
Microarchitecture-Level Power-Performance
Simulators: Modeling, Validation, and
Impact on Design

Zhigang Hu, David Brooks, Victor Zyuban, Pradip Bose

IBM Research
Harvard University

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot
- Power-Performance Efficiency Metrics

Case Studies and Examples
- Optimal Power-Performance Pipeline Depth

Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

8:00-8:15

Power Dissipation Trends

1

10

100

1000

1980 1990 2000 2010

P
ow

er
 D

en
si

ty
 (

W
/c

m
2)

Intel Data
SIA Projection

Hot Plate

Nuclear
Reactor

386
486

Pentium

Pentium Pro

Pentium II

Pentium III

The Battery Gap

0

1000

2000

3000

4000

5000

2000 2001 2002 2003 2004 2005 2006 2007

Battery
capacity
(mAh)

Energy
requirement
(mAh)

10kbps 64kbps 384kbps 2Mbps

PIM, SMS,
Voice

Video email,
Voice recognition,
Mobile commerce

Mobile video-
Conferencing,
Collaboration

Downlink
dominated

Interactive

Lithium Ion
Lithium
Polymer

Fuel Cells
Web browser,
MMS, Video clips

En
er

gy
 (m

A
h)

Diverging Gap Between Actual Battery Capacities and Energy Needs

Source:
Anand
Raghunathan,
NEC Labs

Power Issues

Temperature

Capacitive (Dynamic) Power Static (Leakage) Power

Minimum Voltage

20 cycles

Di/Dt (Vdd/Gnd Bounce)

V
ol

ta
ge

 (V
)

C
ur

re
nt

 (A
)

VOUT

CL
ISub

VIN

IGate
Vin Vout

CL

Vdd

Application Areas for Power-Aware
Computing

Energy-Constrained Computing

Te
m

pe
ra

tu
re

/d
i-d

t-C
on

st
ra

in
ed

Why architecture/system level?

• Many architectural/system decisions have huge impact
on power and performance

• Often need feedback at the early-stage of a design
– Pre-RTL, pre-circuit analysis

• Run-time, system-level feedback control
– Application/dynamic run-time characteristics allow

dynamic scaling for power reduction
– Perhaps power, temperature, and voltage sensor to

guide throttling for worst-case situations

What architects need from lower levels…
• Architects need abstract models on many levels…

– Static speed-power knobs for structures
• Parameterized models for HW structures
• Impact of implementation choices

– Given cycle-level power estimates (power vs. time)
• Chip temperature models
• Chip di/dt models

• Hardware hooks
– Dynamic speed-power knobs for structures

• Clock gating, Vdd-scaling, Vdd-gating
• Need to understand costs of these knobs

– On-chip sensors to measure power, temperature, voltage
deltas

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot
- Power-Performance Efficiency Metrics

Case Studies and Examples
- Optimal Power-Performance Pipeline Depth

Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

8:15-9:00

A Developer's Guide to Turandot/PowerTimer

Acknowledgments: J-D Wellman, Jaime Moreno, and other IBMers in the
original Turandot/MET development team

1

Processor Simulator: An Overview
Processor simulator: a tool that emulates the behavior of a real processor

Software-based:
Concept phase: C/C++/System C
Design phase: VHDL

Hardware-based:
FPGA

Simulators are used for:
Workload characterization
Performance / power target projection
Compiler tuning
Design space exploration and tradeoff evaluation
Testing / debugging/ validation

Existing simulators
Academia simulators: SimpleScalar, RSIM, SMTSIM, etc.
Industry simulators:

Concept phase
Product phase

2

Turandot/PowerTimer Overview
An out-of-order superscalar processor model for the PowerPC architecture

Cycle-accurate, cycle-based
Initial version developed by a group of researchers at IBM T.J. Watson
Power4-like machine configuration by default
Other configurations attainable through compile-time parameters

Performance model validated against Power4 preRTL model
Power model added in summer 2000

Based on circuit simulation of Power4-like circuits
Supporting trace-driven and execution-driven modes

Trace-driven mode now supports SMT, and is portable to AIX/Linux/Cygwin
Interpretation-based execution mode is underway

Aria

program
binary

program
inputs

Turandot

trace request

trace segment
Turandot

program
trace 1

program
trace N

...

trace-driven mode execution-driven mode
3

Disclaimer

1. Power4-like != Power4
2. Simulator implementation != real hardware implementation

4

Source File Organization

Turandot

Sources

TurandotAria

opcodetranslate deps ffreader src

source file dir

standalone
Aria

opcode
library

predecode
library

ffreader
library

turandot
source files

root dir

5

Turandot Source Files

unitsheaders stagesinit/flush power
controls.h
iq.h
trauma.h
array.h

stage_commit.macros
stage_retire.macros
stage_fpu_exec.macros
stage_fpu1_exec.macros
stage_fix_exec.macros
stage_fix1_exec.macros
stage_dmiss_exec.macros
castout_exec (in Turandot.c)
stage_mem_exec.macros
stage_mem1_exec.macros
stage_log_exec.macros
stage_br_exec.macros
stage_rename.macros
stage_dispatch.macros
stage_decode.macros
stage_ifetch.macros
flush_exec (turandot.c)

array.c
block_bus.macros
block_dcache.macros
block_icache.macros
block_memq.macros
block_nfa.macros
block_prediction.macros
block_prefetch.macors

init.macros
flush_arbitrary.macros
flush_mispredicted.macros
reset.macros utils_cmdline.macros

utils_reader.macros
utils_trans.macros
dep_prep_process.c

utilities

turandot.c

trace
param.macros
trace.macros
dep.macros

init.power.macros
power.macros
power_def.macros

6

Turandot Simulation Framework

Fetch

Decode/Expand

Rename/Dispatch

Issue

Reg Read

Exec/Mem

WB

Retire
D-TLB1

D-TLB2

I-TLB2

I-Prefetch

Issue queue
Integer

NFA + Branch
Predictor

I-Buffer

L1-I cache

Decode/Expand

Rename/Dispatch

Issue logic

Reg.read

L2 cache

Main
Memory

Cast-out queue

L1-D cache

I-TLB1

Integer
units

Issue queue
Load/store

Issue logic

Load/store
units

Issue queue
FP

Issue logic

FP
units

Issue queue
Branch

Issue logic

Branch
units

Load/store
reorder buffer

store queue

miss queue

Retirement queue

Retirement logic

Reg.read Reg.read Reg.read

I-
Fe

tc
h

7

Simulation Flow: Reverse Pipeline Order

Commit

Retire

Exec

Rename

Dispatch

Decode

IFetch

Flush

stores are committed to cache/memory COMMIT_STORES_DELAY cycles after retire

1. If store, remove from storeq
2. If load, remove from reorderq,

check if there is a load/store
conflict. If yes, flush the pipeline
(reset.macros)

3. Update branch history
4. Remove instruction from retireq

1. Rename
I.Check if enough rename registers

available, if not, stall until available.
II.Rename architectural registers to

physical registers.
III.If the instruction is a mispredicted

branch instruction, check if all
operands are ready. If yes, resolve
the branch and start fetching from
the right path from next cycle.

IV.Note: registers in different class are
renamed separately.

2. Dispatch
1. Place renamed IOPs into the

corresponding issue queue. If a given
operation can not be placed in the
issue queue (i.e. the queue is full),
stall the stage until available.

FPU_EXEC

FPU1_EXEC

DMISS_EXEC

DCASTOUT_EXEC

MEM_EXEC

MEM1_EXEC

LOG_EXEC

BR_EXEC

FIX1_EXEC

CMPLX_EXEC

FIX_EXEC

8

I-TLB2

I-Prefetch

NFA/Branch Predictor

I-BufferI-
Fe

tc
h

L1-I cache

Decode/Expand

L2 cache

I-TLB1

Fetch Stage

bus

1. If a mispredicted branch is resolved (therefore
ifetch has been on the mispredicted path), then
revert back to the true taken path, flush the
pipeline, and stall ifetch for a number of cycles.

2. If ifetch is stalled for some reason, check whether
the reason has been resolved. If so, resume ifetch
from next cycle.

3. Stall ifetch if I-Buffer is full, or no more fetch
blocks are allowed, or no more inflight insns are
allowed.

4. Fill the trace reader buffer. Stall ifetch if no
instruction is available due to (1). no trace on the
path (2). end of trace.

5. Use address of the first insn in this fetch block to:
1. Check ITLB1 / ITLB2. If miss, stall ifetch for a

number of cycles according to the miss type.
2. Check L1 ICACHE / IPrefetch / L2 ICACHE. If

miss, stall ifetch and charge appropriate miss
penalties.

3. Lookup NFA for next fetch address.
6. For each insn in current fetch block:

1. Decode (see process_iword), expand into IOPs
(internal insns), and insert IOPs into I-Buffer.

2. If branch, perform branch prediction.
7. Update NFA.

stage_ifetch.macros
main fetch logic

array.c/h
arrays: caches, counter prediction table,

NFA, etc.

unit definitions:
block_icache.macros
block_bus.macros
block_nfa.macros
block_prefetch.macros
block_prediction.macros

9

Decode/Expand Stage

NFA/Branch Predictor

I-Buffer

I-
Fe

tc
h

Decode/Expand

1. Expand instructions into IOPs and insert
them into I-Buffer, in program order.
(This code is in stage_ifetch.macros but
logically it belongs to decode stage)

2. Handle millicode instructions (insns that
expand to more than two IOPs), such as
string ops. Stall decode if necessary.

3. Form instruction groups according to
Power4 grouping rules (see IBM JR&D
Power4 paper). stage_ifetch.macros

expand instructions
stage_decode.macros

millicode handling and instruction group
formation

10

Rename/Dispatch Stage

I-TLB2

I-Prefetch

Issue queue
Integer

NFA/Branch Predictor

I-Buffer

I-
Fe

tc
h

L1-I cache

Decode/Expand

Rename/Dispatch

L2 cache

Main
Memory

I-TLB1

Issue queue
Load/store

Issue queue
FP

Issue queue
Branch

stage_rename.macros
rename instructions

stage_dispatch.macros
dispatch instructions into corresponding

issue queues.

1. Rename
I.Check if enough physical registers

available, if not, stall until available.
II.Rename operands to physical registers,

and allocate physical registers for each
result.

III.If the insn is a branch, check if all
operands are ready. If so, resolve the
branch and start fetching from the true
path from next cycle.

IV.If the insn is a mispredicted branch,
checkpoint rename map for later
recovery.

2. Dispatch
1. For load/store, allocate reorderq/storeq

slots if necessary. If no slot is available,
stall dispatch.

2. Dispatch IOPs into corresponding issue
queues. Stall dispatch if no issue queue
slot is available.

11

Issue/Execution Stage: FXU, FPU, LOG, CMPLX

Issue queue
Integer

Issue logic

Reg.read

Integer
units

Issue queue
Load/store

Issue logic

Load/store
units

Issue queue
FP

Issue logic

FP
units

Issue queue
Branch

Issue logic

Branch
units

Reg.read Reg.read Reg.read

1. Check if any non-pipelined instruction
is in progress, if so, stall the pipeline

2. Issue ready insns in oldest-first order
3. Set result to be available after a

number of cycles depending on the
instruction latency

4. Remove insn from issue queue.

stage_fix_exec.macros/stage_fix1_exec.macros
fix point instruction execution

stage_fpu_exec.macros/stage_fpu1_exec.macros
floating point instruction execution

stage_log_exec.macros
stage_cmplx_exec.macros

logic and complex instruction execution

12

Issue queue
Integer

NFA/Branch Predictor

Issue logic

Reg.read

Integer
units

Issue queue
Load/store

Issue logic

Load/store
units

Issue queue
FP

Issue logic

FP
units

Issue queue
Branch

Issue logic

Branch
units

Reg.read Reg.read Reg.read

1. (if INORDER_BRANCHES), check if
there are memory ops before this
branch. If so, stall.

2. If operands are not ready, exit.
3. Collect branch stats.
4. If branch is mispredicted, perform

some bookkeeping for preparation of
pipeline flush.

