INORDER_BRANCHES, stall if there is
branch ahead.

2. If operands not ready, exit.

3. Handle non-mem type insns.

4. Check bank conflicts

5.Check DTLB1/DTLB2, stall if miss.
6. For store, insert into storegq.

/. For load, first search storeq to see if
match any existing stores, if yes, bypass.
Otherwise, insert into reorder queue.

8. Check L1 dcache / trailing edge / L2
dcache. If miss, move insn from memq to
dmissq, which is ordered by the time
when data is ready.

4. Set results to be available after a number of
cycles depending on the instruction latency

stage_mem_exec.macros/stage_mem1_exec.macros °- Remove insn from mem issue queue.
load/store instruction execution

14

WB/Retire Stage

I-TLB1

I-TLB2

'——
| rpfetch |

I-Prefetch

L1-I cache

5

L2 cache

I

;

Main
Memory

Cast-out queue

L1-D cache

I-Buffer

NFA/Branch Predictor +—

.4 Decode/Expand I—

| Rename/Dispatch |
I

——

Issue queue

—

Issue queue

e Yo

Issue queue

——

Issue queue

Integer Load/store FP Branch
Issue logic Issue logic Issue logic Issue logic

'_— | Reg.read || Reg.read | | Reg.read | | Reg.read |
|

[oy -

| |
|_|;_|_||_|.,.|_|_||_|.|.|_|_|

Integer
units

Load/store
units

FP
units

Branch
units

D-TLB1

Load/store
reorder buffer

D-TLB2

store queue k—

miss queue P—

stage_retire.macros
retire instructions

Retirement queue

'

Retirement logic

1. If store, remove from storeq

2. If load, remove from reorderq, check
if there is a load/store conflict. If yes,
flush the pipeline (reset.macros)

3. Update branch history
4. Remove instruction from retireq

Data Structures: Instruction Queue, Array,

itlb

jcache

nfa_cache/bp_counter

I-TLB1

i2zth |

I-TLB2

iprefetch_blf

I-Prefetch
12cache
%

Main
Memory

L1-I cache I

NFA/Branch Predictor +—

4 Decode/Expand I_

rgrename/rgrename_backup

I-Buffer

| Rename/Dispatch |
I

I

Issue queue

 Emp— L

Issue queue Issue queue Issue queue

Integer Load/store FP Branch
| | | |
Issue logic Issue logic Issue logic Issue logic

| Reg.read || Reg.read | | Reg.read | | Reg.read |
|

| Cast-out queue I

dcache

L1-D cache

| |
||,|||||J||I_L,_I_I_II_L|.I_I_I|

Integer
units

Load/store FP Branch
units units units

dtib

D-TLB1

datb |

D-TLB2

reorderq

reorder buffer

storeq

iq

Load/store e

store queue Sl

miss queue P—

Retirement queue

Retirement logic

ig.h

Instruction queue
array.c/h

array definition and implementation
block_memgq.macros

reorderg/storeq

16

Data Structures: Instruction Queue

dmiss queue

- H - . — . -
i q_tI dmiss_tl dmiss_n dmiss_hd |q_hd
hiah (|OW)
(high) group 3 group 2 group 1
™ > > ‘ ®|remove by retire
/ ! f bl oJal 14 '
insns from ifetch \'/_/
execution queues:
(1). dmiss queue -
fetch buffer le (2). qcastout queue -
(3)- fix execution queue groupl is the current group to
(4). fpu execution queue retire, ig_retire = iq_hd if no
(5). mem execution queue grouping
. . . . (6). br execution queue _)
ig_dec: ig_dis: iq_ren: (7). log execution queue 1q_retire: next to be retired
next to be next to be next to be (8). cmplx execution queue
decoded dispatched renamed Each cycle, an insn is in only one

queue. Insns could transfer from
mem exec queue to dmiss
queue.

1. All inflight insns are stored in ig throughout its life span (from fetch to retire)
2.New insns are inserted into ig_tl, retired instructions are removed from iq_hd

3. Sub queues (ibuffer, issue queues, retireq, missq, etc.) are formed through:
1. head pointer, tail pointer, element count (e.g. fpu_hd, fpu_tl, fpu_n)

2. next pointer

17

Instruction Queue (cont'd)

#if('defined(TIMELINE_SIZE))
#define TIMELINE_SIZE
#endif

struct xiq_info {

cycle: time when data/output is ready.
1024 for non load/store instructions:
xig_cycle = cycle + latency + RF_DELAY

xdep_prep_info * entry; for load,
unsigned iaddr; (1). If data can be forwarded from storeq
unsigned daddr; xiq_cycle = cycle + latency + RF_DELAY + STOREQ_FWD_DELAY, tmp_fwd + STOREQ_FWD_DELAY
xarch * out_regs; .
xcycle cycle? (2). If data found in L1 dcache
unsigned start xig_cycle = cycle + L1 latency + RF_DELAY (L1 latency is not defined?)
unsigned earl (3). if data found in L2 cache
unsigned orople X|q_cycle = cycle + L2 latency + RF_DELAY
unsigned prop1) (4). if data found in memory
unsigned prop2; xig_cycle = cycle + mem_latency + RF_DELAY
unsigned propl;
unsigned word In situation (3) and (4), xig_cycle is the earliest time that data could appear on the bus. The final
Xiq_regidx reg_idx; latency will include the bus and queueing latency as well. Note that the bus transactions (dmiss queue) is
ordered by xig_cycle. Each dmiss entry can use the bus only after current cycle passes xiq_cycle.
xiq_idx next;
unsigned char trauma; start: address of the first insn in the current fetch block, used very rarely. in
unsigned char slot; flush_mispredicted.macros, to fix up NFA table, you need the address that was originally
unsigned char cluster; used in ifetch to index into the NFA. that address is stored in start.
#if(USING_FF52_SEGS)
unsigned dseg; early: used in two situations:
#endif 1. Bank conflict:
#if(TRACE) xiq_early(tig[tmp_at[thread_exec]]) = cycle + DCACHE_INTERLEAVE_PENALTY
xstgtfus status; 2. Load overlaps a store in the storeq. But data is not ready yet. (GP) Will recirculate after 7 cycles.
#endi . . _ .
#if(TRACE || DUMP_DMISS || TIMELINE) xiq_early(tig[tmp_at[thread_exec]]) = cycle + 7;
unsigned count;
#endif
#if(TIMELINE)
xcycle tl_start;
xcycle tl_complete;
char

tl_status[TIMELINE_SIZE];
#endif
+

18

Instruction Queue (Cont'd)

#if(!defined(TIMELINE_SIZE))

#define TIMELINE_SIZE 1024 prop0, prop1, prop2 are inherited from predecode stage. propl contains runtime info.

#endif
struct xiq_info { ro O memop:
xdep_prep_info * entry; p p '
p_p P- v . . 0 5 6 7 8 9 14 17 18 19 25 31
unsigned iaddr;
unsigned daddr, 5bits | 1 | 1 l 1 | 1 | 5 J 3 | 1 | 1 | 6 | 7 |
xarch * out_regs; etch is_memop is_branch if_store is_load dlength unit is_split is_transfer latency nexpands
xcycle cydle; =1 =0
unsigned start;
unsigned early;
branch:
unsigned prop0; 0 5 6 8 9 10
uns?gned propl; Sbits | 1 | 1 [1 1 5 1 1 | 2 | | |
unsigned prop2; etch is_memop is_branch is_brlk is_brlink is_brctr is_brcond is_brcrg pred
unsigned propl; =0 =1
unsigned iword;
xiq_regidx reg_idx; p ro p 1
d 0 1 7 13 14 15 16 17 21 2 23 30 31
xig_idx next;
unsigned char trauma; | we | s | s | ! ! ! !
. ! IS_over NS outs 1s_string S_sync Is_athea 1S_mtsr
unsigned char slot;
unsigned char cluster;
1bit empty here
#if(USING_FF52_SEGS) prop2
unsigned dseg; 0 ! 2 3 4
#endif 1bit 1 1 1 1
S_carry IS_nop IS_notpipe IS_nocount IS_reissue
#if(TRACE)
xstatus status;
#endif
#if(TRACE || DUMP_DMISS || TIMELINE) pr0p|
unsigned count; 0 1 2 4 5 6 7 8 9 14 15 16 17
R ELINE 1 - [=1 T T -1 1 11T 17 1T T 1
if() S_busy reorder fan IS_TITSt_1s_group Is_predop _Is_crack _ gid fCADIK _ 12Zmiss _ Tine
xcycle tl_start; o .
xcycle tl_complete; is_mispredicted
char
tl_status[TIMELINE_SIZE];
#endif

I

Instruction Queue (Cont'd)

#if(!defined(TIMELINE_SIZE))

#define TIMELINE_SIZE

#endif

struct xiq_info {

xdep_prep_info * entry;

unsigned
unsigned
xarch *
xcycle
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

xiq_regidx

xiq_idx

unsigned char
unsigned char
unsigned char

out_regs;

#if(USING_FF52_SEGS)

unsigned
#endif

#if(TRACE)
xstatus
#endif

status;

1024

iaddr;
daddr;

cycle;
start;
early;

prop0;
propl;
prop2;
propl;
iword;

reg_idx;
next;
trauma;

slot;
cluster;

dseg;

#if(TRACE || DUMP_DMISS || TIMELINE)

unsigned
#endif

#if(TIMELINE)

xcycle
xcycle
char

tl_start;

count;

tl_complete;

tl_status[TIMELINE_SIZE];

#endif
+

reg_idx: index to this instruction's operand and output register ids

regsl | in1 | in2 | out1 | | | | in1 | in2

| out1 |

slot: index to the slot in reorderqg/storeq, only used by load/store
cluster: not used.

dseg: segment-adjusted daddr, used when USING_FF52_SEGS.

20

Data Structures: Array

set 0
set 1
blks
/\ \ /\\
set 2) U@u LRU f A
set N-1
#define ARRAY_LOOKUP 0

#define ARRAY_HIT_UPDATE 1
#define ARRAY_MISS_UPDATE 2

#define ARRAY_READ

4

#define ARRAY_WRITE 8

Each array access specifies two aspects of operations:
1. Read/Write: this decides whether the data should be marked dirty.

2. Whether the tag/LRU stack should be updated
(1). ARRAY_LOOKUP: probe only, no update to tag or LRU stack
(2). ARRAY_HIT_UPDATE: when hit, update the LRU stack
(3). ARRAY_MISS_UPDATE: when miss, update tag and LRU stack

array_access returns pointer to the cache line to the caller for further handling (content update, etc.)

Array structures include:
(1). Data/Instruction caches
dcache, icache, 12cache
(2). TLBs
dtlb, itlb, d2tlb, i2tlb
(2). NFA/BTB table
nfa

(3). Counter table for counter-based branch insns

bp_counter

21

Data Structures: Reorderg/Storeg

*/

[* storeq */

unsigned
unsigned
unsigned
unsigned

storeg_hi = 0;
storeq_retired = 0;
storeq_lo = 0;

storeq[STOREQ_SIZE][5];

/* storeq[][0] is address of first byte touched */

/* storeq[][1] is address of last byte touched + 1 */

[* storeq[]1[2] is the queue id of the store */

[* storeq[][3] is the time at which the data is transferred

Functionality:

When a load is executed its address is put in the reorderq.