5. Remove branch from branch issue
queue.

stage_br_exec.macros
branch execution

Issue/Execution Stage: BR

13

Issue/Execute Stage: MEM

D-TLB1

D-TLB2

I-TLB2

I-Prefetch

Issue queue
Integer

NFA/Branch Predictor

I-Buffer

I-
Fe

tc
h

L1-I cache

Decode/Expand

Rename/Dispatch

Issue logic

Reg.read

L2 cache

Main
Memory

Cast-out queue

L1-D cache

I-TLB1

Integer
units

Issue queue
Load/store

Issue logic

Load/store
units

Issue queue
FP

Issue logic

FP
units

Issue queue
Branch

Issue logic

Branch
units

Load/store
reorder buffer

store queue

miss queue

Retirement queue

Retirement logic

Reg.read Reg.read Reg.read

stage_mem_exec.macros/stage_mem1_exec.macros
load/store instruction execution

1. If MEM is already stalled for some reason,
check if that is resolved. If so, resume MEM.

2. Calculate #insns executable this cycle, exit if
none.

3. For each insn in mem issue queue:
1. If INORDER_BRANCHES, stall if there is

branch ahead.
2. If operands not ready, exit.
3. Handle non-mem type insns.
4. Check bank conflicts
5. Check DTLB1/DTLB2, stall if miss.
6. For store, insert into storeq.
7. For load, first search storeq to see if

match any existing stores, if yes, bypass.
Otherwise, insert into reorder queue.

8. Check L1 dcache / trailing edge / L2
dcache. If miss, move insn from memq to
dmissq, which is ordered by the time
when data is ready.

4. Set results to be available after a number of
cycles depending on the instruction latency

5. Remove insn from mem issue queue.

14

WB/Retire Stage

D-TLB1

D-TLB2

I-TLB2

I-Prefetch

Issue queue
Integer

NFA/Branch Predictor

I-Buffer

I-
Fe

tc
h

L1-I cache

Decode/Expand

Rename/Dispatch

Issue logic

Reg.read

L2 cache

Main
Memory

Cast-out queue

L1-D cache

I-TLB1

Integer
units

Issue queue
Load/store

Issue logic

Load/store
units

Issue queue
FP

Issue logic

FP
units

Issue queue
Branch

Issue logic

Branch
units

Load/store
reorder buffer

store queue

miss queue

Retirement queue

Retirement logic

Reg.read Reg.read Reg.read

1. If store, remove from storeq
2. If load, remove from reorderq, check

if there is a load/store conflict. If yes,
flush the pipeline (reset.macros)

3. Update branch history
4. Remove instruction from retireq

stage_retire.macros
retire instructions

15

Data Structures: Instruction Queue, Array, Reorderq/Storeq

D-TLB1

D-TLB2

I-TLB2

I-Prefetch

Issue queue
Integer

NFA/Branch Predictor

I-Buffer

I-
Fe

tc
h

L1-I cache

Decode/Expand

Rename/Dispatch

Issue logic

Reg.read

L2 cache

Main
Memory

Cast-out queue

L1-D cache

I-TLB1

Integer
units

Issue queue
Load/store

Issue logic

Load/store
units

Issue queue
FP

Issue logic

FP
units

Issue queue
Branch

Issue logic

Branch
units

Load/store
reorder buffer

store queue

miss queue

Retirement queue

Retirement logic

i2tlb

itlb icache

nfa_cache/bp_counter

rgrename/rgrename_backup

l2cache

iprefetch_buf

dcache

dtlb

d2tlb

reorderq

storeq

iq

iq

iq iq iq iq

Reg.read Reg.read Reg.read

iq.h
Instruction queue

array.c/h
array definition and implementation

block_memq.macros
reorderq/storeq

16

1. All inflight insns are stored in iq throughout its life span (from fetch to retire)
2. New insns are inserted into iq_tl, retired instructions are removed from iq_hd
3. Sub queues (ibuffer, issue queues, retireq, missq, etc.) are formed through:

1. head pointer, tail pointer, element count (e.g. fpu_hd, fpu_tl, fpu_n)
2. next pointer

iq_tl
(high)

iq_hd
(low)

insns from ifetch

iq_dis:
next to be
dispatched

iq_dec:
next to be
decoded

iq_ren:
next to be
renamed

iq_retire: next to be retired

execution queues:
(1). dmiss queue
(2). dcastout queue
(3). fix execution queue
(4). fpu execution queue
(5). mem execution queue
(6). br execution queue
(7). log execution queue
(8). cmplx execution queue
Each cycle, an insn is in only one
queue. Insns could transfer from
mem exec queue to dmiss
queue.

fetch buffer
group1 is the current group to
retire, iq_retire = iq_hd if no
grouping

remove by retire

group 3 group 2 group 1

dmiss_hddmiss_tl dmiss_n

dmiss queue

Data Structures: Instruction Queue

17

Instruction Queue (cont'd)
#if(!defined(TIMELINE_SIZE))
 #define TIMELINE_SIZE 1024
#endif

struct xiq_info {
 xdep_prep_info * entry;
 unsigned iaddr;
 unsigned daddr;
 xarch * out_regs;
 xcycle cycle;
 unsigned start;
 unsigned early;

 unsigned prop0;
 unsigned prop1;
 unsigned prop2;
 unsigned propl;
 unsigned iword;

 xiq_regidx reg_idx;

 xiq_idx next;
 unsigned char trauma;
 unsigned char slot;
 unsigned char cluster;

 #if(USING_FF52_SEGS)
 unsigned dseg;
 #endif

 #if(TRACE)
 xstatus status;
 #endif
 #if(TRACE || DUMP_DMISS || TIMELINE)
 unsigned count;
 #endif
 #if(TIMELINE)
 xcycle tl_start;
 xcycle tl_complete;
 char
tl_status[TIMELINE_SIZE];
 #endif
};

cycle: time when data/output is ready.
for non load/store instructions:

xiq_cycle = cycle + latency + RF_DELAY

for load,
 (1). If data can be forwarded from storeq
xiq_cycle = cycle + latency + RF_DELAY + STOREQ_FWD_DELAY, tmp_fwd + STOREQ_FWD_DELAY
 (2). If data found in L1 dcache
xiq_cycle = cycle + L1 latency + RF_DELAY (L1 latency is not defined?)
 (3). if data found in L2 cache
xiq_cycle = cycle + L2 latency + RF_DELAY
 (4). if data found in memory
xiq_cycle = cycle + mem_latency + RF_DELAY

In situation (3) and (4), xiq_cycle is the earliest time that data could appear on the bus. The final
latency will include the bus and queueing latency as well. Note that the bus transactions (dmiss queue) is
ordered by xiq_cycle. Each dmiss entry can use the bus only after current cycle passes xiq_cycle.

start: address of the first insn in the current fetch block, used very rarely. in
flush_mispredicted.macros, to fix up NFA table, you need the address that was originally
used in ifetch to index into the NFA. that address is stored in start.

early: used in two situations:
1. Bank conflict:
xiq_early(tiq[tmp_at[thread_exec]]) = cycle + DCACHE_INTERLEAVE_PENALTY
2. Load overlaps a store in the storeq. But data is not ready yet. (GP) Will recirculate after 7 cycles.
xiq_early(tiq[tmp_at[thread_exec]]) = cycle + 7;

18

#if(!defined(TIMELINE_SIZE))
 #define TIMELINE_SIZE 1024
#endif

struct xiq_info {
 xdep_prep_info * entry;
 unsigned iaddr;
 unsigned daddr;
 xarch * out_regs;
 xcycle cycle;
 unsigned start;
 unsigned early;

 unsigned prop0;
 unsigned prop1;
 unsigned prop2;
 unsigned propl;
 unsigned iword;

 xiq_regidx reg_idx;

 xiq_idx next;
 unsigned char trauma;
 unsigned char slot;
 unsigned char cluster;

 #if(USING_FF52_SEGS)
 unsigned dseg;
 #endif

 #if(TRACE)
 xstatus status;
 #endif
 #if(TRACE || DUMP_DMISS || TIMELINE)
 unsigned count;
 #endif
 #if(TIMELINE)
 xcycle tl_start;
 xcycle tl_complete;
 char
tl_status[TIMELINE_SIZE];
 #endif
};

Instruction Queue (Cont'd)

5bits 1 1 1 1 5 3 1 1 6 7

0 5 6 7 8

fetch

9 14 17 18 19 25

is_memop
= 1

is_branch
= 0

is_store is_load dlength

5bits 1 1 1 1 5 1 1 2

0 5 6 7 8

fetch

9 10 11 12 14

is_memop
= 0

is_branch
= 1

is_brlk is_brlink is_brctr

unit is_split is_transfer latency nexpands

is_brcond is_brcrg pred

prop0

1bit 6 6 1 1 1 1 4 1 1 6 1 1

0 1 7 13 14

is_over

15 16 17 21 22 23

ins outs is_string is_sync is_athead

1bit 1 1 1 1

0 1 2 3 4

is_carry is_nop is_notpipe is_nocount is_reissue

is_mtsr sr is_notaddr is_slot0 is_multi

prop1

avail is_slotN

30 31

prop2

memop:

branch:

1bit empty here

31

1 1 2 1 1 1 1 1 5 1 1 1 1

0 1 2 4 5

is_busy

6 7 8 9 14 15

is_mispredicted

reorder fall is_first is_group is_predop is_crack gid fchblk line

propl

l2miss

16 17

prop0, prop1, prop2 are inherited from predecode stage. propl contains runtime info.

19

Instruction Queue (Cont'd)
#if(!defined(TIMELINE_SIZE))
 #define TIMELINE_SIZE 1024
#endif

struct xiq_info {
 xdep_prep_info * entry;
 unsigned iaddr;
 unsigned daddr;
 xarch * out_regs;
 xcycle cycle;
 unsigned start;
 unsigned early;

 unsigned prop0;
 unsigned prop1;
 unsigned prop2;
 unsigned propl;
 unsigned iword;

 xiq_regidx reg_idx;

 xiq_idx next;
 unsigned char trauma;
 unsigned char slot;
 unsigned char cluster;

 #if(USING_FF52_SEGS)
 unsigned dseg;
 #endif

 #if(TRACE)
 xstatus status;
 #endif
 #if(TRACE || DUMP_DMISS || TIMELINE)
 unsigned count;
 #endif
 #if(TIMELINE)
 xcycle tl_start;
 xcycle tl_complete;
 char
tl_status[TIMELINE_SIZE];
 #endif
};

in1 in2 out1 in1 in2 out1regs

if not reg overflow if reg overflow

reg_idx: index to this instruction's operand and output register ids

slot: index to the slot in reorderq/storeq, only used by load/store
cluster: not used.

dseg: segment-adjusted daddr, used when USING_FF52_SEGS.

20

Data Structures: Array
set 0

set 1

set 2

set N-1

MRU LRU

blks

#define ARRAY_LOOKUP 0
#define ARRAY_HIT_UPDATE 1
#define ARRAY_MISS_UPDATE 2

#define ARRAY_READ 4
#define ARRAY_WRITE 8

Each array access specifies two aspects of operations:
1. Read/Write: this decides whether the data should be marked dirty.
2. Whether the tag/LRU stack should be updated

(1). ARRAY_LOOKUP: probe only, no update to tag or LRU stack
(2). ARRAY_HIT_UPDATE: when hit, update the LRU stack
(3). ARRAY_MISS_UPDATE: when miss, update tag and LRU stack

array_access returns pointer to the cache line to the caller for further handling (content update, etc.)

Array structures include:
(1). Data/Instruction caches

dcache, icache, l2cache
(2). TLBs

dtlb, itlb, d2tlb, i2tlb
(2). NFA/BTB table

nfa
(3). Counter table for counter-based branch insns

bp_counter

21

Data Structures: Reorderq/Storeq
 /* storeq */

unsigned storeq_hi = 0;
unsigned storeq_retired = 0;
unsigned storeq_lo = 0;
unsigned storeq[STOREQ_SIZE][5];
 /* storeq[][0] is address of first byte touched */
 /* storeq[][1] is address of last byte touched + 1 */
 /* storeq[][2] is the queue id of the store */
 /* storeq[][3] is the time at which the data is transferred

*/
 /* storeq[][4] is the bit vector of reorderq entries waiting

for
this store to complete, it is also used to store (after

retirement)
the time of retirement */

 /* reorderq */
unsigned reorderq_left = REORDERQ_HIWATER;
unsigned reorderq_hi = 0;
unsigned reorderq_lo = 0;
unsigned reorderq[REORDERQ_SIZE][4];
unsigned stats_reorderq[REORDERQ_LENGTH + 1];
unsigned stats_reorderq_stall = 0;
unsigned stats_reorderq_conflict = 0;
unsigned stats_reorderq_total = 0;
 /* reorderq[][0] is the address of the first byte touched

*/

 /* reorderq[][1] is address of last byte touched + 1 */
 /* storeq[][2] is the queue id of the store */
 /* storeq[][3] is the time at which the data is transferred

*/

Functionality:
When a load is executed its address is put in the reorderq.
When a store is executed its address and time of data arrival are
put in the storeq. These structrures are used for various purposes:
- if a load address collides with a store address already inte storeq,
 then the model assumes that the load gets its value from the storeq
 entry and behaves appropriately
- if there is a load/store address collision, but the store data has not
 yet become available, then the load will be delayed until some
 time after the store data arrives
- if a store is executed, and its address collides with some previously
 executed load, which succeeded it in the instruction stream (i.e. the
 load should have read the value of the store, but was incorrectly
 data-speculated above the store) then load was inccorectly executed,
 and some appropriate flushing action is taken.
Implementation:
storeq and reorderq are implemented as arrays. so when an entry is
freed, the queue/array needs to be compacted. This greatly complicates
the reorderq/storeq implementation.

storeq_lo

storeq_hi

storeq_retired

new entry

22

Data Structures: Register
physical register file, phys[]:

 typedef unsigned xcycle;
 xcycle phys[PHYS_TOTAL];
 #if(GETCPI)
 unsigned char src_phys[PHYS_TOTAL];
 #endif

The physical register file keeps track of the cycle when a value in a
physical register becomes available to dependent instructions.
When an output architected register is renamed, and a physical register is
allocated to it, that physical register is initially set to UINT_MAX,
After the instruction executes, the physical register is set to the
current cycle plus some delay based on the avail-distance (approx. latency)
of the instruction.

register rename map, rgrename[]:

 typedef unsigned short xphys_reg;
 xphys_reg rgrename_backup[ARCH_TOTAL];
 xphys_reg rgrename[ARCH_TOTAL];

This contains the architected to physical mapping that is valid for
instructions being renamed. It is recommended that you look at
"Register renaming and dynamic speculation: an alternative approach",
M. Moudgill, K. Pingali and S. Vassiliadis, MICRO 26, 1993

backup map rgrename_backup[]:

 xphys_reg rgrename_backup[ARCH_TOTAL];

When a non-taken path starts being modelled, the current rgrename map
is copied to the rgrename_backup. When the misprediction is resolved, the
rgrename map is restored from this copy.

- to restore the rgrename map after a mispredict

inorder map, inorder[]

 xphys_reg inorder[ARCH_TOTAL];

This contains the inorder map, i.e. the architected to physical
rename map that was used by the next instruction to retire on a taken
path. It is used to figure out which physical registers can be freed.
It is also used to compute the rgrename map if arbitrary instructions
are flushed

phys[PHYS_TOTAL]

rgrename[ARCH_TOTAL] : normal up-to-date (speculative) map

rgrename_backup[ARCH_TOTAL]: backup map for misprediction handling

inorder[ARCH_TOTAL]: backup map for retire handling

GPR

FPR

CCR

SPR

ARCH_TOTAL = CLASS_MAX * ARCH_MAX
PHYS_TOTAL = CLASS_MAX * PHYS_MAX

23

Register Renaming Explained
cycle 1 cycle 2 ...cycle 3 cycle n

r0

r31

r5 p12 p16p5

p3 p22p0

p14 p67p31

time

...

...

...

rgrename:
up-to-date speculative map
updated when a new preg is allocated

rgrename_backup:
map prior to a mispredicted branch inorder:

up-to-date non-speculaitve map
updated when a preg is deallocated

1. Think about tags in cvs version control system!
2. When a new physical register is allocated, update rgrename
3. When a physical register is deallocated, update inorder

24

Registers and Free List

arch phys freeq
32

34
33

119
118

freeq_tl = 88

...

0
1
2

...
86
87

allocate

retire

0

1
...
31

0

1

119 119
118

1. Initially, architectural register 0 - 31 are mapped to physical register 0 - 31, and
physical registers 32 - 119 are free (as shown above)

2. Pointer freeq_tl points to the tail of free physical registers
3. When a preg is allocated, freeq_tl move up one slot
4. When a preg is deallocated, freeq_tl move down one slot
5. Freeq_tl operates similar to a stack

25

Bus Model
Currently only L1/L2 bus is modeled
L1/L2 bus is shared by imiss, dmiss, and dcastout
Dmissq is ordered according to the time when data is ready
For dmiss, when data is ready

Check if bus is available by is_ok_dmiss_bus()
Allocate bus for DCACHE_SECTORS cycles to transfer all sectors by
initiated_dmiss_bus(), no other transactions are allowed during this period

Dcastout and imiss are handled similarly
More detailed bus / DRAM model is underway

26

Bus Model (out-dated)
/* The activities that access the bus are imiss, [iprefetch,] castout, and dmiss
/* The earliest such an activity can initiate/complete is controlled by
/* dcastout_early, dmiss_early, and ifetch_miss_till
/*
/* The amount of time an activity occupies the bus is given by */
/* DCASTOUT_OVERHEAD, DCACHE_SECTORS, 1
*/
/*
*/
/* The next request for a dcastout is: */
/* - UINT_MAX if empty, */
/* - ASAP else
*/
/*
*/
/* The next request for a dmiss is: */
/* - UINT_MAX if empty, */
/* - xiq_cycle(iq[dmiss_hd]) */
/*
*/
/* The next request for a imiss is: */
/* - UINT_MAX if none in progress */
/* - ifetch_miss_till else */
/*
*/
/**/
#define is_ok_dmiss_bus() dmiss_early <= cycle)

#define initiated_dmiss_bus() \
 { \
 dcastout_early = cycle + DCASTOUT_OVERHEAD; \
 ifetch_miss_till = max(ifetch_miss_till, dcastout_early); \
 }

#define new_dmiss_bus(cycle_) dmiss_early = (cycle_);
#define no_dmiss_bus() dmiss_early = UINT_MAX;
#define is_ok_dcastout_bus() (dcastout_early <= cycle)

#define initiated_dcastout_bus() \
 { \
 /* no dmiss in progress */ \
 assert(dmiss_loaded == DCACHE_SECTORS); \
 dcastout_early = cycle + DCASTOUT_OVERHEAD; \
 dmiss_early = max(dcastout_early, dmiss_early); \
 ifetch_miss_till = max(ifetch_miss_till, dcastout_early); \
 }

#define no_dcastout_bus() dcastout_early = UINT_MAX;
#define initiated_ifetch_bus() \
 { \
 dcastout_early = cycle + DCASTOUT_OVERHEAD; \

is_ok_dmiss_bus()

initiated_dmiss_bus()

new_dmiss_bus(_cycle)

no_dmiss_bus

allocate bus for DCACHE_SECTORS cycles

Is bus ready? False if bus is busy or dmiss queue is empty

set dmiss early to _cycle

Set dmiss queue to empty

cycle K

cycle K+1

27

is_ok_dmiss_bus()

initiated_dmiss_bus()

new_dmiss_bus(_cycle)

no_dmiss_bus

prevent other masters from using bus

Is bus ready? False if bus is busy or dmiss queue is empty

allocate bus

Set dmiss queue to empty

cycle K

cycle K+1

Bus Model in SMT Mode (out-dated)

initiated_dmiss_bus()

new_dmiss_bus(_cycle)

no_dmiss_bus

prevent other masters from using bus

Is bus ready? False if bus is busy or dmiss queue is empty

allocate bus

Set dmiss queue to empty

is_ok_dmiss_bus()

1. Initiated_dmiss_bus and new_dmiss_bus need to be atomic
2. stats_il2miss[thread_ifetch]++;
3. ifetch_stalled_till[thread_ifetch] = IFETCH_STALL_CACHE;
4. new_ifetch_bus(thread_ifetch, max(cycle, dtlb_miss_till) + IMEM_LATENCY);
5. Rename

I.Check if enough rename registers available, if not, stall until available.
II.Rename architectural registers to physical registers.
III.If the instruction is a mispredicted branch instruction, check if all operands are ready. If yes, resolve the branch and start fetching from

the right path from next cycle.
IV.Note: registers in different class are renamed seperately.

6. Dispatch
1. Place renamed IOPs into the corresponding issue queue. If a given operation can not be placed in the issue queue (i.e. the queue is full),

stall the stage until available.

28

Branch Handling

Ifetch

if ifetch_in_mispredicted is true, and ifetch_mispredict_done is true, then
1. set ifetch_in_mispredicted = FALSE, revert trace reader to taken
2. if ifetch_mispredict_done_early is done early, then stall 1 cycle, otherwise,
stall 1 + MISPREDICT_RECOVERY_CYCLES cycles.
3. flush_mispredicted.macros

fetch, then look up branch predictor. If mispredicted, then
1. ifetch_in_mispredicted = TRUE, ifetch_mispredict_done = FALSE,
ifetch_mispredict_done_early = FALSE, ifetch_mispredicted_branch = tmp_at,
ifetch_mispredicted_branch_backup = tmp_at, branch_pred_delta = 0
2. reader swap to not taken
3. push return address to RAS if it's a link branch
4. update NFA, exit fetching

decode

rename

dispatch

If EVALUATE_MISPREDICTED_RENAME, then check if all operands of the branch are
ready. If yes, set ifetch_mispredicted_branch = IQ_NULL, ifetch_mispredict_done = TRUE,
ifetch_mispredict_done_early = TRUE.

exec

If all operands are ready,
1. update stats such as bp_exec_total, bp_exec_pred, bp_exec_miss,
bp_exec_bc_total, bp_exec_bclr_total, bp_exec_bcctr_total, bp_exec_bc_miss,
bp_exec_bclr_miss, bp_exec_bcctr_miss, branch_pred, branch_pred_delta,
2. update counter table for counter-based branch insns
3. if this is the first mispredicted branch, update ifetch_mispredicted_branch = IQ_NULL,
ifetch_mispredict_done = 1
4. set the time of ready for output regs
5. remove the branch from br queue.

retire update branch history in the branch predictor

29

Misprediction Flush (flush_mispredicted.macros)

iq_tl

iq_hd

insert from fetch

iq_dis:
next to be dispatched

iq_dec:
 next to be decoded

iq_ren:
next to be renamed

iq_retire:
next to be retired

execution queues

fetch buffer

remove by retire

group 3 group 2 group 1

ifetch_mispredicted_branch_backup: insns
feteched after this branch insn need to be flushed.

insns need to be flushed

high low

1. If do_flush and xiq_is_mispredicted(iq_flush) are both true, reset do_flush because in this situation flush_arbitrary is not necessary
and are covered by flush_mispredicted.

2. Reset branch_pred, branch_pred_delta, ibuf_left, fchblk_left
3. Check to make sure that all insns unflushed (from ifetch_mispredicted_branch_backup to iq_hd) are not speculative
4. Check to make sure that all to-be-flushed insns (from ifetch_mispredicted_branch_backup + 1 to iq_tl) are speculative
5. Reset ifetch_branch_history to ifetch_mispredicted_history_backup
6. Reset iq_tl, iq_fetch, iq_dec, iq_dec_1, iq_dec2, iq_dec3, iq_dec4
7. Fix the NFA table for branch insn at ifetch_mispredicted_branch_backup. If branch is taken, write the target address into NFA entry,

otherwise, reset the corresponding NFA entry to 0
8. If this mispredicted branch is resolved early in rename or dispatch stage, then skip the following steps
9. Reset retireq_left, groups_left, decode_reissue_groups, groups_gid
10. Walk through unflushed insns to adjust groups_left
11. Reset iq_ren, iq_dis
12. Reset rgrename to rgrename_backup
13. Walk through flushed insns that have been renamed, reclaim the physical regs used by them
14. Drain storeq (why?)
15. Flush speculative entries in storeq and reorderq
16. If fix execq is not empty, remove entries corresponding to to-be-flushed (speculative) fix insns
17. Do 10 for fix1, fpu, fpu1, br, cmplx, log, mem, mem1, dmiss queue.
18. If dmiss_thread == thread_flush, reset dmiss_address, dmiss_is_store, dmiss_loaded 30

Load/Store Handling
Ifetch Nothing special for memory insns in fetch stage

decode

rename

dispatch

exec

If STOREQ_AT_DISPATCH, allocate a storeq entry for each store using get_slot_storeq
If REORDERQ_AT_DISPATCH, allocate a reorderq entry for each load using get_slot_reorderq
if STOREQ_AT_DISPATCH, and current insn is a transfer op (each store is splitted into a store
op and a transfer op), then use the same storeq entry as the store op. (use_prev_slot_storeq)

retire

For a store, if data is ready, and !COMMIT_STORES_LATE, then write data to cache, and
reclaim the storeq entry (pop_storeq). If COMMIT_STORES_LATE, then just retire the storeq
entry (retire_storeq).
For a load, first reclaim the reorderq entry (pop_reorderq). If there is a reorder conflict,
(xiq_reorder(iq[iq_retire]) == 2), then reset the pipeline (reset.macros).