When a store is executed its address and time of data arrival are

put in the storeq. These structrures are used for various purposes:

- if a load address collides with a store address already inte storeq,
then the model assumes that the load gets its value from the storeq
entry and behaves appropriately

- if there is a load/store address collision, but the store data has not
yet become available, then the load will be delayed until some

/* storeq[][4] is the bit vector of reorderq entries waiting time after the store data arrives

for

*/

*/

this store to complete, it is also used to store (after
retirement)

the time of retirement */

/* reorderq */

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

reorderq_left = REORDERQ_HIWATER;
reorderg_hi = 0;

reorderg_lo = 0;
reorderq[REORDERQ_SIZE][4];
stats_reorderq] REORDERQ_LENGTH + 1];
stats_reorderq_stall = 0;
stats_reorderqg_conflict = 0;
stats_reorderq_total = 0;

/* reorderq[][0] is the address of the first byte touched

/* reorderq[][1] is address of last byte touched + 1 */
[* storeq[][2] is the queue id of the store */
[* storeq[][3] is the time at which the data is transferred

- if a store is executed, and its address collides with some previously
executed load, which succeeded it in the instruction stream (i.e. the
load should have read the value of the store, but was incorrectly
data-speculated above the store) then load was inccorectly executed,
and some appropriate flushing action is taken.

Implementation:

storeq and reorderqg are implemented as arrays. so when an entry is

freed, the queue/array needs to be compacted. This greatly complicates
the reorderq/storeq implementation.

new entry

’ <——storeg_hi

<——storeq_retired

<——storeq_lo

22

Data Structures: Register

physical register file, phys[]:

typedef unsigned xcycle;

xcycle phys[PHYS_TOTAL];

#if(GETCPI)

unsigned char src_phys[PHYS_TOTAL]J;
#endif

The physical register file keeps track of the cycle when a value in a
physical register becomes available to dependent instructions.

When an output architected register is renamed, and a physical register is
allocated to it, that physical register is initially set to UINT_MAX,

After the instruction executes, the physical register is set to the

current cycle plus some delay based on the avail-distance (approx. latency)
of the instruction.

register rename map, rgrename[]:

typedef unsigned short xphys_reg;
xphys_reg rgrename_backup[ARCH_TOTAL];
xphys_reg rgrename[ARCH_TOTAL]J;

This contains the architected to physical mapping that is valid for
instructions being renamed. It is recommended that you look at
"Register renaming and dynamic speculation: an alternative approach",
M. Moudgill, K. Pingali and S. Vassiliadis, MICRO 26, 1993

backup map rgrename_backup[]:
xphys_reg rgrename_backup[ARCH_TOTAL];

When a non-taken path starts being modelled, the current rgrename map
is copied to the rgrename_backup. When the misprediction is resolved, the
rgrename map is restored from this copy.

- to restore the rgrename map after a mispredict

inorder map, inorder[]
xphys_reg inorder[ARCH_TOTAL];

This contains the inorder map, i.e. the architected to physical

rename map that was used by the next instruction to retire on a taken
path. It is used to figure out which physical registers can be freed.

It is also used to compute the rgrename map if arbitrary instructions
are flushed

ARCH_TOTAL = CLASS_MAX * ARCH_MAX
PHYS_TOTAL = CLASS_MAX * PHYS_MAX

phys[PHYS_TOTAL]

GPR

FPR

CCR

SPR

rgrename[ARCH_TOTAL] : normal up-to-date (speculative) map
rgrename_backup[ARCH_TOTAL]: backup map for misprediction handling

inorder[ARCH_TOTAL]: backup map for retire handling

23

Register Renaming Explained

time -
cyclel cycle2 cygel3 .. /sze n
r0 p0 p3 / / p22/
\ \
s p5 p12 \\ \ \\ p(
131 p31 p\l\ l \ I P67\

\

)\

inorder:
up-to-date non-speculaitve map
updated when a preg is deallocated

1. Think about tags in cvs version control system!
2. When a new physical register is allocated, update rgrename
3. When a physical register is deallocated, update inorder

rgrename:
up-to-date speculative map
updated when a new preg is allocated

rgréname_backup:
map prior to a mispredicted branch

24

Registers and Free List

arch phys freeq
0 0 0 32
1 1 1 33
2 34 allocate
51 A
86 118
87 119
- freeq_tl = 88
118 ' retire
119 119

1. Initially, architectural register 0 - 31 are mapped to physical register 0 - 31, and
physical registers 32 - 119 are free (as shown above)

2. Pointer freeg_tl points to the tail of free physical registers
3. When a preg is allocated, freeg_tl move up one slot

4. When a preg is deallocated, freeg_tl move down one slot
5. Freeq_tl operates similar to a stack

Bus Model

e Currently only L1/L2 bus is modeled
e L1/L2 bus is shared by imiss, dmiss, and dcastout
e Dmissq is ordered according to the time when data is ready
e For dmiss, when data is ready
e Check if bus is available by is_ok_dmiss_bus()

e Allocate bus for DCACHE_SECTORS cycles to transfer all sectors by
initiated_dmiss_bus(), no other transactions are allowed during this period

e Dcastout and imiss are handled similarly
e More detailed bus / DRAM model is underway

26

Bus Model (out-dated)

/* The activities that access the bus are imiss, [iprefetch,] castout, and dmiss
/* The earliest such an activity can initiate/complete is controlled by

/* dcastout_early, dmiss_early, and ifetch_miss_till

/*

/* The amount of time an activity occupies the bus is given by */

/* DCASTOUT_OVERHEAD, DCACHE_SECTORS, 1

*/

/*

*/

/* The next request for a dcastout is: */
/* - UINT_MAX if empty, */
/* - ASAP else

*/

/*

*/

/* The next request for a dmiss is: */
/* - UINT_MAX if empty, */
/* - xig_cycle(ig[dmiss_hd]) */
/*

*/

/* The next request for a imiss is: */
/* - UINT_MAX if none in progress */
/* - ifetch_miss_till else */
/*

*/

/**/

#define is_ok_dmiss_bus() dmiss_early <= cycle)

#define initiated_dmiss_bus() \
{
dcastout_early = cycle + DCASTOUT_OVERHEAD; \
ifetch_miss_till = max(ifetch_miss_till, dcastout_early); \
b

#define new_dmiss_bus(cycle_) dmiss_early = (cycle_);
#define no_dmiss_bus() dmiss_early = UINT_MAX;
#define is_ok_dcastout_bus() (dcastout_early <= cycle)

#define initiated_dcastout_bus() \
{
/* no dmiss in progress */ \
assert(dmiss_loaded == DCACHE_SECTORS); \
dcastout_early = cycle + DCASTOUT_OVERHEAD; \
dmiss_early = max(dcastout_early, dmiss_early); \
ifetch_miss_till = max(ifetch_miss_till, dcastout_early); \
)
#define no_dcastout_bus() dcastout_early = UINT_MAX;
#define initiated_ifetch_bus() \

{
dcastout early = cycle + DCASTOUT OVERHEAD: \

Is bus ready? False if bus is busy or dmiss queue is empty

cycle K is_ok_dmiss_bus()
allocate bus for Dl:ACHE SECTORS cycle
initiated_dmiss_bus()
set dmiss early toy_cycle
new_dmiss_bus(_cycle)
Set dmiss queue 10 empty
\ .
I no_dmiss_bus
cycle K+1
\
\

27

Bus Model in SMT Mode (out-dated)

Is bus ready? False if bus is busy or dmiss queue is empty Is bus ready? False if bus is busy or dmiss queue is empty

cyde K is_ok_dmiss_bus() is_ok_dmiss_bus()
revent other magters from usin _Wﬂmm
initiated_dmiss_bus() initiated_dmiss_bus()
allocate bus Y allocate bus L
new_dmiss_bus(_cycle) new_dmiss_bus(_cycle)
Set dmiss queue l) empty Set dmiss queue l) empty
| no_dmiss_bus no_dmiss_bus
cycle K+1

1. Initiated_dmiss_bus and new_dmiss_bus need to be atomic
2. stats_il2miss[thread_ifetch]++;
3. ifetch_stalled_till[thread_ifetch] = IFETCH_STALL_CACHE;
4. new_ifetch_bus(thread_ifetch, max(cycle, dtlb_miss_till) + IMEM_LATENCY);
5.Rename
I. Check if enough rename registers available, if not, stall until available.
I1. Rename architectural registers to physical registers.

IILIf the instruction is a mispredicted branch instruction, check if all operands are ready. If yes, resolve the branch and start fetching from
the right path from next cycle.

IV.Note: registers in different class are renamed seperately.
6. Dispatch

1. Place renamed IOPs into the corresponding issue queue. If a given operation can not be placed in the issue queue (i.e. the queue is full),
stall the stage until available.

28

Branch Handling

Ifetch

decode

'

rename

'

dispatch

Y

exec

retire

if ifetch_in_mispredicted is true, and ifetch_mispredict_done is true, then

1. set ifetch_in_mispredicted = FALSE, revert trace reader to taken

2. if ifetch_mispredict_done_early is done early, then stall 1 cycle, otherwise,
stall 1 + MISPREDICT_RECOVERY_CYCLES cycles.

3. flush_mispredicted.macros

fetch, then look up branch predictor. If mispredicted, then

1. ifetch_in_mispredicted = TRUE, ifetch_mispredict_done = FALSE,
ifetch_mispredict_done_early = FALSE, ifetch_mispredicted_branch = tmp_at,
ifetch_mispredicted_branch_backup = tmp_at, branch_pred_delta = 0

2. reader swap to not taken

3. push return address to RAS if it's a link branch

4. update NFA, exit fetching

If EVALUATE_MISPREDICTED_RENAME, then check if all operands of the branch are
ready. If yes, set ifetch_mispredicted_branch = IQ_ NULL, ifetch_mispredict_done = TRUE,
ifetch_mispredict_done_early = TRUE.

If all operands are ready,

1. update stats such as bp_exec_total, bp_exec_pred, bp_exec_miss,

bp_exec_bc_total, bp_exec_bclr_total, bp_exec_bcctr_total, bp_exec_bc_miss,
bp_exec_bclr_miss, bp_exec_bcctr_miss, branch_pred, branch_pred_delta,

2. update counter table for counter-based branch insns

3. if this is the first mispredicted branch, update ifetch_mispredicted_branch = IQ_NULL,
ifetch_mispredict_done = 1

4. set the time of ready for output regs

5. remove the branch from br queue.

update branch history in the branch predictor

29

Misprediction Flush (flush_mispredicted.macros)

high low
insert from fetch group 3 group 2 group 1
’l remove by retire
TN T B BN i I/ | [a1 =
‘ p i9_hd

fetch buffer - execution gleues
iq_dec: iq_dis: iq_ren: iq_retire:
next to be decoded next to be dispatched next to be renamed next to be retired

- insns need to be flushed

ifetch_mispré&dicted_branch_backup: insns
feteched after this branch insn need to be flushed.