1. Check if space available in dmiss queue and castout queue, if not, stall memory pipe.
2. Issue ready instructions in the memory issue queue in oldest-first order. For each memory

instruction:
a. Check DTLB1/DTLB2, stall if miss
b. Place store into store queue.
c. For load, first search storeq to see if match any existing stores, if fully hit, bypass. If partially

hit, (1). if load/store are not in the same group, recirculate the load (2). if load/store are in the
same group, then flush the pipeline.

d. place into reorder queue according to the earliest time the data can return.
e. Check Dcache1, if miss, check trailing edges, then Dcache2, stall if any miss
f. If TLB miss, the whole memory pipeline stalls. Otherwise, the data latency is calculated

depending on whether L1/L2 hit/miss etc.

flush

turandot.c
flush_arbitrary.macros

commit if COMMIT_STORES_LATE, write data to cache, and reclaim the storeq entry (pop_storeq)

31

Memory Conflict Flush (flush_arbitrary.macros)

iq_tl iq_hd

insert from fetch

iq_dis: next
to be
dispatched

iq_dec:
next to be
decoded

iq_dec_1 iq_ren: next
to be renamed

iq_retire: next to be
retired

execution queues

fetch buffer

the current group to retire
iq_retire = iq_hd if no
grouping

remove by retire
group 3 group 2 group 1

iq_flush: insns feteched
after this insn need to be
flushed.

insns need to be flushed

high low

32

iq_tl iq_hd

insert from fetch

iq_dis:
next to be
dispatched

iq_dec:
next to be decoded

iq_ren:
next to be renamed

iq_retire:
next to be retired

execution queues

fetch buffer

remove by retire
group 3 group 2 group 1

iq_flush: insns feteched after this insn need
to be flushed.

insns need to be flushed

high low

Memory Conflict Flush (flush_arbitrary.macros)

1. Reset groups_left, decode_reissue_groups, groups_gid, branch_pred, branch_pred_delta
2. Reset rgrename to inorder
3. Walk through unflushed insns (from iq_retire to iq_flush), adjust groups_left, branch_pred, branch_pred_delta and

ifetch_mispredicted_history_backup, rgrename
4. Walk through to-be-flushed insns (from iq_flush to iq_tl), fix RAS stack
5. Walk through to-be-flushed insns, count #non-speculative insns, reset to taken path if currently fetch is in mispredicted status.
6. Rollback trace reader by #non-speculative insns
7. Reset iq_tl, iq_ifetch, iq_dec, ..., iq_ren, iq_dis
8. Walk through to-be-flushed insns that are renamed (from iq_flush to iq_ren), reclaim physical regs used by them
9. Flush reorderq and storeq entried corresponding to to-be-flushed memory insns
10. If fix execq is not empty, remove entries corresponding to to-be-flushed fix insns
11. Do 10 for fix1, fpu, fpu1, br, cmplx, log, mem, mem1, dmiss queue.
12. If dmiss_thread == thread_flush, reset dmiss_address, dmiss_is_store, dmiss_loaded
13.

33

Power Model
Processor Core

IFU IDU ISU FXU FPU LSU VMX

BHT IERAT ICACHE IDIR BIQ BREX CR_REG

ca_ifu_bht ca_ifu_erat ifcc_cntcache ifev_erat_vld ifgr_gbhr

unit

uarch

macro

sf

Power

sf1 sf2

p1
p2

1. Processor core is hierarchically divided into units,
uarchs, and eventually macros

2. For each macro, CPAM provides (sf1, p1) and (sf2,
p2). Power at other switching factors can be linearly
extrapolated

3. Switching factors are extracted from Turandot
init.power.macros

read in macro power information
power_defs.macros

some data structures (unit, uarch, macro) and some utility functions
power.macros

switching factor calculation based on Turandot statistics, and power calculation

34

SMT Mode

fetch control

decode control

rename control

dispatch control

thread1 thread2

retire control

thread1 retire thread2 retire

ibuf1ibuf0

issueq
fxu

issueq
fpu

1. Functional units (fxu, fpu, etc) are
shared among all threads

2. Architectural registers are duplicated
for each thread

3. Other resources (cache, queue, bpred,
etc) can be either duplicated, or
shared, depending on design choice.

4. At each control point, either one thread
can be selected to proceed, or insns
from different threads can be selected
1. Can be as simple as round-robin
2. Or better policies?

35

Summary of New Features Added to Original Turandot

SMT support
New, simplified array model
Standalone predecode stages removed
Ported to linux/x86 and cygwin
Gzip/bzip/uncompressed trace formats all supported

gpffturandot -t sample1.fF sample2.fF
gpffturandot -t art.bz2 ammp.bz2

Cycle-by-cycle power model added in addition to original postprocess model
Voltage model based on RLC power supply network model added
Temperature/reliability model

36

Output Stats from Turandot
Dump of compile-time parameter definitions

@@ DCACHE_ASSOC = 2
@@ DCACHE_SECTORS = 2

Summary stats
totals: cycle=121229 insns=100734 memops=44870 retired=100000

Histogram data
@@ ibuf@@ 0:77479 63.91
@@ 1:1898 1.56
@@ 2:3567 2.94

Trauma data
@@ if_nfa : 4 0 0 0 0 0 0 0 0 0 4
@@ if_tlb1: 0 0 0 0 0 0 0 0 0 0 0
@@ if_tlb2: 51 0 0 0 0 0 0 0 0 0 51

Summary progress result reported every MONITOR_CYCLES
Detailed status reported every cycle
Timeline / pipeline graph

000000010 [.....................................F..DE.d..............................f.......c..........i2.h...] 000000382 10000170 300162f0 lwz r10,40(r2)
000000011 [.....................................F..DE.d......................................c.............i1.f] 000000382 10000174 00000000 addi r9,r0,0

Power data
unconstrained
average power

37

Todo List
Functionality enhancement

CMP support: preferably allow SMT + CMP together
Interpretation-based execution-driven mode

Aria instruments code and executes locally, so not portable to non-PPC platforms
Interpretation based execution is not restricted to any platform

Better bus / DRAM model for bandwidth studies
Port to windows and other platforms

Calibration of Power5 model
Performance model validation

SMT Turandot vs. Power5
Power model validation

SMT PowerTimer vs. Power5
Temperature model vs. Power5 on-chip temperature sensors

Modularity/readability enhancement
Command line options to replace compile-time options
More readable reoderq / storeq models (block_memq.macros)
Use of bit fields instead of explicit bit handling in props (iq.h)
Removal of the gotos
Trauma stats check up
...

38

Collaboration Opportunities
How to obtain Turandot/PowerTimer

Academic research groups: send a formal email request to pbose@us.ibm.com
Different collaboration levels

Turandot/PowerTimer academia users
Stable release version 1.0 is available

Turandot/PowerTimer academia co-developers
Will be involved in development/validation process

IBM supports collaboration with academia
IBM fellowship awards for graduate students
IBM faculty partnership awards (FPA)
Sabbatical opportunities
summer internship
Postdoc position

Contact
Pradip Bose (pbose@us.ibm.com)
Zhigang Hu (zhigangh@us.ibm.com)
Victor Zyuban (zyuban@us.ibm.com)

39

Installation
To install, cd to $ROOT/Sources directory:

Modify makefile.defs to match your platform and directory settings
Run "bash make_all.bash" to compile the whole turandot package. After completion,
an executable named "gpffturandot" will appear in $ROOT/Sources/turandot/src.

To run the simulator, cd to $ROOT/Sources/turandot/src directory,
Run "gpffturandot -t $TRACE", $TRACE can have extensions of "fF", "bz2", or "gz".
To change configurations, modify Makefile, and rebuild the simulator.

In $ROOT/doc directory,
TurandotUserGuide.pdf

Explanation of compile-time configuration parameters
Explanation of summary outputs
Explanation of cycle-by-cycle detailed outputs
Explanation of timeline / pipeline graph

power4.pdf
A tech report that details the architecture of power4

Turandot_Overview.pdf
This document

40

Bibliography: Turandot
Cathy May, et al., "The PowerPC Architecture: A specification for a new family of
RISC processors", second edition, Morgan Kaufmann Publishers.
J.M. Tendler, J.S. Dodson, J.S. Fields, Jr., H.Le, B. Sinharoy, "Power4 System
Architecture", IBM J. RES. & DEV., January 2002, available at
http://www.research.ibm.com/journal/rd/461/tendler.pdf
M. Moudgill, J-D. Wellman, J. Moreno, "Environment for PowerPC Microarchitecture
Exploration," IEEE MICRO, May/June 1999, pp. 15-25.
M. Moudgill, P. Bose, J. Moreno, "Validation of Turandot, a Fast Processor Model for
Microarchitecture Exploration,"Proc. IEEE Int'l Performance, Computing and
Communications Conference, February 1999, pp.452-457.
M. Moudgill, J-D. Wellman, J. Moreno, "An Approach for Quantifying the Impact of
not Simulating Mispredicted Paths," Workshop on Performance Analysis and its
Impact on Design (PAID), Barcelona, Spain, 1998.
P. Bose, J.A. Abraham,"Performance and Functional Verification of Microprocessors,"
Proc. 13th IEEE International Conference on VLSI Design, January 2000.
P. Bose,"Performance Test Case Generation for Microprocessors,"Proc. 16th IEEE
VLSI Test Symposium, April 1998, pp. 54-59.
P. Bose et al., "Bounds-Based Loop Performance Analysis: Application to Validation
and Tuning,"Proc. IEEE Int'l Performance, Computing and Communications
Conference, February 1998, pp. 178-184.
Other documents in doc/ in the Turandot package.

41

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot
- Power-Performance Efficiency Metrics

Case Studies and Examples
- Optimal Power-Performance Pipeline Depth

Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

9:00-10:30

Dynamic Power Estimation

Power ~ ½ CV2Af

Capacitance:
Function of wire
length, transistor size

Supply Voltage:
Has been dropping
with successive fab
generations

Clock frequency:
Increasing…Activity factor:

How often, on average,
do wires switch?

Modeling Hierarchy and Tool Flow

set of workloads

Early analytical performance models
Trace/exec-driven, cycle-accurate simulation models

Microarch
parms/specs

RTL MODEL (VHDL) RTL
sim

Circuit-level (hierarchical) netlist model

gate-level model (if synthesized)

Layout-level physical design model

microarch
level

RTL
level

gate-level

ckt-level

layout-level

Energy Models

ckt
extract

Cap
extract,
sim

Sim Test Cases

Bitvector
test cases

(Architectural)

edit/debug

edit/tune/
debug

Design rules

design rule
check,
validate

Performance
Test Cases

edit/debug

refine,
update

 sim,

Architecture level models

• Bottom-up Approach:
– Estimate “CV2f” via analytical models
– Tools: Wattch, PowerAnalyzer, Tempest (mixed-mode)

• Top-Down Approach
– Estimate “CV2f” via empirical measurements
– Tools: PowerTimer, AccuPower, Internal Industrial Tools

• Estimate “A” via statistics from architectural-performance
simulators

Power ~ ½ CV2Af

Analytical Modeling Tools:
Modeling Capacitance

• Requires modeling wire length and estimating transistor
sizes

• Related to RC Delay analysis for speed along critical
path
– But capacitance estimates require summing up all

wire lengths, rather than only an accurate estimate
of the longest one.

Register File: Capacitance Analysis

Pre-Charge

D
ec

od
er

s

Bitlines
(Data Width of Entries)

Wordlines
(Number of

Entries)

Sense Amps

Cell

Bit

metaldiffcapNgdiffcapPchbitline CgthBitlinelenClinesNumberWordCC ** 1 ++=

Cell Access
Transistors (N1)

Number of
Ports

Number of
Ports

Bit

Architecture level models:
Signal Transition Statistics

• Dynamic power is proportional to switching
• How to collect signal transition statistics in architectural-

level simulation?
– Many signals are available, but do we want to use all

of them?
– One solution (register file):

• Collect statistics on the important ones (bitlines)
• Infer where possible (wordlines)
• Assign probabilities for less important ones

(decoders)

Architecture level models:
Clock Gating: What, why, when?

• Dynamic Power is dissipated on clock transitions
• Gating off clock lines when they are unneeded

reduces activity factor
• But putting extra gate delays into clock lines

increases clock skew
• End results:

– Clock gating complicates design analysis but
saves power.

Clock
Gate

Gated Clock

Wattch: An Overview

Overview of Features
• Parameterized models for different CPU units

– Can vary size or design style as needed
• Abstract signal transition models for speed

– Can select different conditional clocking and input
transition models as needed

• Based on SimpleScalar (has been ported to many simulators)
• Modular: Can add new models for new units studied

Wattch’s Design Goals
• Flexibility
• Planning-stage info
• Speed
• Modularity
• Reasonable accuracy

Unit Modeling

Modeling Capacitance
• Models depend on structure, bitwidth,

design style, etc.
• E.g., may model capacitance of a

register file with bitwidth & number of
ports as input parameters

Modeling Activity Factor
• Use cycle-level simulator to determine

number and type of accesses

– reads, writes, how many ports
• Abstract model of bitline activity

Parameterized
Register File

Power
Model

Power
Estimate

Number of entries

Data width of entries

Read Ports

Write Ports

Bitline Activity
Number of Active Ports

 Fetch Dispatch Issue/Execute Writeback/
Commit

Power
(Units
Accessed)

• I-cache
• Bpred

• Rename
Table

• Inst. Window
• Reg. File

• Inst. Window
• Reg File
• ALU
• D-Cache
• Load/St Q

• Result Bus
• Reg File
• Bpred

Performance • Cache Hit?
• Bpred

Lookup?

• Inst. Window
Full?

• Dependencies
Satisfied?

• Resources?

• Commit
Bandwidth?

One Cycle in Wattch

• On each cycle:
– determine which units are accessed
– model execution time issues
– model per-unit energy/power based on which units used and

how many ports.

Units Modeled
by Wattch

Array Structures
Caches, Reg Files,
Map/Bpred tables

Content-Addressable
Memories (CAMs)

TLBs, Issue Queue,
Reorder Buffer

Complex
combinational blocks

ALUs, Dependency
Check

Clocking network
Global Clock Drivers,
Local Buffers

PowerTimer

• IBM Tool First Develop During Summer of 2000
– Continued Development: 2001 => Today
– Methodology Applied to Research and Product

Power-Performance Simulators with IBM
– Currently in Beta-Release
– Working towards Full Academic Release

PowerTimer:
Empirical Unconstrained Power

IFU
6%

ISU
10%

LSU
19%

GX
1%

L2
23%

Clock Tree
10%

RAS
5%

FBC
3%

CIU
4%

ZIO
4%

FPU
5%

Core Buffer
1%

FXU
4%

IDU
3%

L3 Tags
2%

Issue
Queues

32%

Completion
Table
9%

Dispatch
6%

Other
10%

Map
Tables
43%

Pre-silicon, POWER4-like superscalar design

PowerTimer

Circuit Power
Data (Macros)

Tech Parms

uArch Parms

Program
Executable
or Trace

SubUnit Power =
f(SF, uArch, Tech)

Compute
Sub-Unit

Power

Architectural
Performance

Simulator

Power

CPI
AF/SF Data

PowerTimer: Energy Models

• Energy models for uArch structures formed by
summation of circuit-level macro data

Power=C1*SF+HoldPower

Power=C2*SF+HoldPower

Power=Cn*SF+HoldPower

Macro1
Macro2

MacroN

Sub-Units (uArch-level Structures)
Energy Models

SF
Data

Power
Estimate

Empirical Estimates with CPAM

• Estimate power under “Input Hold” and “Input
Switching” Modes

• Input Hold: All Macro Inputs (Except Clocks) Held
– Can also collect data for Clock Gate Signals

• Input Switching: Apply Random Switching Patterns with
50% Switching on Input Pins

Macro
Macro
Inputs

• 0% Switching (Hold
Power)

• 50% Switching Power

A Sample Unit

• Made up of 5 macros
– macro1, macro2, macro3, macro4, macro5

0
100
200
300
400
500
600
700
800

0 10 20 30 40 50
SF

m
W

macro1
macro2
macro3
macro4
macro5
total

PowerTimer: Power models f(SF)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50
SF

m
W

Unit1
Unit2
Unit3
Unit4
Unit5

Assumption: Power linearly dependent on Switching Factor
This separates Clock Power and Switching Power

At 0% SF, Power = Clock Power (significant without clock gating)

Clock
Power

Switching
Power

Key Activity Data

• SF => Moves along the Switching Power Curve
– Estimated on a per-unit basis from RTL Analysis

• AF => Moves along the Clock Power Curve
– Extracted from Microarchitectural Statistics (Turandot)

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50
SF

m
W

unit1
unit2
unit3
unit4
unit5

Changes in SF

Changes
in AF

Microarchitectural Statistics
• Stats are very similar to tracking used in Wattch, etc
• Differences:

– Clock Gating Modes (3 modes)
– Customized Scaling Based on Circuit Style (4 styles)

• Clock Gating Modes:
– P_constrained = P_unconstrained (not clock-gateable)
– P_constrained_1 = AF * (Pclock + Plogic) (common)
– P_constrained_2 = AF * Pclock + Plogic (rare)
– P_constrained_3 = Pclock + AF * Plogic (very rare)

• Scaling Based on Circuit Styles
– AF_1 = #valid (Latch-and-Mux, No Stall Gating)
– AF_2 = #valid - #stalls (Latch-and-Mux, With Stall Gating)
– AF_3 = #writes (Arrays that only gate updates)
– AF_4 = #writes + #reads (Arrays, RAM Macros)

Clock Gating Modes:
Valid-Bit Gating

V V V V V V

Clock
• Latch-Based Structures: Execute Pipelines, Issue Queues

Clock Gating Modes

• P_constrained_1 = AF * (Pclock + Plogic)

Plogic

clock
valid

• P_constrained_2 = AF * Pclock + Plogic

Selection
Logic

Pclock

Pclock Plogic

clock
valid

Scaling Options:
Valid-bit Gating, what about Stalls?

• Option 1: Stalls cannot be gated
clk

valid

Data From
Previous Pipestage

Data For
Next Pipestage

Stall From
Previous Pipestage

clk
valid

Data From
Previous Pipestage

Data For
Next Pipestage

Stall From
Previous Pipestage

• Option 2: Stalls can be gated

Scaling Options:
Array Structures

• Option 1: Reads and Writes Eligible to Gate for Power

Cell

Write
Bitline

write_wordline_active
write_gate

Read
Bitline

write_gate write_data

read_wordline_active
read_gate

read_data

Scaling Options:
Array Structures

• Option 2: Only Writes Eligible to Gate for Power

Cell

Write
Bitline

write_wordline_active
write_gate

write_gate write_data

read_data

read_entry_0

read_entry_1
read_entry_2

read_entry_n

Yes

No

No

No

Yes

No

No

No

Yes

No

No

No

No

Writes+
Reads

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

No

Gate
Both

No

No

No

No

Yes

Yes

Yes

Yes

No

No

No

No

No

Gate
Clock

No Known macrosYesNoNoNo12

No Known macrosYesYesNoNo11

No Known macrosYesNoYesNo10

No Known macrosYesNoNoYes9

No Known macrosNoNoNoNo8

No Known macrosNoYesNoNo7

NoNoYesNo6

CAMs, Selection LogicNoNoNoYes5

Some QueuesNoNoNoNo4

CachesNoYesNoNo3

NoNoYesNo2

Issue Queues, Execute
Pipelines

NoNoNoYes1

Control Logic, Buffers,
Small Macros

NoNoNoNo0

ExamplesGate
Logic

WritesValid+
Stalls

ValidGating
Mode

12 Clock Gating Modes

PowerTimer Observations

• PowerTimer works well for POWER4-like estimates and
derivatives
– Scale base microarchitecture quite well
– E.g. optimal power-performance pipelining study
– Lack of run-time, bit-level SF not seen as a problem

within IBM (seen as noise)
• Chip bit-level SFs are quite low (5-15%)
• Most (60-70%) power is dissipated while maintaining

state (arrays, latches, clocks)
• Much state is not available in early-stage timers

Comparing models: Flexibility

• Flexibility necessary for certain studies
– Resource tradeoff analysis
– Modeling different architectures

• Purely analytical tools provides fully-parameterizable
power models
– Within this methodology, circuit design styles could

also be studied
• PowerTimer scales power models in a user-defined

manner for individual sub-units
– Constrained to structures and circuit-styles currently

in the library
• Perhaps Mixed Mode tools could be very useful

Comparing power models: Accuracy
• PowerTimer -- Based on validation of individual pieces

– Extensive validation of the performance model (AFs)
– Power estimates from circuits are accurate
– Circuit designers must vouch for clock gating scenarios
– Certain assumptions will limit accuracy or require more

in-depth analysis
• Analytical Tools

– Inherent Issues
• Analytical estimates cannot be as accurate as SPICE

analysis (“C” estimates, CV2 approximation)
– Practical Issues

• Without industrial data, must estimate transistor
sizing, bits per structure, circuit choices

Comparing power models: Speed
• Performance simulation is slow enough!
• Post-Processing vs. Run-Time Estimates
• Wattch’s per-cycle power estimates: roughly 30%

overhead
– Post-processing (per-program power estimates) would

be much faster (minimal overhead)
• PowerTimer allows both no overhead post-processing and

run-time analysis for certain studies (di/dt, thermal)
– Some clock gating modes may require run-time analysis

• Third Option: Bit Vector Dumps
– Flexible Post-Processing Huge Output Files

Bibliography:
Architectural Power Modeling
• David Brooks, Vivek Tiwari, and Margaret Martonosi. "Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations," 27th International Symposium
on Computer Architecture (ISCA), Vancouver, British Columbia, June 2000.

• David Brooks, John-David Wellman, Pradip Bose, and Margaret Martonosi. "Power-
Performance Modeling and Tradeoff Analysis for a High-End Microprocessor,"
Workshop on Power-Aware Computer Systems (PACS2000, held in conjuction with
ASPLOS-IX), Cambridge, MA., November, 2000.

• J. Scott Neely, Howard H. Chen, Steven G. Walker, James Venuto, and Thomas J.
Bucelot, "CPAM: A Common Power Analysis Methodology for High-Performance VLSI
Design," 9th Topical Meeting on Electrical Performance of Electronic Packaging, Oct.
23-25, 2000, Scottsdale, AZ.

• J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J. Kircher, B. L. Krauter, P. J.
Restle, B. A. Zoric, and C. J. Anderson, “The circuit and physical design of the
POWER4 microprocessor,” IBM Journal of Research and Development, Volume 46, No.
1, 2002.

• David Brooks, Pradip Bose, Viji Srinivasan, Michael Gschwind, Philip G. Emma, Michael
G. Rosenfield. "New methodology for early-stage, microarchitecture-level power-
performance analysis of microprocessors," IBM Journal of Research and Development,
Volume 47, No. 5/6, 2003.

Power-Performance Metric for Optimizing Architecture

Customer should not necessarily use this metric

N dynamic instr. count Pl leakage power f max frequency

I architectural speed, IPC Ed average switching energy

ISA µ-Arch

compilability

code density

chip area

verification cost

N I f Ed

Performance Power

METRIC

?

Pl

End-User Power-Performance Metric

Customer does not need to know circuits, or implementation details to choose product

reliability

support

price

other factors

Performance Power

METRIC
?

Processor A

reliability price

other factors
Processor B

support

Performance Power

Existing Power-Performance Metric

• , reverse of “energy per operation”

• used for comparing low-end products
• incorrectly used for “fixed throughput mode” and “power-limited mode”

• , reverse of “energy-delay product”

• used for comparing mid-range products

• , “Vdd - invariant” metric (neglecting leakage)

• assumes , (around nominalVdd),

• changing power supply (within some limits) does not change the metric

• , with more creative methods for determiningγ

• γ > 3 for comparing products with emphasis on performance
• in leakage-dominated designs the “Vdd - invariant” metric leads to

• γ > 3 if Pleakage grows faster thanVdd3 around nominalVdd

• γ < 3 if Pleakage grows slower thanVdd3 around nominalVdd

BIPS
Watt

BIPS2

Watt

BIPS3

Watt

BIPS f∝ f Vdd∝ Edynamic Vdd2∝

BIPSγ

Watt

Existing Power-Performance Metric (cont.)