1. If do_flush and xig_is_mispredicted(ig_flush) are both true, reset do_flush because in this situation flush_arbitrary is not necessary
and are covered by flush_mispredicted.

2. Reset branch_pred, branch_pred_delta, ibuf_left, fchblk_left

3. Check to make sure that all insns unflushed (from ifetch_mispredicted_branch_backup to iq_hd) are not speculative

4. Check to make sure that all to-be-flushed insns (from ifetch_mispredicted_branch_backup + 1 to iq_tl) are speculative

5. Reset ifetch_branch_history to ifetch_mispredicted_history_backup

6. Reset iq_tl, iq_fetch, iq_dec, iq_dec_1, iq_dec2, iq_dec3, iq_dec4

7. Fix the NFA table for branch insn at ifetch_mispredicted_branch_backup. If branch is taken, write the target address into NFA entry,
otherwise, reset the corresponding NFA entry to 0

8. If this mispredicted branch is resolved early in rename or dispatch stage, then skip the following steps

9. Reset retireq_left, groups_left, decode_reissue_groups, groups_gid

10. Walk through unflushed insns to adjust groups_left

11.Reset iq_ren, ig_dis

12. Reset rgrename to rgrename_backup

13. Walk through flushed insns that have been renamed, reclaim the physical regs used by them

14. Drain storeq (why?)

15. Flush speculative entries in storeq and reorderq

16. If fix execq is not empty, remove entries corresponding to to-be-flushed (speculative) fix insns

17. Do 10 for fix1, fpu, fpul, br, cmplx, log, mem, mem1, dmiss queue.

18. If dmiss_thread == thread_flush, reset dmiss_address, dmiss_is_store, dmiss_loaded

30

Load/Store Handling

Ifetch

!

decode

Y

rename

Y

dispatch

|

exec

flué

turandot.c
flush_arbitrary madros

Nothing special for memory insns in fetch stage

If STOREQ _AT_DISPATCH, allocate a storeq entry for each store using get_slot_storeq

If REORDERQ_AT_DISPATCH, allocate a reorderqg entry for each load using get_slot_reorderq
if STOREQ_AT_DISPATCH, and current insn is a transfer op (each store is splitted into a store
op and a transfer op), then use the same storeq entry as the store op. (use_prev_slot_storeq)

1. Check if space available in dmiss queue and castout queue, if not, stall memory pipe.
2. Issue ready instructions in the memory issue queue in oldest-first order. For each memory
instruction:

a. Check DTLB1/DTLB2, stall if miss

b. Place store into store queue.

c. For load, first search storeq to see if match any existing stores, if fully hit, bypass. If partially
hit, (1). if load/store are not in the same group, recirculate the load (2). if load/store are in the
same group, then flush the pipeline.

d. place into reorder queue according to the earliest time the data can return.

e. Check Dcachel, if miss, check trailing edges, then Dcache2, stall if any miss

f. If TLB miss, the whole memory pipeline stalls. Otherwise, the data latency is calculated
depending on whether L1/L2 hit/miss etc.
For a store, if data is ready, and !COMMIT_STORES_LATE, then write data to cache, and

reclaim the storeq entry (pop_storeq). If COMMIT_STORES_LATE, then just retire the storeq
entry (retire_storeq).

For a load, first reclaim the reorderq entry (pop_reorderq). If there is a reorder conflict,
(xig_reorder(iq[ig_retire]) == 2), then reset the pipeline (reset.macros).

if COMMIT_STORES_LATE, write data to cache, and reclaim the storeq entry (pop_storeq)

31

Memory Conflict Flush (flush_arbitrary.macros)

high

insert from fetch

group 3

low

I

-

remove by retire

i

7

iq_tl

fetch buffer
P>

ig_dec:
next to be
decoded

-

to be
dispatched

g

d

the c:rrrent group to retire

group 2 group 1
/
iq_reti
) grougin
execution| queues
|

ig_ren: next
to be renamed

insns need to be flushed

Y

iq_flush: insns feteched
after this insn need to be

flushed.

ire = ig_hd if no

iq_retire: next to be

retired

32

Memory Conflict Flush (flush_arbitrary.macros)

hlgh group 3 roup 2 roup 1 low
ins%\m fetch I -t group - group - ; y” etire
L | &0 1 & B [8 [P Fed [a1 |
iq_tl iq_hd
. -
fetch buffer - execution |queues -
iqg_dec: iq_dis: ig_ren: iq_retire:
next to be decoded next to be next to be renamed next to be retired
dispatched
-

insns need to be flushed

v
iIq_flush: insns feteched after this insn need
to be flushed.
1. Reset groups_left, decode_reissue_groups, groups_gid, branch_pred, branch_pred_delta
. Reset rgrename to inorder

. Walk through unflushed insns (from iq_retire to iq_flush), adjust groups_left, branch_pred, branch_pred_delta and
ifetch_mispredicted_history_backup, rgrename

. Walk through to-be-flushed insns (from ig_flush to iq_tl), fix RAS stack

. Walk through to-be-flushed insns, count #non-speculative insns, reset to taken path if currently fetch is in mispredicted status.
. Rollback trace reader by #non-speculative insns

. Reset ig_tl, ig_ifetch, ig_dec, ..., ig_ren, ig_dis

. Walk through to-be-flushed insns that are renamed (from ig_flush to ig_ren), reclaim physical regs used by them

. Flush reorderq and storeq entried corresponding to to-be-flushed memory insns

10. If fix execq is not empty, remove entries corresponding to to-be-flushed fix insns

11. Do 10 for fix1, fpu, fpul, br, cmplx, log, mem, mem1, dmiss queue.

12. If dmiss_thread == thread_flush, reset dmiss_address, dmiss_is_store, dmiss_loaded

13.

w N

O 00 N O U1 h~

33

Power Model

>

1. Processor core is hierarchically divided into units,

uarchs, and eventually macros Power

2. For each macro, CPAM provides (sf1, pl) and (sf2,
p2). Power at other switching factors can be linearly
extrapolated

3. Switching factors are extracted from Turandot

init.power.macros

read in macro power information
power_defs.macros

some data structures (unit, uarch, macro) and some utility functions
power.macros

switching factor calculation based on Turandot statistics, and power calculation

A

upit

uarch

Macro

sfl

SMT Mode

thread1l thread?2

ibufQ ibufl

decode control

rename control

R

Qspatch control>
issueq ‘_/,/ S! ., issueq

fxu fpu

retire control

threadl retire thread?2 retire

1. Functional units (fxu, fpu, etc) are
shared among all threads
2. Architectural registers are duplicated
for each thread
3. Other resources (cache, queue, bpred,
etc) can be either duplicated, or
shared, depending on design choice.
4. At each control point, either one thread
can be selected to proceed, or insns
from different threads can be selected
1. Can be as simple as round-robin
2. Or better policies?

35

Summary of New Features Added to Original Turandot

e SMT support
e New, simplified array model
e Standalone predecode stages removed
e Ported to linux/x86 and cygwin
e Gzip/bzip/uncompressed trace formats all supported
e gpffturandot -t samplel.fF sample2.fF
e gpffturandot -t art.bz2 ammp.bz2
e Cycle-by-cycle power model added in addition to original postprocess model
» Voltage model based on RLC power supply network model added
e Temperature/reliability model

36

Output Stats from Turandot

e Dump of compile-time parameter definitions
» @@ DCACHE_ASSOC -

» @@ DCACHE_SECTORS =2
e Summary stats

o totals: cycle=121229 insns=100734 memops=44870 retired=100000
e Histogram data

°* @@ ibuf@@ 0:77479 63.91

e@@ 1:1898 1.56
°e @@ 2:3567 2.94
e Trauma data
e@@ ifnfa: 4 0 O O O O O O O O 4
e @@ if_tlbl: o 0 0 0 0O O O O o o0 o
e @@ if tlb2: 51 o 0 0 O O O O o0 o
e Summary progress result reported every MONITOR_CYCLES
e Detailed status reported every cycle
e Timeline / pipeline graph
© 000000010 [reeenerrernnnerrernnnerennnneerennns F.DE. .o fo.. Corvrennnns i2.h...] 000000382 10000170 300162f0 Iwz
© 000000011 [ieeruierrernnnrrrernnneeennneeeennns F.DE. e Covvrrrnnnnens i1.f] 000000382 10000174 00000000 addi

e Power data
e unconstrained
e average power

51

r10,40(r2)
r9,r0,0

37

Todo List

e Functionality enhancement
e CMP support: preferably allow SMT + CMP together
e Interpretation-based execution-driven mode
e Aria instruments code and executes locally, so not portable to non-PPC platforms
e Interpretation based execution is not restricted to any platform
e Better bus / DRAM model for bandwidth studies
e Port to windows and other platforms
e Calibration of Power5 model
e Performance model validation
e SMT Turandot vs. Power5
e Power model validation
e SMT PowerTimer vs. Power5
e Temperature model vs. Power5 on-chip temperature sensors
e Modularity/readability enhancement
e Command line options to replace compile-time options
e More readable reoderq / storeq models (block_memqg.macros)
e Use of bit fields instead of explicit bit handling in props (ig.h)
e Removal of the gotos
e Trauma stats check up

38

Collaboration Opportunities

e How to obtain Turandot/PowerTimer
e Academic research groups: send a formal email request to pbose@us.ibm.com
e Different collaboration levels
e Turandot/PowerTimer academia users
e Stable release version 1.0 is available
e Turandot/PowerTimer academia co-developers
e Will be involved in development/validation process
e IBM supports collaboration with academia
» IBM fellowship awards for graduate students
e IBM faculty partnership awards (FPA)
» Sabbatical opportunities
e summer internship
e Postdoc position
e Contact
e Pradip Bose (pbose@us.ibm.com)
e Zhigang Hu (zhigangh@us.ibm.com)
e Victor Zyuban (zyuban@us.ibm.com)

39

Installation

e To install, cd to $ROOT/Sources directory:
» Modify makefile.defs to match your platform and directory settings
e Run "bash make_all.bash" to compile the whole turandot package. After completion,
an executable named "gpffturandot" will appear in $ROOT/Sources/turandot/src.
e To run the simulator, cd to $ROOT/Sources/turandot/src directory,
e Run "gpffturandot -t $TRACE", $TRACE can have extensions of "fF", "bz2", or "gz".
e To change configurations, modify Makefile, and rebuild the simulator.
e In $ROOT/doc directory,
e TurandotUserGuide.pdf
» Explanation of compile-time configuration parameters
e Explanation of summary outputs
e Explanation of cycle-by-cycle detailed outputs
e Explanation of timeline / pipeline graph
e power4.pdf
e A tech report that details the architecture of power4
e Turandot_Overview.pdf
e This document

40

Bibliography: Turandot

e Cathy May, et al., "The PowerPC Architecture: A specification for a new family of
RISC processors”, second edition, Morgan Kaufmann Publishers.

¢ J.M. Tendler, 1.S. Dodson, 1.S. Fields, Jr., H.Le, B. Sinharoy, "Power4 System
Architecture"”, IBM J. RES. & DEV., January 2002, available at
http://www.research.ibm.com/journal/rd/461/tendler.pdf

e M. Moudgill, J-D. Wellman, J. Moreno, "Environment for PowerPC Microarchitecture
Exploration," IEEE MICRO, May/June 1999, pp. 15-25.

e M. Moudgill, P. Bose, J. Moreno, "Validation of Turandot, a Fast Processor Model for
Microarchitecture Exploration,"Proc. IEEE Int'l| Performance, Computing and
Communications Conference, February 1999, pp.452-457.

e M. Moudgill, J-D. Wellman, J. Moreno, "An Approach for Quantifying the Impact of
not Simulating Mispredicted Paths," Workshop on Performance Analysis and its
Impact on Design (PAID), Barcelona, Spain, 1998.

e P. Bose, J.A. Abraham,"Performance and Functional Verification of Microprocessors,"
Proc. 13th IEEE International Conference on VLSI Design, January 2000.

e P. Bose,"Performance Test Case Generation for Microprocessors,"Proc. 16th IEEE
VLSI Test Symposium, April 1998, pp. 54-59.

e P. Bose et al., "Bounds-Based Loop Performance Analysis: Application to Validation
and Tuning,"Proc. IEEE Int'l Performance, Computing and Communications
Conference, February 1998, pp. 178-184.

e Other documents in doc/ in the Turandot package.

41

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
9:00-10:30 Architectural Power Modeling

- PowerTimer extensions to Turandot

- Power-Performance Efficiency Metrics
Case Studies and Examples

- Optimal Power-Performance Pipeline Depth
Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

Dynamic Power Estimation

Capacitance: Supply Voltage:
Function of wire Has been dropping
length, transistor size with successive fab

\ generations

Power ~ V> CV2Af

/ \ Clock frequency:

Activity factor: Increasing...
How often, on average,
do wires switch?

Modeling Hierarchy and Tool Flow

et of workload Performance
Enelfy Models &

microarch Early analytical performance models edit/debug
level Trace/exec-driven, cycle-accurate simulation models

refine
) : Architectural
update Microarch (1m Test Cases)
parms/specs /

v

_— edit/debug
RTL } RTL MODEL (VHDL) RTL /

level sim

gate-level gate-level model | (if synthesized) .
Bitvector
l est case
ckt-level Circuit-level (hierarchical) netlist model ckt sim, edit/tune/
extract debug

. ‘ Cap design rule
layout-level Layout-level physical design model | extract, check,
sim

validate

Architecture level models

Power ~ V> CV2Af

e Bottom-up Approach:
— Estimate “CV2f” via analytical models
— Tools: Wattch, PowerAnalyzer, Tempest (mixed-mode)
e Top-Down Approach
— Estimate “CV2f” via empirical measurements
— Tools: PowerTimer, AccuPower, Internal Industrial Tools

e Estimate “A” via statistics from architectural-performance
simulators

Analytical Modeling Tools:
Modeling Capacitance

e Requires modeling wire length and estimating transistor
sizes

o Related to RC Delay analysis for speed along critical
path

— But capacitance estimates require summing up all
wire lengths, rather than only an accurate estimate
of the longest one.

Register File: Capacitance Analysis

Bit Bit
Pre-Charge Cell Access
Transistors (N1)
. / \
5 T T
§ Wordlines L cell Y
= (Number of
Entries)
<+“—> <+“—>
Sense Amps Number of Number of
— Ports Ports
Bitlines
(Data Width of Entries)

N
——
_m—

Chitine = Caiffecapreng + Number Wordlines * Caigeapn1 + Bitlinelength * Cuetal

Architecture level models:
Signal Transition Statistics

e Dynamic power is proportional to switching

e How to collect signal transition statistics in architectural-
level simulation?

— Many signals are available, but do we want to use all
of them?

— One solution (register file):
e Collect statistics on the important ones (bitlines)
e Infer where possible (wordlines)

e Assign probabilities for less important ones
(decoders)

Architecture level models:
Clock Gating: What, why, when?

— —— Clock Gated Clock

Gate

e Dynamic Power is dissipated on clock transitions

e Gating off clock lines when they are unneeded
reduces activity factor

e But putting extra gate delays into clock lines
increases clock skew

e End results:

— Clock gating complicates design analysis but
saves power.

Wattch: An Overview

Overview of Features

e Parameterized models for different CPU units
— Can vary size or design style as needed

e Abstract signal transition models for speed

— Can select different conditional clocking and input
transition models as needed

e Based on SimpleScalar (has been ported to many simulators)
e Modular: Can add new models for new units studied

Unit Modeling

Number of entries

Data width of entries Parameter1;ed PQWGT
= Register File Estimate

S—
Read Ports Power
- Model
Write Ports
P
Modeling Capacitance Modeling Activity Factor

Models depend on structure, bitwidth,
design style, etc.

E.g., may model capacitance of a g : n
register file with bitwidth & number of — reads, writes, how many ports

ports as input parameters e Abstract model of bitline activity

Use cycle-level simulator to determine
number and type of accesses

One Cycle in Wattch

Fetch Dispatch Issue/Execute | Writeback/
Commit
Power e |-cache e Rename e Inst. Window |e Result Bus
(Units e Bpred Table e RegFile e Reg File
Accessed) e Inst. Window |e ALU e Bpred
e Reg. File e D-Cache
e |Load/StQ
Performance | ¢ Cache Hit? |e Inst. Window |e Dependencies | e Commit
e Bpred Full? Satisfied? Bandwidth?
Lookup? e Resources?

e On each cycle:

— determine which units are accessed

— model execution time issues
— model per-unit energy/power based on which units used and

how many ports.

R10K die size 16.6mmx 17.9mm

Institzction
Cache

Ddtd
Cache

Address
Quene
|

Register Tl
'Rename Integer
[5 Juene.

Units Modeled
by Wattch

= Array Structures

= Caches, Reg Files,
Map/Bpred tables
= Content-Addressable
Memories (CAMs)

= TLBs, Issue Queue,
Reorder Buffer
= Complex
combinational blocks

= ALUs, Dependency
Check

PowerTimer

e IBM Tool First Develop During Summer of 2000
— Continued Development: 2001 => Today

— Methodology Applied to Research and Product
Power-Performance Simulators with IBM

— Currently in Beta-Release
— Working towards Full Academic Release

PowerTimer:
Empirical Unconstrained Power

Oth
Clock Tree IDU FXU 100/?
10% 4% IFU Issue
Queues

32%

L3 Tags
2%

Completion
Table

L2 o,

23% Dispatch
6%
LSU

CIU 19%

4%

FBC_ 8X710 RAS '\ Core FPU

3% 1%404 5% 1% 5%

Pre-silicon, POWERA4-like superscalar design

PowerTimer

Simulator

Circuit Power | quhUnit Power = i
Data (Macros) | | {(SF, uArch, Tech) |
Tech Parms > Compute . Power

i Sub-Unit |

uArch Parms | . | Power |
" AF/SF Data ;
: . - CPI
| Architectural .
Performance :

PowerTimer: Energy Models

e Energy models for uArch structures formed by

summation of circuit-level macro data
Energy Models

Sub-Units (uArch-level Structures)

SF
Data

/ Power=C1*SF+HoldPower

Power=C2*SF+HoldPower

Power=Cn*SF+HoldPower

Macrol
Macro2

MacroN

Power
Estimate

»

Empirical Estimates with CPAM

o Estimate power under “Input Hold” and “Input
Switching” Modes

Input Hold: All Macro Inputs (Except Clocks) Held

— Can also collect data for Clock Gate Signals

Input Switching: Apply Random Switching Patterns with

50% Switching on Input Pins

Macro
Inputs

Macro

* 0% Switching (Hold
Power)
* 50% Switching Power

—

A Sample Unit

e Made up of 5 macros

— macrol, macro2, macro3, macro4, macro5

mW

800
700
600
500
400
300
200
100

0

= o o o o o
0 10 20 30 40 50

—¢—macro1
—=—macro2
macro3
macro4
—%—macrod
—e— total

PowerTimer: Power models f(SF)

Assumption: Power linearly dependent on Switching Factor

This separates Clock Power and Switching Power
1400 -

1200 -
Switching

B —e— Unit1
Power 1000 .
800, - —=— Unit2
; A
=

At 0% SF, Power = Clock Power (significant without clock gating)

Key Activity Data

Changes in SF

1400 -
1200 -

1000 - — ——unitf
800 - —=—unit2
g oo ///:///. unit3
, unit4
Changes 400 | :/ e Unit5
in AF 200 1
0 I I 1

0 10 20 30 40 50
SF

e SF => Moves along the Switching Power Curve
— Estimated on a per-unit basis from RTL Analysis
e AF => Moves along the Clock Power Curve
— Extracted from Microarchitectural Statistics (Turandot)

Microarchitectural Statistics

Stats are very similar to tracking used in Wattch, etc
Differences:

— Clock Gating Modes (3 modes)

— Customized Scaling Based on Circuit Style (4 styles)
Clock Gating Modes:

— P_constrained = P_unconstrained (not clock-gateable)
— P_constrained_1 = AF * (P, + Pjogic) (COmMmon)

— P_constrained_2 = AF * Py + Py (rare)

— P_constrained_3 = P + AF * P,y (very rare)
Scaling Based on Circuit Styles

— AF_1 = #valid (Latch-and-Mux, No Stall Gating)
— AF_2 = #valid - #stalls (Latch-and-Mux, With Stall Gating)
— AF_3 = #writes (Arrays that only gate updates)

— AF_4 = #writes + #reads (Arrays, RAM Macros)

Clock Gating Modes:
Valid-Bit Gating

e Latch-Based Structures: Execute Pipelines, Issue Queues
Clock

Clock Gating Modes

e P_constrained_1 = AF * (P, T+ Plogic)

clock
valid

P~

clock

° P_constrained_Z = AF * IDclock + IDlogic

clock
valid

clock logic

Scaling Options:
Valid-bit Gating, what about Stalls?

e Option 1: Stalls cannot be gated

clk —

valid —
‘ Stall From

Previous Pipestage

Data From
Previous Pipestage

n

] Data For
Next Pipestage

e Option 2: Stalls can be gated

clk —
valid —

’<} Stall From

Previous Pipestage

Data From
Previous Pipestage

n

] Data For
Next Pipestage

Scaling Options:
Array Structures

e Option 1: Reads and Writes Eligible to Gate for Power

Write Read
Bitline Bitline

read_wordline active —
read_gate —

write wordline active —

write_gate — L 1L
o Lcell 4

read data

write gate— write data

Scaling Options:
Array Structures

e Option 2: Only Writes Eligible to Gate for Power

Write
Bitline read_entry n
read_entry 2
write_wordline_active — read_entry 1
write_gate — L B B
=L Cell
read_entry 0

write gate— write data

read_data

12 Clock Gating Modes

Gating | Valid | Valid+ | Writes | Writes+ | Gate | Gate | Gate | Examples

Mode Stalls Reads | Both | Clock | Logic

0 No No No No No | No No Control Logic, Buffers,
Small Macros

1 Yes No No No Yes | No No Issue Queues, Execute

2 No |Yes No No Yes |[No |[No | Pipelines

3 No No Yes No Yes | No No Caches

4 No No No Yes Yes | No No Some Queues

5 Yes | No No No No |Yes |No CAMs, Selection Logic

6 No Yes No No No |Yes |No

7 No No Yes No No | Yes No No Known macros

8 No No No Yes No | Yes No No Known macros

9 Yes No No No No | No Yes No Known macros

10 No Yes No No No No Yes No Known macros

11 No No Yes No No No Yes No Known macros

12 No No No Yes No | No Yes No Known macros

PowerTimer Observations

e PowerTimer works well for POWER4-like estimates and
derivatives

— Scale base microarchitecture quite well
— E.g. optimal power-performance pipelining study