• , may be useful for theoretical analysis or for marketing,

but not easy to use for optimizing architecture (evaluating architectural features)
• metric is correct, but using it may be confusing (hides important assumptions)
• may not know BIPS or Watt early in design
• may attempt to estimate∆BIPS and∆Watt, but

• although architects know how to estimate∆IPC, it is much more difficult to predict∆f
• designs under evaluation have to be properly tuned before applying the metric
• ∆Watt is difficult to estimate because it requires knowing∆f, ∆Edynamic and∆Pleakage

• to measure ∆Edynamic and∆Pleakage pipeline needs to be retuned,

depending on assumption about∆f

• Recently introduced “unified metric” ,

V. Zyuban, GLSVLSI, 04/18/2002
V. Zyuban and P. Strenski, ISLPED, 08/12/2002
V. Zyuban and P. Strenski, IBM JRD, Dec. 2003

• use for optimizing architecture (not suitable as a end-user metric)

• Special case

J. Rattner, MICRO-35 keynote speech, 11/22/2002

BIPSγ

Watt

Θ∆IPC
IPC

-------------- ∆E
E

------- Σηiwi

∆Di

T
----------+> Θ 1+()∆N

N
--------+

3
∆IPC
IPC

∆Power
Power

--------------------->

Unified Energy-Efficiency Metric - Fundamentals

• Techniques power and performance
• system: raiseVdd
• technology: shrink Tox or Leff
• circuits: increase device sizes, restructure logic to increase parallelism
• microarchitecture: deepen the pipeline (reduce FO4), increase issue width, add functions,

bypasses, increase the number of ports and entries in queues and register files, build more
aggressive caches, branch predictors, etc.

• Main idea: balance design decisions across all domains
• in particular, balance architectural decisions with technology and circuit-level choices

• All costs are measurable - introduce variables to quantify the tradeoffs
• hardware intensityη
• voltage intensityΘ
• architectural intensityξ

power supply

circuits

frequency

µ-Arch
η θ V ξ

Unified Energy-Efficiency Metric

All parameters have clear physical meaning, and a method for measuring them.

I architectural speed, IPC Θ depends on technology and Vdd

E average energy per instruction ηi hardware intensity in stage i

N dynamic instruction count wi energy weight of stage i

Di critical path delay through stage i ∆ ’s ‘naive’ increments (no retuning)

ISA µ-Arch

∆N
N

∆I
I

∆Di

D
∆E
Ε

Θ∆I
I

∆E
E

------- Σηiwi
∆Di

D
---------+> Θ 1+()∆N

N
--------+

Unified Metric - Graphical Interpretation

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.2

1.4

1.6

1.8

2

2.2

2.4

A, η = 1.0

A, η = 2.0

A, η = 3.0

A, η = 4.0

B, η = 0.5

B, η = 1.0

B, η = 2.0

B, η = 3.0

normalized delay (SPEC)

no
rm

al
iz

ed
 p

ow
er

architecture A
architecture B
power budget 1
power budget 2

Performance

Scaling Power Supply

• ScalingVddhas a known cost (“normally” 2% switch. energy for 1% performance)
• may not be so in leakage-dominated designs

• Vdd can be scaled after processor is manufactured

• Voltage intensity

• We normally tend to think that , because ,

• In fact can be from 0.5 to 3 or even higher, depending on technology andVdd

• Voltage intensity is measurable

Θ %E
%Perf

scaling vdd

=

Θ 2= Edynamic V 2∼ Perf f V∼ ∼

Θ

Scaling Power Supply

Ideal curve 2% energy per 1% delay and measured data (bulk 0.13um)

0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

relative delay

re
la

tiv
e

en
er

gy
scaling Vdd, ideal (2% per 1%)
scaling Vdd, simulation
scaling Vdd, 50mV steps

Scaling Power Supply

Measured data, 0.13um bulk

%Energy per %Vdd %Delay per %Vdd

0.8 1 1.2 1.4 1.6 1.8
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

E
v
 = − (v*δ E)/(E*δ v)

supply voltage, V

data bus
integer adder
multiplier (custom)
4r/4w port reg file
XOR, eta=0.3
XOR, eta=2.0
XOR, eta=3.0
average
CV*V curve

0.8 1 1.2 1.4 1.6 1.8
0.5

1

1.5

2

2.5

3

3.5

D
v
 = − (v*δ D)/(D*δ v)

supply voltage, V

data bus
integer adder
multiplier (custom)
4r/4w port reg file
2r/2w port reg file
average

Scaling Power Supply

Voltage Intensity (%Energy per %Delay throughVdd scaling),
measured data, 0.13um bulk

0.6 0.8 1 1.2 1.4 1.6 1.8

0.5

1

1.5

2

2.5

3

average

θ = E
v
 / D

v

supply voltage, V

Scaling Circuits

• Second way of trading power for performance

• Involves
• changing transistor sizes (tuning)
• restructuring logic (performing more computations in parallel to reduce the critical path)

• As powerful as voltage scaling, but cannot be used after processor is designed

• Hardware intensity

shows how aggressively circuits are structured and tuned to meet frequency target

• Hardware intensity can be measured

• Hardware intensity can be set as a target, using EinsTuner, Fcost =

• In “typical” designs ranges from 0.5 to 5, but can be higher if the frequency tar-
get is too aggressive

η %E
%Perf

scaling circuits

=

E
E0
------ 

  D
D0
------- 

  η

η

Scaling Circuits

Energy-Performance space through scaling circuits, measured data, 0.13um bulk
averaged over critical circuits in eLite DSP, (J. Moreno et al. IBM JRD, vol. 47, March 2003)

10
−1

10
0

10
−1

10
0

 (D−D
0
) / D

0

 (
 E

−E
0)

 /
E

0

int adder 1
int adder 2
SA latch
reduction unit
NAND2, 10fF
NAND2 100fF
INVERT 10fF
INVERT 100fF
(E − E

0
)×(D − D

0
) = 0.2 E

0
D

0
(E − E

0
)×(D − D

0
) = E

0
D

0

Scaling Circuits

Hardware Intensity (%Energy per %Delay through circuit scaling), typical curve

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

η = 0.5

η = 2.0

η = 3.0

 D/D
0

 E
/E

0
energy−efficient curve
cost function contours, η = 2.0
cost function contours, η = 0.5

Optimal Balance, isolated macro η = θ

For formal derivation seeV. Zyuban and P. Strenski, IBM JRD, Dec. 2003, or ISLPED, 08/12/2002

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.2

1.4

1.6

1.8

2

2.2

2.4

η = 0.5

η = 1.0

η = 2.0

η = 3.0

η = 4.0

η = 5.0

 D/D
0

 E
/E

0
varying η for fixed Vdd
varying Vdd for fixed η (ideal)
varying Vdd for fixed η (simulation)
varying Vdd for fixed η (50mV steps)

Optimum Balance, a more general case

• In real pipelines different macros may be tuned for different hardware intensities

• A more general condition for the optimal balance applies,ηag = Θ

• Aggregate hardware intensity is calculated as a weighted average over all macros:

ηag = ηij , where ω ij = , uij =

• In architectural analysis the whole processor can be represented by a single variable
of aggregate hardware intensity

η11 η12 η1Μ. . .

ηΝ1 ηΝ2 ηΝΜ. . .

... Ν

ωij

uij

i 1=

N

∑
Eij

E

Dij

T

Scaling Microarchitecture

• Third way of trading power for performance

• Involves changing machine organization: pipeline depth, issue width, functions,
bypasses, number of ports and entries in queues and register files, caches, branch
predictors, etc.

• Even more powerful than voltage and circuit scaling, but can only be used in early
stages of design

• Architectural intensity

• Architectural intensity can be measured (developed methodology)

• Architectural intensity can be set as a target
eLite DSP example, J. Moreno et al. IBM JRD, vol. 47, March 2003

ξ %E
%Perf

scaling architecture

=

Scaling Microarchitecture

Architectural Intensity (%Energy per %Performance through scaling architecture),

curve for an out-of-order microprocessor built by optimizing architecture for different

values ofγ in , sized of 5 structures are tuned(from Ph.D. thesis V. Zyuban, 2000, also ISLPED’00)

• In designs with high architectural scaling can have
• higher power cost thanVdd or circuit scaling for adding performance
• lower performance cost than frequency or circuit scaling for saving power

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

10

15

20

25

30

 e
n

e
rg

y
p

e
r

cy
cl

e
,

n
J

all configurations
cost function contours ED2
energy−efficient family

BIPS
γ

Watt

ξ

Example: Pipeline Depth in an OOO Processor

Srinivasan et al. MICRO-35, 11/2002

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

ξ = 1.0
23FO4

ξ = 2.0
18FO4

ξ = 10.0
14FO4

ξ = 20.0
12FO4

relative performance

re
la

tiv
e

po
w

er
experimental points
fitted curve

Performance

Example: Deepening Pipeline from to

• Assume most of the power is dissipated in latches, then neglecting other factors,

• Frequency in increased by ,

whereulatch is latch insertion delay weight.

At 15FO4ulatch= 0.2, then

• Architectural speed, IPC is reduced because of longer latencies. Assume, based on

architectural simulations,

• Then, the net increase in performance is

• At 15FO4, pipeline depth has architectural intensity

N N ∆N+

∆E
E

pipe depth

∆N
N

--------=

∆f
f

pipe depth

∆Dlogic

Dlogic Dlatch+

∆N
N

-------- 1 ulatch–()= =

∆f
f

pipe depth

0.8∆N
N

--------=

∆IPC
IPC

pipe depth

0.7
∆N
N

--------–=

∆Perf
Perf

pipe depth

∆f
f

------ ∆IPC
IPC

--------------+ 0.1
∆N
N

--------= =

ξ %E
%Perf

pipe depth

= 10=

Optimal Balance ξ = η = θ

For formal derivation seeV. Zyuban and P. Strenski, IBM JRD, Dec. 2003, or ISLPED, 08/12/2002

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ξ = 0.5

ξ = 1.0

ξ = 2.0

ξ = 3.0

ξ = 4.0

ξ = 5.0

ξ = 6.0

 D/D
0

 E
/E

0
E−D tradeoff curve for fixed Vdd and η
sample points
architectural tuning process
E−D tradeoff curves for fixed ξ

Performance

Optimum Balanceξ = η = θ and BIPSγ / Watt

The point at which the architectural
energy-delay curve tangents a contour of

cost function

is the point that minimizes .

For points on the energy-delay curve

, therefore

.

For points on the contour of

, therefore . Notice .

Balance condition means that is the right metric.

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

10

15

20

25

30

 e
n

e
rg

y
p

e
r

cy
cl

e
,

n
J

all configurations
cost function contours ED2
energy−efficient family

Fcost E Dn×=

Fcost

ξ ∆– E / E
∆D / D

fixed v η,

=

∂E
∂D

fixed v η,
ξ E

D
----–=

Fcost

∂E
∂D

fixed v η,

∂Fcost

∂D

∂Fcost

∂E
---------------⁄– n E

D
----–= = n ξ= Fcost

1– BIPSn 1+

Watt
----------------------=

ξ η Θ= =
BIPSη 1+

Watt

Motivation for Discrete Metric

• Optimum balance condition was derived assuming the existence of a
smooth energy-efficient architectural curve. In reality
• energy-efficient curve consists of discrete points
• getting an architecture on the energy-efficient curve is a challenge
• need to extend the methodology to designs off the energy-efficient curve

• Derived formal method for calculating exponent in ,

• metric hides important assumptions
• how to estimate∆f if an architectural feature adds logic in several pipeline stages

• assume circuit designers will find a way to make∆f = 0
• assume circuit designers can do nothing about it and∆f = - ∆D / D
• to measure ∆Edynamic and∆Pleakage pipeline needs to be retuned to restore the opti-

mum balance

ξ η Θ= =

BIPSγ

Watt
--------------- γ ξ η Θ= = =

Retuning the Pipeline After an Architectural Modification

Stages where logic is added need to be tuned up (for higher hardware intensity)
If , circuits in the rest of the stages should be tuned down to save power∆f 0≠

∆D
final

∆D

w

final

D∆
retuned

w21ηw

w1
no ret

finalη1
final
1w

1

no retune
D∆

D∆
retuned

1

1

2

init init init init
2η

init
2ηw2

no retinit
1η

final
2ηfinal

2

Discrete Formulation

• independent variablesv, η andξ (extended to the energy-delay space)

• functions:

• Performance

• Power (gated)
Power (non-gated)

• optimization problem
• A: minimize powerW(v, η, ξ) given a performance requirementP(v, η, ξ) = Po

• B: maximize performanceP(v, η, ξ) subject to power constraintW(v, η, ξ) = Wo

• need to evaluate energy efficiency of architectural modification∆ξ

• ∆ξ --> ∆V and∆η to satisfy the constraintP = Po or W = Wo

• ∆ξ --> ∆N, ∆f, ∆I and∆E

• find relation between relative increments such that
• A: ∆W < 0 given a performance requirementP = Po (∆P = 0)

• B: ∆P > 0 subject to a power constraint W = Wo (∆W = 0)

P v η ξ, ,() f v η ξ, ,()I ξ()
N ξ()

-----------------------------------=

W v η ξ, ,() f v η ξ, ,()I ξ()E v η ξ, ,()=
W v η ξ, ,() f v η ξ, ,()E v η ξ, ,()=

Results

• By formally solving the problem the following conditions are derived for the
energy efficiency of an architectural feature
for derivation see V. Zyuban and P. Strenski, IBM JRD, Dec. 2003, or ISLPED, 08/12/2002

• fine-grain clock gating

• no clock gating

• Vdd - constrained (η > θ)

• ∆I is a projected IPC improvement from the architectural feature.