— Lack of run-time, bit-level SF not seen as a problem
within IBM (seen as noise)

e Chip bit-level SFs are quite low (5-15%)

e Most (60-70%) power is dissipated while maintaining
state (arrays, latches, clocks)

e Much state is not available in early-stage timers

Comparing models: Flexibility

o Flexibility necessary for certain studies
— Resource tradeoff analysis
— Modeling different architectures

e Purely analytical tools provides fully-parameterizable
power models

— Within this methodology, circuit design styles could
also be studied

e PowerTimer scales power models in a user-defined
manner for individual sub-units

— Constrained to structures and circuit-styles currently
in the library

e Perhaps Mixed Mode tools could be very useful

Comparing power models: Accuracy

e PowerTimer -- Based on validation of individual pieces
— Extensive validation of the performance model (AFs)
— Power estimates from circuits are accurate
— Circuit designers must vouch for clock gating scenarios

— Certain assumptions will limit accuracy or require more
in-depth analysis
e Analytical Tools
— Inherent Issues

e Analytical estimates cannot be as accurate as SPICE
analysis ("C" estimates, CV2 approximation)

— Practical Issues

e Without industrial data, must estimate transistor
sizing, bits per structure, circuit choices

Comparing power models: Speed

e Performance simulation is slow enough!
e Post-Processing vs. Run-Time Estimates

o Wattch’s per-cycle power estimates: roughly 30%
overhead

— Post-processing (per-program power estimates) would
be much faster (minimal overhead)

e PowerTimer allows both no overhead post-processing and
run-time analysis for certain studies (di/dt, thermal)

— Some clock gating modes may require run-time analysis
e Third Option: Bit Vector Dumps
— Flexible Post-Processing <> Huge Output Files

Bibliography:
Architectural Power Modeling

e David Brooks, Vivek Tiwari, and Margaret Martonosi. "Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations," 27th International Symposium
on Computer Architecture (ISCA), Vancouver, British Columbia, June 2000.

« David Brooks, John-David Wellman, Pradip Bose, and Margaret Martonosi. "Power-
Performance Modeling and Tradeoff Analysis for a High-End Microprocessor,"
Workshop on Power-Aware Computer Systems (PACS2000, held in conjuction with
ASPLOS-IX), Cambridge, MA., November, 2000.

« J. Scott Neely, Howard H. Chen, Steven G. Walker, James Venuto, and Thomas J.
Bucelot, "CPAM: A Common Power Analysis Methodology for High-Performance VLSI
Design," 9th Topical Meeting on Electrical Performance of Electronic Packaging, Oct.
23-25, 2000, Scottsdale, AZ.

« J.D.Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J. Kircher, B. L. Krauter, P. J.
Restle, B. A. Zoric, and C. J. Anderson, “The circuit and physical design of the
POWER4 microprocessor,” IBM Journal of Research and Development, Volume 46, No.
1, 2002.

e David Brooks, Pradip Bose, Viji Srinivasan, Michael Gschwind, Philip G. Emma, Michael
G. Rosenfield. "New methodology for early-stage, microarchitecture-level power-
performance analysis of microprocessors," IBM Journal of Research and Development,
Volume 47, No. 5/6, 2003.

Power-Performance Metric for Optimizing Architecture

Customer should not necessarily use this metric

‘ compilability chip area ‘

‘ code density verification cost]

Performance Power
f?
METRIC
N | dynamic instr. count B |leakage power f | max frequency

| |architectural speed, IPC| E4 | average switching energy

End-User Power-Performance Metric

Customer does not need to know circuits, or implementation details to choose produt

| reliability price |
Processor A
‘support other factors |
Performance Power
?
METRIC
Performance‘ ‘ Power ‘
| reliability price |
Processor B
‘support other factors |

Existing Power-Performance Metric

BIPS
Watt”’
» used for comparing low-end products
 incorrectly used for “fixed throughput mode” and “power-limited mode”

reverse of “energy per operation”

BIPS”
Watt
» used for comparing mid-range products

, reverse of “energy-delay product”

BIPS®
Watt ’

© assumesIps0/ fOvdd (around nominald), £, . . O Vdd?
« changing power supply (within some limits) does not change the metric

“Vdd- invariant” metric (neglecting leakage)

BIPSY
Watt
« y> 3 for comparing products with emphasis on performance
 in leakage-dominated designs thé&ld - invariant” metric leads to

* V> 3 if Plgakagedrows faster thawdd® around nominaVdd

, with more creative methods for determiniyng

* V< 3 if Plgakagedrows slower thaWdd® around nominaVdd

Existing Power-Performance Metric (cont.)

BIPSY
Watt
but not easy to use for optimizing architecture (evaluating architectural features)
e metric is correct, but using it may be confusing (hides important assumptions)
* may not know BIPS or Watt early in design

* may attempt to estimatsBIPS andAWatt, but
« although architects know how to estima@&tC, it is much more difficult to predidif

» designs under evaluation have to be properly tuned before applying the metric
* AWatt is difficult to estimate because it requires KnovANAE 4y namic@NAdAP eakage

* to measurédEyynamic@NdAPeakagePiPEline needs to be retuned,
depending on assumption abdifit

may be useful for theoretical analysis or for marketing,

AIPC AE Zr]

20, ©+ 1
IPC E () ’

* Recently introduced “unified metric®

V. Zyuban, GLSVLSI, 04/18/2002
V. Zyuban and P. Strenski, ISLPED, 08/12/2002
V. Zyuban and P. Strenski, IBM JRD, Dec. 2003

 use for optimizing architecture (not suitable as a end-user metric)

AIPC S APower

IPC Power
J. Rattner, MICRO-35 keynote speech, 11/22/2002

e Special case

Unified Energy-Efficiency Metric - Fundamentals

* Techniques power and performance
e system: rais&/dd
» technology: shrink Tox or Leff
 circuits: increase device sizes, restructure logic to increase parallelism
» microarchitecture: deepen the pipeline (reduce FO4), increase issue width, add function

bypasses, increase the number of ports and entries in queues and register files, build mc
aggressive caches, branch predictors, etc.

 Main idea: balance design decisions across all domains
 In particular, balance architectural decisions with technology and circuit-level choices

» All costs are measurable - introduce variables to quantify the tradeoffs
* hardware intensity

 voltage intensity®
 architectural intensity

‘ u-Arch ‘ ‘ circuits ‘
noeve

| power supply] | frequency |

Unified Energy-Efficiency Metric

bedk

Al _AE AD; AN
= > + WL+ + 7)==
0=">= 2nw. —+(0+ 1)

All parameters have clear physical meaning, and a method for measuring them.

architectural speed, IPC © | depends on technology and Vdd

average energy per instruction n; | hardware intensity in stage i

dynamic instruction count w; | energy weight of stage i

O 2| m| —

critical path delay through stage i|A’s | ‘naive’ increments (no retuning)

Unified Metric - Graphical Interpretation

B,n=3.0 _ P architecture A
‘ ‘ An=40 ‘ architecture B
DA = | = = | T = POWET budgetl |
' ‘ ‘ ‘ ‘ /| = = power budget 2
2.2
B,n=2.0
o
=
o
o
]
.g 1.8
©
£
o
c
1.6
14p === ——— - —_————— —-_——=a
1.2
| | | | | | |
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
normalized delay (SPEC)
-

Performance

Scaling Power Supply

« ScalingvVddhas a known cost (“normally” 2% switch. energy for 1% performance)
* may not be so in leakage-dominated designs

 Vddcan be scaled after processor is manufactured

%E
Y% Perf

* \ltage intensity©=
scaling vdd

« We normally tend to think tha@= 2 , becausg, ., 0V? Perf O 0OV

 Infact © can be from 0.5 to 3 or even higher, depending on technologydand

« \Dltage intensity is measurable

Scaling Power Supply

Ideal curve 2% energy per 1% delay and measured data (bulk 0.13um)

2 T T T T T T
: : : === scaling Vdd, ideal (2% per 1%)
; ; ; = gcaling Vdd, simulation

18N\ O scaling Vdd, 50mV steps o

16

=
N
T

relative energy
'_\
T

08

06

0.8 1 1.2 14 1.6 1.8 2
relative delay

Scaling Power Supply

Measured data, 0.13um bulk

%Energy per %dd %Delay per %/dd
T T T T T : : T T T
* _d?i[lta bUde : : : Y data bus
in elgelr. adder integer adder
26l ¢ multiplier (custom) | o . B ‘ ¢ multiplier (custom)
O 4r/4w port reg file 3.5 £ 4r/4w port reg file |]
X ;85 ggf(z).g ‘ ‘ : \ ® 2r/2w port reg file
,5l| 4 XOR, eta=3.0 , Ev = - (v*0 E)/(E*0 V)] i\ O average
' O average ‘
— CV*V curve

24

2.3

2.2

1.9

: 0.5
1.4 1.6 1.8 0.8 1 1.2 1.4 1.6 1.8

supply voltage, V supply voltage, V

0.8 1 1.2

Scaling Power Supply

\Voltage Intensity (%Energy per %Delay througiid scaling),
measured data, 0.13um bulk

3 T T T T

average

6=E /D
V‘V

15F

0.5

0.6 0.8 1 1.2 1.4 1.6
supply voltage, V

1.8

Scaling Circuits

Second way of trading power for performance

Involves
« changing transistor sizes (tuning)
 restructuring logic (performing more computations in parallel to reduce the critical path

As powerful as voltage scaling, but cannot be used after processor is designed

%E
% Perf

shows how aggressively circuits are structured and tuned to meet frequency targ

Hardware intensity)=

scaling circuits

Hardware intensity can be measured

Hardware intensity can be set as a target, using EinsTyges F%—EE—%QEP
0 0

In “typical” designsn ranges from 0.5 to 5, but can be higher if the frequency tat
get is too aggressive

Scaling Circuits

Energy-Performance space through scaling circuits, measured data, 0.13um bulk
averaged over critical circuits in eLite D®Pvoreno et al. IBM JRD, vol. 47, March 2003)

v intadder 1

Q int adder 2

*x SA latch
reduction unit
NAND?2, 10fF
NAND?2 100fF

4 INVERT 10fF

> INVERT 100fF

- (E - E0)><(D - Do) =0.2 EOD0

. (E- E0)><(D - Do) = EOD0

10° 10
(D-D,) /D,

Scaling Circuits

T
2.8 -

Hardware Intensity (%0Energy per %Delay through circuit scaling), typical curve

T T
= cnergy-efficient curve

1111 cost function contours, n = 2.0

m 1 cost function contours, n = 0.5

E/E0

Optimal Balance, isolated macray =96

For formal derivation see zyuban and P. Strenski, IBM JRD, Dec. 2003, or ISLPED, 08/12/2002

T T I T T T T
r] =50 : == varying n for fixed vVdd
=== varying Vdd for fixed n (ideal)

24+ e Sl varying Vvdd for fixedn (simulation) | -
varying Vdd for fixedn (50mV steps)

E/ E0

11 12 1.3 1.4 15 1.6 1.7 1.8

Optimum Balance, a more general case

N11 N2 = - .- N1m

NNt NN2 .o NNMm

* In real pipelines different macros may be tuned for different hardware intensities

« A more general condition for the optimal balance appfigg~= ©

» Aggregate hardware intensity is calculated as a weighted average over all macro

N
wW;; E.. D..
Nag= 5 — N, where wj; 7 Uj = —
i=1Y

* Inarchitectural analysis the whole processor can be represented by a single variat
of aggregate hardware intensity

Scaling Microarchitecture

* Third way of trading power for performance

* Involves changing machine organization: pipeline depth, issue width, functions,
bypasses, number of ports and entries in queues and register files, caches, bran

predictors, etc.

« Even more powerful than voltage and circuit scaling, but can only be used in earl
stages of design

%E
Y% Perf

 Architectural intensityg=

scaling architecture

» Architectural intensity can be measured (developed methodology)

» Architectural intensity can be set as a target
eLite DSP example, J. Moreno et al. IBM JRD, vol. 47, March 2003

Scaling Microarchitecture

Architectural Intensity (%Energy per %Performance through scaling architecture),

* all conflguratlons

..+ cost function contours ED?
— energy-efficient family

30F,

251

energy per cycle, nJ

151

10

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

curve for an out-of-order microprocessor built by optimizing architecture for different

BIPS

values ofyin ==~ sized of 5 structures are tun@ém Ph.D. thesis V. Zyuban, 2000, also ISLPED'00)

* In designs with high¢ architectural scaling can have
» higher power cost thavidd or circuit scaling for adding performance
 lower performance cost than frequency or circuit scaling for saving power

Example: Pipeline Depth in an OOO Processor

Srinivasan et al. MICRO-35, 11/2002

T T T T T T T T T
24k , , , o S S ¢ experimental points
' §=20.0 : ‘ : ‘ = fitted curve

® A2FO04

22

=
©
T

relative power
=
(o))
T

=
N
T

0.8

i 7 I 7 | 7 7 | 7 7 | 7 7 | 7 VI 7 VI VI
0.85 0.9 0.95 1 1.05 11 1.15 1.2 1.25 1.3
relative performance

Performance

Example: Deepening Pipeline fromv tav + AN

Assume most of the power is dissipated in latches, then neglecting other factors,

AE _ AN
pipe depth N
. AD, .
* Frequency in increased % = 5 _:_O%C - A]\]]V(l —up)
pipe depth logic latch

whereu,ich IS latch insertion delay weight.

AN

At 15FO4U;4cp = 0.2, therfL = 088

pipe depth
« Architectural speed, IPC is reduced because of longer latencies. Assume, based

architectural simulations,A[-——P—Q = —0.7%\[
pipe depth
 Then, the net increase In performanc@fﬁﬁ - A AIPC _ AN
Perf | . f IPC N
pipe depth
0
o At 15FO04, pipeline depth has architectural intens'rty(y?eErf = 10
0

pipe depth

Optimal Balance¢ =n =06

For formal derivation see zyuban and P. Strenski, IBM JRD, Dec. 2003, or ISLPED, 08/12/2002

=6.0 : ; mmm E-D tradeoff curve for fixed Vdd andn
| 5% sample points]

; ; — architectural tuning process
‘ E =50 ‘ ‘ === E-D tradeoff curves for fixed &

2.6 3N VAR

24

22

E/E0

1.8

Performance

Optimum Balance& =n =6 and BIPS' / Watt

T T
* all configurations

The point at which the architectural . 2
1 . v+ cost function contours ED
energy-delay curve tangents a contour koo — energy-eficent famly

cost functionF ., = E x D"
IS the point that minimizes

cost " 251

For points on the energy-delay curve
—AE/E

energy per cycle, nJ

_ , therefore
¢ = AD/D
fixed v, n il

OE - sk
D, D

fixed v, n ol
For points on the contour &f,_,
0E OF cost OF o E - BIPS”
dE _ Y = —n=, thereforen = & . Noticer;l = ————
. Sy ns 3 cost Watt

n+1

Balance conditiod = n = © means th%H)SW IS the right metric.

Motivation for Discrete Metric

 Optimum balance conditioh=n = ® was derived assuming the existence of a
smooth energy-efficient architectural curve. In reality
» energy-efficient curve consists of discrete points
» getting an architecture on the energy-efficient curve is a challenge
* need to extend the methodology to designs off the energy-efficient curve
1psY

» Derived formal method for calculating exponen vl A {=n=0

* metric hides important assumptions
* how to estimatd\f if an architectural feature adds logic in several pipeline stages
e assume circuit designers will find a way to make 0O
e assume circuit designers can do nothing about itdrd- AD / D
* 10 measurdEyynamic@NdAP e kagePiPeline needs to be retuned to restore the opti-
mum balance

Retuning the Pipeline After an Architectural Modification

Stages where logic is added need to be tuned up (for higher hardware intensity)
If Af #0, circuits in the rest of the stages should be tuned down to save power

{W]i-nit r]InIt J {Wlnlt nlnltJ

N > AD4 i N

No retune

{Wno ret r]'”'t J { } {Wno ret nlmtJ
- sy
A jJretuned

i |

— .-

ADfinal ADfinal

i {Wflnal nflnal} i

VaN|

Discrete Formulation

independent variablesn andé (extended to the energy-delay space)

* functions:
, _ [0, DI(E)
Performance P(v,n,¢&) = N (E)
« Power (gated) wW(v,n, &) = f(v,n, IE)EW, N, &)
Power (non-gated) wivn, &) = f(v,n,&E(,n,¢)

e optimization problem
« A: minimize poweM(v, n, &) given a performance requiremétft/, n, &) = P,
» B: maximize performancB(v, n, &) subject to power constraii(v, n, &) = W,

* need to evaluate energy efficiency of architectural modificéiton
« A¢ --> AV andAn to satisfy the constraift = P, or W = W,

o A& --> AN, Af, Al andAE

« find relation between relative increments such that
o A AW < 0 given a performance requirementP = P, (AP = 0)

 B: AP > 0 subject to a power constraint W =W, (AW = 0)

Results

« By formally solving the problem the following conditions are derived for the

energy efficiency of an architectural feature
for derivation see V. Zyuban and P. Strenski, IBM JRD, Dec. 2003, or ISLPED, 08/12/2002

AD,
« fine-grain clock gating G)é—l > an l— + (O + 1)——
. AD;
* no clock gating (O + 1)— >—E_ 2.n,w ’T +(O+ 1)——
AD,
* Vdd- constrainedr > 0) r]é[-[> = +2.1n,w ZT + (N + 1)——

« Al is a projected IPC improvement from the architectural feature.

 The summation is done over all pipeline stages affected by the architectural featul

AE 7 (11 . 7
. Termsf and— are “non-retuned” or “naive” values.

« Energy weighty; are typically available (as targets) even at early design stages.

« Hardware intensitieg; can be extracted from previous designs or set as targets.

A Few Special Cases

Table 1: Special Cases of the Derived Metric (0.13um, bulk)

condition metric egrlijgvra:itn t
D, >> E,, (Vdd < 0.5V) AE AN _ 0 MIPS
n << 1 (ultra-low power design) E N Watt
0=n;,=1(vVdd =0.9V) . 2

i !) : A_] > é_.E: + ZW,AD’ + 2AN MIPS
(eLite design point) I E LT N Watt
0=n=2(Vdd = 1.4V .

i =2 V) AL LAE 5, B0, AN MIPS>
(nominal CU11 design point)] E ''T N Watt
0=n,=3(vVdd > 1.9V .

i =31) A AE s AD AN mips*
(ultra-high performance design) ;7 = E ‘T N Watt
0=27 >0 (vdd = 1.7V .

Mag (_) A_[>A_E+rlz .A_D’+m+1DA_N MIPS”+1
(power supply constraint mode)' ;7 ~ E “'T "N

Watt

Example 1

A 10FO4 microprocessor A with fine-grain clock gating,

Vdd=1.5V,0 = 2.0, 8sf technology (0.13um)

Evaluate energy-efficiency of adding execution bypggg:= 3.0,Ngx = 3.0

10FO4

10FO4

A

RF

-

L

FU

1FO4

RF

1FOA4

i
Formo

v
Y

FU

Example 1 (cont.)

= 0.2,

- 01, Wey = 006, Wpepr = 0.04

no retn no retn

—Ebypass = 0.01 50% of dynamic instructions use the FXU tr% = 0.005
total
Al _AE ADpgy ADgp

B—>—+ +
7" F NexWEx) NREWRF)

To justify adding the execution bypa%é> 0.027 (2.7%) must be demonstrated

However, ifVdd< 0.9V (0 < 1.O)A7[>(.053 IS necessatry.

: Bips3
Now try usin
y J Watt
» assume circuit designers will find a way to make= 0, getATI >0.25%
» assume circuit designers can do nothing about itnd = - 0.2, get ATI >20%

Both results are incorrect.

Example 2

Processor B: high-performance dynamic issue microprocessor with no clock gating,
Vdd=1.7v,86 = 2.7

Evaluate energy-efficiency of adding an extra read port to a multiported int. RF.

AD AE
Suppose%—l = 0.02, DRF =01, Wgr = 0.1 , —2E

= 0.2
no retuning

integer RF is responsible for 15% of the CPU Power, ﬁén: 0.03

AD
—(e+1)—+AfE+nRF Wpp——t = =37 [0.02 +0.03 +2.7 (0.1 .1 =-0.017 <0

adding an extra port is energy-efficient.

However, ifVdd< 0.9V, the same feature is not energy-efficient.

Example 3: Optimal Pipeline Depth (4-way 000 processor)

T T T T T T T T T
‘ ‘ ‘ ¥ experimental points ‘ ‘

2.4 _ann =
= 20.0 | | === varying depth (fixed Vdd and n)
varying Vdd and eta (fixed depth)
ool 2FO4 o : 50mV steps in Vdd (n adjusted) i

O 50mV steps in Vdd(n fixed)
varying n (fixed depth and Vvdd) : :
— varying f (fixed Vdd and n) S o

§:10.0O
14FO4
5 \ . o -
a
o e e s == - o e R e e i e e e i i -
8
12 N’*@\E:Z-O R S LT S TP R EE PR TR SREPRRTE R
| ‘ *N8FO4 ‘ ‘ ‘ ‘ |
0.8F .
0.6 1 L L l l l l l |'N' ‘*ﬂ"_
0.85 0.9 0.95 1 1.05 11 1.15 1.2 1.25 1.3

Example 4: Optimal Pipeline Depth

T T T T
Y experimental points

240 £=200 | —varying depth (fixed Vdd andn) | i
3 varying n (fixed depth and Vdd)
0.5 stepsinn
221

| == reducing Vdd(n fixed) | 7]
O 50mV steps in Vdd(n fixed)
— reducing f (fixed Vdd and n)

PIP,

End-User Power-Performance Metric

 What metric should austomerse to compare microprocessor products

» Customer should not base the choice on implementation details, hardware intensi
of leakage currents

« Itis hard to capture all requirements in a single formula (reliability, support, etc.)