• The summation is done over all pipeline stages affected by the architectural feature.

• Terms and are “non-retuned” or “naive” values.

• Energy weightwi are typically available (as targets) even at early design stages.

• Hardware intensitiesηi can be extracted from previous designs or set as targets.

Θ∆I
I

------ ∆E
E

------- Σηiwi

∆Di

T
----------+> Θ 1+()∆N

N
--------+

Θ 1+()∆I
I

------ ∆E
E

------- Σηiwi

∆Di

T
----------+> Θ 1+()∆N

N
--------+

η∆I
I

------ ∆E
E

------- Σηiwi

∆Di

T
----------+> η 1+()∆N

N
--------+

∆E
E

∆Di

T

A Few Special Cases

Table 1: Special Cases of the Derived Metric (0.13um, bulk)

condition metric
equivalent
prior art

Dv >> Ev (Vdd < 0.5V)

η << 1 (ultra-low power design)

θ = ηi = 1 (Vdd = 0.9V)

(eLite design point)

θ = ηi = 2 (Vdd = 1.4V)

(nominal CU11 design point)

θ = ηi = 3 (Vdd > 1.9V)

(ultra-high performance design)

θ = 2.7 ηag > θ (Vdd = 1.7V)

(power supply constraint mode)

∆E
E

∆N
N

--------+ 0< MIPS
Watt

∆I
I

------ ∆E
E

------- Σwi

∆Di

T
---------+> 2

∆N
N

--------+ MIPS
2

Watt

2∆I
I

∆E
E

------- 2Σwi

∆Di

T
---------+> 3∆N

N
--------+ MIPS

3

Watt

3∆I
I

∆E
E

------- 3Σwi

∆Di

T
---------+> 4∆N

N
--------+ MIPS

4

Watt

η∆I
I

∆E
E

------- ηΣwi

∆Di

T
---------+> η 1+ 

  ∆N
N

--------+ MIPS
η 1+

Watt

Example 1

A 10FO4 microprocessor A with fine-grain clock gating,
Vdd = 1.5V,θ = 2.0, 8sf technology (0.13um)
Evaluate energy-efficiency of adding execution bypass:ηRF = 3.0,ηEX = 3.0

1FO4

FU

RF

1FO4 MUX

1FO4

FU

RF

10
F

O
4

10
F

O
4

Example 1 (cont.)

, , ,

 50% of dynamic instructions use the FXU then

To justify adding the execution bypass (2.7%) must be demonstrated

However, ifVdd < 0.9V(θ < 1.0) is necessary.

Now try using

• assume circuit designers will find a way to make∆f = 0, get

• assume circuit designers can do nothing about it and∆f / f = - 0.2, get

Both results are incorrect.

∆DEX

D

no retn

0.2=
∆DRF

D

no retn

0.1= wEX 0.06= wRF 0.04=

∆Ebypass

Etotal
------------------- 0.01= ∆E

E
------- 0.005=

θ∆I
I

------ ∆E
E

------- ηEX wEX
∆DEX

D
--------------- ηRFwRF

∆DRF

D
--------------+ +>

∆I
I

------ 0.027>

∆I
I

------ 0.053>

Bips3

Watt

∆I
I

------ 0.25%>

∆I
I

------ 20%>

Example 2

Processor B: high-performance dynamic issue microprocessor with no clock gating,
Vdd = 1.7V,θ = 2.7

Evaluate energy-efficiency of adding an extra read port to a multiported int. RF.

Suppose , , ,

integer RF is responsible for 15% of the CPU Power, then

adding an extra port is energy-efficient.

However, ifVdd < 0.9V, the same feature is not energy-efficient.

∆I
I

------ 0.02=
∆DRF

D

no retuning

0.1= wRF 0.1=
∆ERF

ERF
------------- 0.2=

∆E
E

------- 0.03=

θ 1+()–
∆I
I

------ ∆E
E

------- ηRFwRF
∆DRF

D
--------------+ + 3.7– 0.02⋅ 0.03 2.7 0.1 0.1⋅ ⋅+ + 0.017–= = 0<

Example 3: Optimal Pipeline Depth (4-way ooo processor)

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

ξ = 1.0
23FO4

ξ = 2.0
18FO4

ξ = 10.0
14FO4

ξ = 20.0
12FO4

 D/D
0

 P
/P

0
experimental points
varying depth (fixed Vdd and η)
varying Vdd and eta (fixed depth)
50mV steps in Vdd (η adjusted)
50mV steps in Vdd(η fixed)
varying η (fixed depth and Vdd)
varying f (fixed Vdd and η)

Example 4: Optimal Pipeline Depth

0.85 0.9 0.95 1 1.05 1.1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

ξ = 3.0

15FO4

ξ = 10.0

14FO4

ξ = 20.0

12FO4

 D/D
0

 P
/P

0
experimental points
varying depth (fixed Vdd and η)
varying η (fixed depth and Vdd)
0.5 steps in η
reducing Vdd(η fixed)
50mV steps in Vdd(η fixed)
reducing f (fixed Vdd and η)

End-User Power-Performance Metric

• What metric should acustomer use to compare microprocessor products

• Customer should not base the choice on implementation details, hardware intensity
of leakage currents

• It is hard to capture all requirements in a single formula (reliability, support, etc.)

• Example of how the customer-end metric can be derived
• Yearly operating cost , where

 is the number of processor cores in system
 is the yearly license cost per core

 is the power dissipation of one core
 is the energy cost per J

• Performance of the system , where
 is the performance of a single core

• Assume a customer needs to maximize performance without exceeding operation cost
• Increase the number of cores (higher license cost and energy cost)
• Use higher-performance cores (energy cost)

Cost CL N⋅ CW Watt N⋅ ⋅+=

N
CL

Watt
CW

Perf Bips N⋅=
Bips

∆N
∆Bips

End-User Power-Performance Metric

combine the expression, cancels out

, where

 is the yearly energy cost of operating one core

Under the stated assumptions the customer should choose the processor with highest

, where

• The end-user metric may be different from the company’s energy-efficiency metric
• There are more customers than cores
• Companies optimize processors to maximize their profits
• Marketing strategies traditionally emphasize performance

∆Cost CL ∆N⋅ CW Watt ∆N⋅ ⋅ CW N ∆Watt⋅ ⋅+ + 0= =

∆Perf Bips ∆N⋅ N ∆Bips⋅+ 0>=

N

∆Watt
Watt

---------------- ∆Bips
Bips

--------------- 1
CL

CE
-------+ 

 <

CE CW W⋅=

Bips
γ

Watt
-------------- γ 1

CL

CE
-------+=

Conclusions

• Concept of hardware intensity is described .

• Derived conditions for an energy-efficient balance between architectural and cir-
cuit-level decisions .

• To achieve energy-efficient design architectural choices must be balanced with cir-
cuit-level decisions

• Different architectural decisions are optimal for different designs

• Energy-efficiency metric described

• Relation to the metric,γ = θ +1 (consistent method for determiningγ)

η %E
%Perf

scaling circuits

=

ξ η Θ= =

power supply

circuits

clocking rate

µ-Arch
η θ V ξ

Θ∆I
I

------ ∆E
E

------- Σηiwi

∆Di

T
----------+> Θ 1+()∆N

N
--------+

BIPSγ

Watt

Bibliography

• V. Zyuban, P. N. Strenski, Balancing Hardware Intensity in Microprocessor Pipe-
lines, IBM Journal of Research and Development, Volume 47, No. 5/6, pp. 585-
598, 2003.

• J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H. Derby, M. S. Ware, K.
Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaad, T. W. Fox, D. Littrell, M.
Biberstein, D. Naishlos, and H. Hunter, An innovative low-power high-perfor-
mance programmable signal processor for digital communications, IBM Journal of
Research and Development, Vol. 47, No. 2/3, pp. 299-326, March/May 2003.

• V. Zyuban, P. N. Strenski, Unified Methodology for Resolving Power-Performance
Tradeoffs at the Microarchitectural and Circuit Levels, Proceedings of IEEE Sym-
posium on Low Power Electronics and Design, pages 166-171, August 2002.

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling and Metrics

- PowerTimer extensions to Turandot
- Power-Performance Efficiency Metrics

Case Studies and Examples
- Optimal Power-Performance Pipeline Depth

Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

10:30-11:00

Intel Pipeline Depths

• Pipeline Depth is key to microprocessor performance
• Pentium III: 10 pipestages
• Pentium 4: 20 pipestages
• Intel @ ISCA2002: 52 pipestages is optimal [Sprangle02]

Overall Methodology

• Begin with a base, core microarchitecture
• Develop energy models based on detailed circuit-level

power analysis of macros from an existing machine
• Develop energy scaling equations for pipeline depth
• Study the sensitivity of the energy model parameters to

the optimal pipeline depth

Background/Definitions
• Fanout-of-4 inverter metric (Horowitz)

Delay of an inverter with Cload/Cin=4
More or less stable for process, voltage, temperature
We use this to measure amount of logic per stage of the
pipeline

1 4 16

FO4

Pipeline Scaling Methodology
4 Stage FPU = 16FO4 Logic + 3FO4 Latch = 19 FO4 ~ 2.0GHz

5 Stage FPU = 13FO4 Logic + 3FO4 Latch = 16FO4 ~ 2.4GHz

6 Stage FPU = 11FO4 Logic + 3FO4 Latch = 14FO4 ~ 2.7GHz

9 Stage FPU = 7FO4 Logic + 3FO4 Latch = 10FO4 ~ 3.8 GHz

0 10 20 30 40 50 60 70 80 90
Cumulative FO4 Depth (Logic + Latch Overhead)

PowerTimer

• Key Problem:
– How to scale energy models for pipeline depth rather

than just pipeline width

Cycle-by-Cycle
Performance

Timer
(Turandot)

Program
Executable
Or trace

Power
Models

Performance Estimate

Power
Estimate

Cycle-level
Hardware access
Counts/utilization
(clock gating info)

Circuit/Tech
Parameters

Microarch.
Parameters

Energy Model Formation

• Energy models based on circuit-level power analysis of
structures in current high-performance PowerPC
processor

• Power analysis
– For each macro collect ungated power (ckt sim)

Clocking power (latches, LCBs, array clocking)
Active power (Logic, data-dependent array)
Leakage power

– Clock gating factors determined based on utilization
and macro-level clock gating eligibility

Factors Affecting Choice of Pipeline
Depth

• Cycles-Per-Instruction (CPI)
• Clock Frequency
• Clock Gating Effects
• Latch-to-Logic Dynamic Power Ratio
• Latch Growth Factor
• Glitching Activity
• Leakage Power Scaling
• Power-Delay Ratios for Latches and Logic

Energy Model Scaling:
CPI, Frequency, Clock Gating

• CPI impacts performance only (workload dependent)
• Clock Gating impacts power only (workload dependent)
• Frequency impacts both

Energy Model Scaling:
Latch Growth Factor, Latch-Logic Ratio

• Latch growth has a big impact
– Logic shape functions are often not flat

LatchScale = (Latch-logic power ratio) * (base FO4/FO4)LGF

Latch Growth Factor slightly super-linear (1.1)
Latch-Logic Power Ratio of current machines (70%-30%)

Logic Width

Latch Cutpoints

3-Stage Pipeline 4-Stage Pipeline

Latch Cutpoints

3-Stage Pipeline 4-Stage Pipeline

Energy Model Scaling:
Latch Growth Factor

Booth Recode Booth Mux

4:2

3:2 3:2

A
Frac

27x
6sels

C
Frac

6:2

27

3:2Aligner

3:2

3:2

4:2

3:2

3:2 3:2

9:2

3:2

3:2

4:2

3:2

3:2 3:2

9:2

3:2

3:2

4:2

3:2

3:2 3:2

9:2
22

Pipeline Cuts

13FO4 (1)

13FO4(2)

16FO4(1)

16FO4 (2)

19FO4 (1)

19FO4(2)

10FO4 (1)

10FO4 (2)

10FO4 (3)

10FO4 (4)

Energy Model Scaling:
Latch Growth Factor

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90

Cumulative FO4 Depth (Logic + Latch
Overhead)

C
um

ul
at

iv
e

N
um

be
r

of

La
tc

he
s 10FO4

13FO4
16FO4
19FO4

Energy Model Scaling:
Glitching and Leakage

• Glitching reduces with deeper pipelines
– More pipeline latches stop glitch propagation

• Leakage power component grows more slowly than
dynamic power component with deeper pipelines
– Leakage does not scale with frequency
– Leakage growth is proportional to overall width of

latches rather than overall power of latches
Overall Latch width % << Overall Latch power %

Power Scaling Effects

0
0.5

1
1.5

2
2.5

3
3.5

4

710131619222528313437

Total FO4 per stage

P
ow

er
 R

el
at

iv
e

to
 1

9F
O

4 combined
only latch
only freq
only clock gate
only glitch
only leakage

Scaling Results:
Average of SPEC2K

0

0.2

0.4

0.6

0.8

1

710131619222528313437

Total FO4 Per Stage

R
el

at
iv

e
to

 O
pt

im
al

 F
O

4

bips
bips/W
bips^2/W
bips^3/W

Power-performance optimal Performance optimal

Workload impact:
TPCC Trace

0

0.2

0.4

0.6

0.8

1

710131619222528313437

Total FO4 Per Stage

R
el

at
iv

e
to

 O
pt

im
al

 F
O

4

bips
bips^3/W

Power-performance optimal Performance optimal

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Relative 1/Performance

R
el

at
iv

e
Po

w
er

tradeoff via changing Vdd and HI
tradeoff via changing frequency
tradeoff via changing pipeline depth

18FO4 23FO4

14FO4

12FO4

Maximum Power Budget

Impact on Design

Temperature/Power Density Analysis
Temperature “landscape”: space and time
How to estimate early in the design cycle?