 Example of how the customer-end metric can be derived
* Yearly operating costost = C; [N + Cy, Watt LN , where

N is the number of processor cores in system
C, is the yearly license cost per core

Watt is the power dissipation of one core
C is the energy cost per J

« Performance of the systeRerf = Bips [N , where
Bips is the performance of a single core
» Assume a customer needs to maximize performance without exceeding operation cos
* Increase the number of corag/ (higher license cost and energy cost)
» Use higher-performance corA8ips (energy cost)

End-User Power-Performance Metric

ACost = C; LAN + Cy, Watt LAN + Cyp, [N LAWatt = 0

APerf = Bips [AN + N [ABips >0
combine the expressioN, cancels out

__QD
c, O where

Cp = C,, O Is the yearly energy cost of operating one core
Under the stated assumptions the customer should choose the processor with highe:

AWatt < ABipSE;Il N
Watt Bips

C
, wherey = 1+ £
Y C

E

Bi psy
Watt

 The end-user metric may be different from the company’s energy-efficiency metri
» There are more customers than cores
« Companies optimize processors to maximize their profits
» Marketing strategies traditionally emphasize performance

Conclusions

WE
Y% Perf

« Concept of hardware intensity is describvgd

scaling circuits

» Derived conditions for an energy-efficient balance between architectural and cir-
cuit-level decisiong = n = ©

» To achieve energy-efficient design architectural choices must be balanced with c
cuit-level decisions

‘ L-Arch ‘ ‘ circuits ‘
noeve

| power supply] | clocking rate |

» Different architectural decisions are optimal for different designs

AD.,
* Energy-efficiency metric descrlb@]A— IO 2nw,— + (0 + 1)—

Y
« Relationto th% metrig = 0 +1 (consistent method for determiniyig

Bibliography

* V. Zyuban, P. N. Strenski, Balancing Hardware Intensity in Microprocessor Pipe-
lines, IBM Journal of Research and Development, Volume 47, No. 5/6, pp. 585-
598, 2003.

 J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H. Derby, M. S. Ware, K.
Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaad, T. W. Fox, D. Littrell, M.
Biberstein, D. Naishlos, and H. Hunter, An innovative low-power high-perfor-
mance programmable signal processor for digital communications, IBM Journal o
Research and Development, Vol. 47, No. 2/3, pp. 299-326, March/May 2003.

* V.Zyuban, P. N. Strenski, Unified Methodology for Resolving Power-Performance
Tradeoffs at the Microarchitectural and Circuit Levels, Proceedings of IEEE Sym:
posium on Low Power Electronics and Design, pages 166-171, August 2002.

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling and Metrics

- PowerTimer extensions to Turandot

- Power-Performance Efficiency Metrics
10:30-11:00 Case Studies and Examples

- Optimal Power-Performance Pipeline Depth
Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

Intel Pipeline Depths

Basic Pentium® Ill Processor Misprediction Pipeline

1 2 3 4 | 5 6 | 7 3 9 10
Fetch | Fetch |I'.'Im:ude Decode Decode RenamelRﬂE Rd |Rdy/Sch Dispatch Exec

Basic Pentium® 4 Processor Misprediction Pipeline

15
RF

16 |17 |18 | 19 |20
RF | Ex |Figs BrCK Drive

6
Alloe

T | 8

Rename

9
Que

10, 11 12
Sch | Sch | Sch

13
Disp

14
Disp

1 | ii i 4 5
TEhlhﬁlF' iTcF:mn Drive

o Pipeline Depth is key to microprocessor performance

e Pentium III: 10 pipestages

e Pentium 4. 20 pipestages

e Intel @ ISCA2002: 52 pipestages is optimal [Sprangle02]

Overall Methodology

e Begin with a base, core microarchitecture

e Develop energy models based on detailed circuit-level
power analysis of macros from an existing machine

e Develop energy scaling equations for pipeline depth

e Study the sensitivity of the energy model parameters to
the optimal pipeline depth

Background/Definitions

e Fanout-of-4 inverter metric (Horowitz)

1 4 16

e naplan

= Delay of an inverter with C,4/C;,=4
= More or less stable for process, voltage, temperature

= We use this to measure amount of logic per stage of the
pipeline

Pipeline Scaling Methodology

4 Stage FPU = 16FO4 Logic + 3FO4 Latch = 19 FO4 ~ 2.0GHz

5 Stage FPU = 13FO4 Logic + 3FO4 Latch = 16FO4 ~ 2.4GHz

6 Stage FPU = 11FO4 Logic + 3FO4 Latch = 14FO4 ~ 2.7GHz

9 Stage FPU = 7FO4 Logic + 3FO4 Latch = 10FO4 ~ 3.8 GHz

| | | | | | |
0 10 20 30 40 50 60 70 80 90
Cumulative FO4 Depth (Logic + Latch Overhead)

PowerTimer

Performance Estimate

Power
Estimat§

»
>

Program Cycle-level

Executable Hardware access

Or trace Counts/utilization
(clock gating info)

e Key Problem:

— How to scale energy models for pipeline depth rather
than just pipeline width

Energy Model Formation

e Energy models based on circuit-level power analysis of
structures in current high-performance PowerPC
processor

e Power analysis
— For each macro collect ungated power (ckt sim)
= Clocking power (latches, LCBs, array clocking)
= Active power (Logic, data-dependent array)
= | eakage power

— Clock gating factors determined based on utilization
and macro-level clock gating eligibility

Factors Affecting Choice of Pipeline
Depth

e Cycles-Per-Instruction (CPI)

e Clock Frequency

e Clock Gating Effects

e Latch-to-Logic Dynamic Power Ratio

e Latch Growth Factor

e Glitching Activity

e |eakage Power Scaling

e Power-Delay Ratios for Latches and Logic

Energy Model Scaling:
CPI, Frequency, Clock Gating

e CPI impacts performance only (workload dependent)
e Clock Gating impacts power only (workload dependent)
e Frequency impacts both

Energy Model Scaling:
Latch Growth Factor, Latch-Logic Ratio

e Latch growth has a big impact
— Logic shape functions are often not flat

Latch Cutpoints

Logic Width | \\I’;/\?/ | N\ \i\/CIB\/‘/

= |[atc
= [atc
= [atc

3-Stage Pipeline 4-Stage Pipeline

nScale = (Latch-logic power ratio) * (base FO4/FO4)\GF
n Growth Factor slightly super-linear (1.1)

n-Logic Power Ratio of current machines (70%-30%)

Energy Model Scaling:
Latch Growth Factor

— 1 Booth Recode 27X Booth Mux — ¢ Pipeline Cuts
A bsels Frac L0FO4 (1)
Frac 27 :
3:213:2|3:2 | |3:2|3:2|13:2| | [3:2(3:2]3:2 13F04 (1)
3:2|3:2 3:2|3:2 3:2|3:2 16FO4(1) 10FO4 (2)
02 #2192l %2 o2l %2 | iorosq)
\24 > <
3|2| 3||2 13F04(2) 10FO4 (3)
6:2 4}:'2 16FO4 (2)
Aligner 3||2 I9FO4(2) 10FO4 (4)

Energy Model Scaling:
Latch Growth Factor

b
N

b
o
|

— 10FO04
13FO4
16FO4

19F04

Latches

O N H O O
I R B

O 10 20 30 40 50 60 70 80 90

Cumulative FO4 Depth (Logic + Latch
Overhead)

Cumulative Number of

Energy Model Scaling:
Glitching and Leakage

e Glitching reduces with deeper pipelines
— More pipeline latches stop glitch propagation

e |eakage power component grows more slowly than
dynamic power component with deeper pipelines

— Leakage does not scale with frequency

— Leakage growth is proportional to overall width of
latches rather than overall power of latches

= Overall Latch width % << Overall Latch power %

Power Scaling Effects

4 —~ combined
3.5 - only latch
3 - only freq
2.5 - only clock gate
——only glitch
1.5 - —-—only leakage

1—0—0 —

0.5 - M

Power Relative to 19F04
N

0 I
37 34 31 28 25 22 19 16 13 10 7

Total FO4 per stage

Scaling Results:
Average of SPEC2K

fo_wer-performance optlmal\ Per‘ﬁ)ﬁance optimal
< AT
o &
= 0.8 A
©
£
- 0_6 D I andi e eI AN D)t ELCEEEEEE
Q. L e N
o —— bips
8 0.4 s bips/W [
-3 bipsA2/W|
" bips~3/W
g 0 I LI LI L LI LI L LI LI LI L LI LI I

37 34 31 28 25 22 19 16 13 10 7
Total FO4 Per Stage

Workload impact:

TPCC Trace

Power-performance optimal\

1

Performance optimal
—

ot
o0
|

<

o

L

©

=

.; 0-6 R R R R R EEEEREEE G EREEEREEERE
Q.

o

.-3 0.4 Te—bips |
.E 0.2 bips*3/W| A
©

g 0 | I I I L L I L L L L L L L |

]

37 34 31 28

235

19 16 13 10 7

Total FO4 Per Stage

Impact on Design

— tradeoff via changing Vdd and HI
— tradeoft via changing frequency
= tradeoff via changing pipeline depth

Maximum Power Budget

0 \ \ \ \ \ \ \ \ \

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Relative 1/Performance

Temperature/Power Density Analysis

Temperature “landscape”. space and time
How to estimate early in the design cycle?

P .
e S
| = . M

Temperature |
(C)

82007
BOL1173
782277
76,333

= 74.4483
11557
0660
68,7703

H.5897

POWER4 chip photograph showing the principal functional units
Map of FET junction temperatures for a 115-W packaged POWER4 ER RS SR AR L SRS SRR,
chip derved from the chip power analysis and thermal modeling
simulations described in the section on distribution, From IBM Journal of R&D, Vol. 46, No. 1, 2002

Integration with UVA's HotSpot Project

e Initial work has begun on integrating PowerTimer with
HotSpot [Skadron, Stan, et. al., ISCA2003]

— Allows early-stage temperature analysis, hotspot
identification

— Thermal-aware microarchitecture design

Bibliography:
PowerTimer Case Studies

David Brooks, John-David Wellman, Pradip Bose, and Margaret Martonosi. "Power-
Performance Modeling and Tradeoff Analysis for a High-End Microprocessor,"
Workshop on Power-Aware Computer Systems (PACS2000, held in conjuction with
ASPLOS-IX), Cambridge, MA., November, 2000.

Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose, Victor Zyuban, Philip N
Strenski, and Philip G Emma, "Optimizing Pipelines for Power and Performance," 35th
International Symposium on Microarchitecture (MICRO-35), November, 2002.

David Brooks, Pradip Bose, Viji Srinivasan, Michael Gschwind, Philip G. Emma, Michael
G. Rosenfield. "New methodology for early-stage, microarchitecture-level power-
performance analysis of microprocessors," IBM Journal of Research and Development,
Volume 47, No. 5/6, 2003.

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot

- Power-Performance Efficiency Metrics (Victor)
Case Studies and Examples

- Optimal Power-Performance Pipeline Depth
11:15-11:45 Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

Validation

Input Output
. MODEL —

Need to ensure integrity at all 3 stages

Input Validation: making sure that the input, e.g. trace,

IS representative of the workloads of interest
Model Validation: ensuring that the model itself is accurate
Output Validation: interpreting the results correctly

Post-Silicon Calibration Lessons Learnt
from an early '90s development project

e Trace sampling to reduce simulation time must be done
with care!

— Trace input inaccuracy was the biggest source of error

— Later research invented R-metric to quantify inaccuracy in sampled
traces (Iyengar, Trevillyan, Bose, HPCA-96)

e Statistical methods of simulating stall effects (like cache
misses) are prone to large overall errors
— This was the second largest source of error

e Neglecting the effect of kernel code in traces can be
dangerous in some cases
— Execution-driven simulation that captures kernel code is desirable

e Cycle-level cross-validation against pre-silicon, detailed
reference models (RTL or pre-RTL) is definitely needed

Model Validation

e Main challenge: defining a specification refe___rence

An Input Testcase

/\

MODEL GOLDEN
UNDER TEST REFERENCE
\ m\ /

® Secondary problems:
— generate apt test cases
— test case coverage
— choice of o/p signatures l Flag Error (if outputs differ)

outputs

The Elpaso Reference Model

e Early Stage Power/Perf Analysis, Specification, Optimization
> a validation reference model
> tescase suite used will be part of next release of PowerTimer

Specialized / General Workloads (traces)

Source \ TCGEN
energy model

testcases
/ / """" (empirical)
microarch level test-mode 2N
energy model . Sl F| PASO input .
(analytic) l PowerTimer

A/detailed

ckt-level,
implementation-specific

Eg\lljvrt]edr;perf Cycle-by-cyclg caIiI_arat@on, power-perf tradeoffs,
(specification) output telieEe projections

More recently: a trace analysis tool called Trance is also being used
for cross-calibration purposes, in addition to the elpaso cycle-accurate reference

Bounding Perf and Power

e Lower and upper bounds on expected model outputs can
serve as a viable “spec”, in lieu of an exact reference

e Even a single set of bounds (upper or lower) is useful

e Utilization/power bounds based on IPC bounds are also

predicatable, using prior pipeline flow-based theory
Test Case | Performance Bounds | Utilization/Power Bounds
Number Cpi (ub) Cpi (b) T (ub) T(Ib) | Upper bound Lower bound
TC.1

TC.2

TC.n

regression test suite — used in testing model versions

Performance Bounds

e Static Bounds:

Bounds Model

A 4

Uarch
arms fil

lLoop test case (source/assembly code)

Steady-state loop cpi
bounds

»

* IBM Research, Bose et al. 1995 - 2000: applied to perf validation for high-end PPC

* U of Michigan, Davidson et al. 1991 - 1998

e Dynamic Bounds:

— analyze a trace; build a graph; assign node/edge costs;
process graph to compute net cost (time)

(e.g. Wellman96, Iyengar et al., HPCA-96)

Static Bounds - Example

Consider an in-order-issue

| fadd fp3 fpl pr super scalar machine:
Ifdu fp5, 8(rl) e disp_bw = iss_bw = compl_bw = 4
Ifdu — fp4, 8(r3) :]Icet((:)%sbv: I=s Eilnits =2
fadd fp4, fp5, fp4 o 1
fadd fpl, fp4, fp3 e fp_units = 2
stfdu fpl, 8(r2)
bc loop_top
N = number of instructions/iteration = 7

o Steady-state loop cpi performance is determined by the
narrowest (smallest bandwidth) pipe
— above example: CPIter = 2; cpi = 2/7 = 0.286

Power-Performance Bounds & raso)

Power ~ (W**0.5 + Is_units + fp_units + |_ports + s_ports)
4

0.7

3.: f-ok-o-o-o-o-o-o-o 0.6 ——= H\
[S

2.5 / Inflection points

ncy
o
(6]

(=]
=

Steady-state loop BIPS

Pow;%‘ efficie

2 / of interest —_|
1.5

1 “/ 0.2 1 BIPSHyatt
0.5 0.1 -
0 T T T T T T T T T 1 0 1T 17 17 17T 17T 1T T T T1
N oxoA LS N % A9
Superscalar width W Superscalar width W

(adapted from: Brooks, Bose et al. IEEE Micro, Nov/Dec 2000)

Absolute vs. Relative Accuracy

250
Idealized bound

200 A=
\\\ Real sim output
150 - ')
e Poor “absolute
100 4/
f(‘trLje” h/w

' N accuracy of
50 measurement (sa;)\\'\\“‘i simulator

n

MIPS/pseudowatts

0 — T T T T T T T T 1 ® BUt, gOOd
1234567891 “relative”
Superscalar width W accu ra Cy

In real-life, early-stage design tradeoff studies, relative
accuracy Is more important than absolute accuracy

Abstraction via Separable Components

The issue of absolute vs. relative accuracy is raised in any

modeling scenario: be it “performance-only”, “power” or
“power-performance.”

Consider a commonly used performance modeling abstraction:

- Increasing core concurrency
% and overlap (e.g. outstanding support)
L
":n: Slope = miss penalty (MP)
c
£ " CPI =
]
=~ | A CPlinfcache
3 +
@)
S~
X
© CPIinfcache M R M P

Cache miss rate, MR (misses/instr)

Experimental Setup: Measure
Relative vs. Absolute Accuracy

Program executable or trace

_—

Detailed, full Baseline,
model cycle “infprf”
simulator simulator
CPIinf r
CPIactual g

S~

\\

Standalone

Standalone BP sim
cache sim

DeItaV-CPI (DBeFI)t)a-CPI
(cache)

_—

Add all components

«

COMPARE

CPI approx(sc)

Error Report

Experimental Results (exampie)

SPECint Experiment
. SC- SPECfp Experiment
1.5 CPI — SC-CPI
1 ——\ — 2
- o 1.5 +=<
0.5 True-| = 4 - True-
0 L 0 T T T 1
@ O INF- }
® 9 ®) INF
Rename registers CPI Rename registers CPI

TRUE-CPI curve: generated using PowerPC research, high-end simulator
at IBM (7Turandot simulator)

Accuracy Conclusions

e Separable components model (for performance, and
probably for related power-performance estimates):
> good for relative accuracy in most scenarios
> absolute accuracy depends on workload characteristics
e Detailed experiments and analysis in:

Brooks, Martonosi and Bose (2001):

“Abstraction via separable components: an empirical study of absolute and relative accuracy
in processor performance modeling,” IBM Research Report, Jan, 2001

Also look up Brooks’ Ph.D thesis and the Wattch paper (ISCA-2000)
For data on calibration of Wattch energy models against
Post-layout capacitance extraction models.

Overall Validation Methodology
(PowerTimer)

-

Y

elpaso
bounds
timer

cpi arN
utilization

bounds

PowerTimer

cpi and
utilization stats

Reference Model
(e.g. M2 or M3)

LaSpecs

—~__ timeline output _/

H. Hamann,

\\

thbular (hm)
eb spec et al.

Next test case - (planned future path)

/\

Y
IR

M.McGlashan-Powell, | Thermometry

Setup

direct image

Y
detect detect mismatch
anomalies
L |
Temperature ol compare
Model simulated chip

temp profile

of chip temp
profile

LaSpecs Output Example
see next page

Instruction Latencies

Single or Pair (Dependent) Instruction Latency (GigaProcessor)
Specifications derived from POWER4 M2 model, version 1.222: PowerPC opcode pair involving lbz_add

[oo.... R I) R @ B 2 o P S o O
[oee...) S
The instruction test case is: 1lbz R1,4096(R0O) add R4,R1,R5 Completion Latency= 15 Live Latency= 15

Pipeline Cycle Number
Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FETCH 3133 - -) . - . . .) . . i X . All Single
and pair
XMITa 133 - - - - ; ; ; - ; ; ; ;] . .
a instruction
DECODE e - - - -] -] - | - | |1atency specs
o were matched
ASSEMBLE 2 - - - . -) - . . .)
Turandot vs.
XMITh Lt L || - | |Reference M2
DISPATCH ;33)] .) . .))) model
ISSUE - - - - - - Ibz - - add
ISRREAD - - - - - - - bz
EXECUTE . - - - . . - - Ibz - - add
FINISH - - - - - - - - - - - bz | add
XMITc - - - - - - - - - - - - bz add
COMPLETE :33

Page maintained by: Pradip Bose, pbose@us.ibm.com Generated using tool: LaSpecs last generated: 08/07/03 09:04:55

Other Visualization Aids for Validation and
Calibration....

PowerPlay: a Floorplan Visualizer

Chip Floorplan

Input Cycle-accurate | CPI

WkId— " Perf Simulator > PowerPlay
Trace (Turandot) Power
Temp.
Pow. Den.

instantaneous,
time-based changes,
single average

Java-based
» Currently operational: works with MET/Turandot (PowerTimer) toolset

Implementation: by Rose Liu, summer intern

PowerPlay Example/Demo

File Options Help

Floorplan: Tracesipowe rPC.tx‘Ii Browse
Trace: NdaxpyPower stats Browse
Colors: 4 hd
Max Power Density: (0.5
Min Power Density: |0.06

Linit | FPoweer .. Calor | Range
155 018823 | |[Red 0.5-0.349
FPL.h 031111 rellow 0.39-0.28
Fxlla 0.4666A | |Green 0.28-0.17000
IFlh 006333 | [Blue 0.17000-0.06

IFLIBR... [0.07307
LSU.a 0.38055
Fxlb 0.466EE
IFLLa 006333
DUk 0.425

FFPLL.a 031111
ISLLh 018823
LS.k 0.38055
IFLIB... |0.08636
IDLLa 0.425

Trace Interval: 1 Cycles Per Interval: 256
Slide Show Speed: (500 Average Power in Interval: (0.21212

> J o Jle [a4 J[

Power Density Characteristics (SPEC2K)

FrL Fxl

L5LI LS

Gap - 3.13 Perlbmk — 3.14 Twolf — 2.69 Art — 2.45

e Simple (illustrative) wkld characterization metric:

K= (1/Area.,,) = C,Area, , (cool)1< C, < 9 (hot)

Calibration of Temperature Models

e Current aids:
— Infra-red based thermometry set up
— On-chip temperature sensors

e Test cases run on simulator and on hardware
— Simulated results vs. direct measurements

— Current measurements available for recent product
chips: could not be shown due to clearance difficulty

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot

- Power-Performance Efficiency Metrics (Victor)
Case Studies and Examples

- Optimal Power-Performance Pipeline Depth
Validation and Calibration Efforts
11:45-12:00 Future challenges and Discussion
Bibliography