From IBM Journal of R&D, Vol. 46, No. 1, 2002

Integration with UVA’s HotSpot Project

• Initial work has begun on integrating PowerTimer with
HotSpot [Skadron, Stan, et. al., ISCA2003]
– Allows early-stage temperature analysis, hotspot

identification
– Thermal-aware microarchitecture design

Bibliography:
PowerTimer Case Studies
• David Brooks, John-David Wellman, Pradip Bose, and Margaret Martonosi. "Power-

Performance Modeling and Tradeoff Analysis for a High-End Microprocessor,"
Workshop on Power-Aware Computer Systems (PACS2000, held in conjuction with
ASPLOS-IX), Cambridge, MA., November, 2000.

• Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose, Victor Zyuban, Philip N
Strenski, and Philip G Emma, "Optimizing Pipelines for Power and Performance," 35th
International Symposium on Microarchitecture (MICRO-35), November, 2002.

• David Brooks, Pradip Bose, Viji Srinivasan, Michael Gschwind, Philip G. Emma, Michael
G. Rosenfield. "New methodology for early-stage, microarchitecture-level power-
performance analysis of microprocessors," IBM Journal of Research and Development,
Volume 47, No. 5/6, 2003.

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot
- Power-Performance Efficiency Metrics (Victor)

Case Studies and Examples
- Optimal Power-Performance Pipeline Depth

Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

11:15-11:45

Validation

Input Validation: making sure that the input, e.g. trace,
is representative of the workloads of interest

Model Validation: ensuring that the model itself is accurate
Output Validation: interpreting the results correctly

MODEL
Input Output

Need to ensure integrity at all 3 stages

Post-Silicon Calibration Lessons Learnt
from an early ’90s development project

• Trace sampling to reduce simulation time must be done
with care!
– Trace input inaccuracy was the biggest source of error
– Later research invented R-metric to quantify inaccuracy in sampled

traces (Iyengar, Trevillyan, Bose, HPCA-96)

• Statistical methods of simulating stall effects (like cache
misses) are prone to large overall errors
– This was the second largest source of error

• Neglecting the effect of kernel code in traces can be
dangerous in some cases
– Execution-driven simulation that captures kernel code is desirable

• Cycle-level cross-validation against pre-silicon, detailed
reference models (RTL or pre-RTL) is definitely needed

Model Validation

• Main challenge: defining a specification reference

MODEL
UNDER TEST

GOLDEN
REFERENCE

compare
outputs

An Input Testcase

Flag Error (if outputs differ)

• Secondary problems:
– generate apt test cases
– test case coverage
– choice of o/p signatures

The Elpaso Reference Model
• Early Stage Power/Perf Analysis, Specification, Optimization

> a validation reference model
> tescase suite used will be part of next release of PowerTimer

General Workloads (traces)

TCGEN

Specialized
source
testcases

ELPASO PowerTimer

calibration,
validation

microarch level
energy model
(analytic)

ckt-level,
implementation-specific
energy model
(empirical)

test-mode
input

detailed
cycle-by-cycle
output

power-perf tradeoffs,
projections

power-perf
bounds
(specification)

More recently: a trace analysis tool called Trance is also being used
for cross-calibration purposes, in addition to the elpaso cycle-accurate reference

Bounding Perf and Power

• Lower and upper bounds on expected model outputs can
serve as a viable “spec”, in lieu of an exact reference

• Even a single set of bounds (upper or lower) is useful
• Utilization/power bounds based on IPC bounds are also
predicatable, using prior pipeline flow-based theory

Performance Bounds Utilization/Power BoundsTest Case
Number
TC.1

TC.2

TC.n

Cpi (ub) Cpi (lb) T (ub) T(lb) Upper bound Lower bound

.

.

regression test suite – used in testing model versions

Performance Bounds

• Static Bounds:

Bounds Model

Loop test case (source/assembly code)

Steady-state loop cpi
boundsUarch

parms file

 * IBM Research, Bose et al. 1995 - 2000: applied to perf validation for high-end PPC
 * U of Michigan, Davidson et al. 1991 - 1998

• Dynamic Bounds:
– analyze a trace; build a graph; assign node/edge costs;
 process graph to compute net cost (time)
(e.g. Wellman96, Iyengar et al., HPCA-96)

Static Bounds - Example

fadd fp3, fp1, fp0
lfdu fp5, 8(r1)
lfdu fp4, 8(r3)
fadd fp4, fp5, fp4
fadd fp1, fp4, fp3
stfdu fp1, 8(r2)
bc loop_top

Consider an in-order-issue
super scalar machine:

• disp_bw = iss_bw = compl_bw = 4
• fetch_bw = 8
• l_ports = ls_units = 2
• s_ports = 1
• fp_units = 2

N = number of instructions/iteration = 7

• Steady-state loop cpi performance is determined by the
narrowest (smallest bandwidth) pipe
– above example: CPIter = 2; cpi = 2/7 = 0.286

Power-Performance Bounds (El Paso)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 7 10

Superscalar width W

St
ea

dy
-s

ta
te

 lo
op

 B
IP

S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 7 10

Superscalar width W

Po
w

er
-p

er
f e

ffi
ci

en
cy

Inflection points
of interest

Power ~ (W**0.5 + ls_units + fp_units + l_ports + s_ports)

(adapted from: Brooks, Bose et al. IEEE Micro, Nov/Dec 2000)

BIPS^2/watt

BIPS/watt

Absolute vs. Relative Accuracy

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 1
Superscalar width W

M
IP

S/
ps

eu
do

w
at

ts

Idealized bound

Real sim output

“true” h/w
measurement (say)

• Poor “absolute”
 accuracy of
 simulator

• But, good
“relative”
accuracy

In real-life, early-stage design tradeoff studies, relative
accuracy is more important than absolute accuracy

Abstraction via Separable Components
The issue of absolute vs. relative accuracy is raised in any
modeling scenario: be it “performance-only”, “power” or
“power-performance.”

Consider a commonly used performance modeling abstraction:

Slope = miss penalty (MP)

FINITE CACHE PENALTY (FCE)

CPIinfcache

Increasing core concurrency
and overlap (e.g. outstanding miss support)

C
yc

le
s

pe
r

in
st

r
(C

P
I)

Cache miss rate, MR (misses/instr)

CPI =
CPIinfcache
+
MR * MP

Experimental Setup: Measure
Relative vs. Absolute Accuracy

Program executable or trace

Detailed, full
model cycle
simulator

Baseline,
“infprf”
simulator

Standalone
cache sim

Delta-CPI
(cache)

Standalone
BP sim

Delta-CPI
(BP)

Add all components

CPIactual
CPIinfprf

CPI approx(sc)

COMPARE Error Report

Experimental Results (example)

SPECint Experiment

0

0.5

1

1.5

48 80
112

Rename registers

C
PI

SC-
CPI

True-
CPI

INF-
PRF-
CPI

SPECfp Experiment

0
0.5

1
1.5

2

48 80

112

Rename registers

C
PI

SC-CPI

True-
CPI

INF-
PRF-
CPI

TRUE-CPI curve: generated using PowerPC research, high-end simulator
at IBM (Turandot simulator)

Accuracy Conclusions

• Separable components model (for performance, and
probably for related power-performance estimates):
> good for relative accuracy in most scenarios
> absolute accuracy depends on workload characteristics

• Detailed experiments and analysis in:

 Brooks, Martonosi and Bose (2001):
 “Abstraction via separable components: an empirical study of absolute and relative accuracy
 in processor performance modeling,” IBM Research Report, Jan, 2001

Also look up Brooks’ Ph.D thesis and the Wattch paper (ISCA-2000)
For data on calibration of Wattch energy models against
Post-layout capacitance extraction models.

Overall Validation Methodology
(PowerTimer)

PowerTimer

Next test case

Reference Model
(e.g. M2 or M3)

LaSpecs

timeline output

tabular (html)
web specs

detect mismatch

cpi and
utilization stats

elpaso
bounds
timer

detect
anomalies

cpi and
utilization
bounds

Temperature
Model

IR
Thermometry
Setup

direct image
of chip temp
profile

compare
simulated chip
temp profile

H. Hamann,
M.McGlashan-Powell,
et al.

(planned future path)

LaSpecs Output Example ……
see next page

Instruction Latencies
Single or Pair (Dependent) Instruction Latency (GigaProcessor)
Specifications derived from POWER4 M2 model, version 1.222: PowerPC opcode pair involving lbz_add
[......F.DE.di2.h.f..c...]
[......F.DE.d...i1.f.c...]
The instruction test case is: lbz R1,4096(R0) add R4,R1,R5 Completion Latency= 15 Live Latency= 15

lbz
add--------------COMPLETE

-addlbz------------XMITc

--addlbz-----------FINISH

---add--lbz--------EXECUTE

-------lbz-------lsRREAD

-----add--lbz------ISSUE

---------lbz
add-----DISPATCH

----------lbz
add----XMITb

-----------lbz
add---ASSEMBLE

------------lbz
add--DECODE

-------------lbz
add-XMITa

--------------lbz
addFETCH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Cycle NumberPipeline
Stage

Page maintained by: Pradip Bose, pbose@us.ibm.com Generated using tool: LaSpecs last generated: 08/07/03 09:04:55

All single
and pair
instruction
latency specs
were matched
Turandot vs.
Reference M2
model

Other Visualization Aids for Validation and
Calibration….

PowerPlay: a Floorplan Visualizer

• Java-based
• Currently operational: works with MET/Turandot (PowerTimer) toolset

Chip FloorplanEnergy Models

Cycle-accurate
Perf Simulator

(Turandot)

Input
Wkld
Trace

Temperature
Model

PowerPlay

instantaneous,
time-based changes,

single average

Power
Temp.

Pow. Den.

CPI

Implementation: by Rose Liu, summer intern

PowerPlay Example/Demo

Power Density Characteristics (SPEC2K)

• Simple (illustrative) wkld characterization metric:

K = (1/Areatotal) Σ Ci Areai , (cool)1< Ci < 9 (hot)

Gap – 3.13 Perlbmk – 3.14 Art – 2.45Twolf – 2.69

LSU

FXU FXUISU ISU ISU

Calibration of Temperature Models

• Current aids:
– Infra-red based thermometry set up
– On-chip temperature sensors

• Test cases run on simulator and on hardware
– Simulated results vs. direct measurements
– Current measurements available for recent product

chips: could not be shown due to clearance difficulty

Tutorial Outline

Introduction and Motivation
Basics of Performance Modeling

- Turandot performance simulation infrastructure
Architectural Power Modeling

- PowerTimer extensions to Turandot
- Power-Performance Efficiency Metrics (Victor)

Case Studies and Examples
- Optimal Power-Performance Pipeline Depth

Validation and Calibration Efforts
Future challenges and Discussion
Bibliography

11:45-12:00

