
Synthesis of Reversible Logic

Abhinav Agrawal and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544�
aagrawal, jha � @ee.princeton.edu

Abstract— A function is reversible if each input vector produces a
unique output vector. Reversible functions find applications in low power
design, quantum computing, and nanotechnology. Logic synthesis for
reversible circuits differs substantially from traditional logic synthesis.
In this paper, we present the first practical synthesis algorithm and
tool for reversible functions with a large number of inputs. It uses
positive-polarity Reed-Muller decomposition at each stage to synthesize
the function as a network of Toffoli gates. The heuristic uses a priority
queue based search tree and explores candidate factors at each stage
in order of attractiveness. The algorithm produces near-optimal results
for the examples discussed in the literature. The key contribution of
the work is that the heuristic finds very good solutions for reversible
functions with a large number of inputs.

I. INTRODUCTION

Reversible functions have a unique mapping between input vec-
tors and output vectors and are applicable to quantum computing [1],
nanotechnology [2], and low power design [3]. Unfortunately, their
synthesis eludes traditional methods of logic design. The optimal
exhaustive algorithm [4] is too slow. Several different heuristics
have been presented in [5]–[7]. Unfortunately, these heuristics do
not scale well and require extensive use of template matching.
Our algorithm uses an XOR sum of products expression of the
output function to synthesize the circuit. Use of such a Reed-Muller
expansion of the function was also suggested in [8]. However, their
method fails to take advantage of shared functionality among multi-
output functions. Our algorithm has several key characteristics.
Firstly, it minimizes the number of gates as the primary objective
and the size of the gates as the secondary objective. Secondly, it is
near-optimal for all 40,320 reversible functions of three variables,
and is applicable to functions with a large number of inputs. Thirdly,
it does not use the variables and their complements at each stage
of the circuit, thus reducing circuit size. Lastly, it does not require
output permutation or extra garbage lines (such lines are required
to equalize the number of inputs and outputs).

II. BACKGROUND

A function is reversible if it maps each input vector to a unique
output vector. A reversible function of � variables can be defined
either as a truth table or as a mapping of integers

�
0,1,..., � � � � �

onto itself. An irreversible function can be converted into a re-
versible function easily. If the maximum number of identical output
vectors is p, then � � 	
 � � garbage outputs (and some inputs, if
necessary) must be added to make the input-output vector mapping
unique. There are two main types of reversible gates, the Toffoli
gate and the Fredkin gate. An � � � Toffoli gate, denoted by� � � � � � � � � � � � � � � � �

�
, passes the first � � � inputs (referred to

as control bits) to the output unchanged and inverts the � � � input
(referred to as the target bit) if the first � � � inputs are all � . A� � � Toffoli gate simply inverts the input unconditionally. Using �
for input and � for output:

� � � � � for � � � � �
� � � � � � � � � � � � � � � � ! �

An � � � Fredkin gate passes the first � � � inputs to the output
unchanged and swaps the last two inputs if the first � � � inputs
are " . We will not be using the Fredkin gate in our synthesis
algorithm.

Any Boolean function can be described as an XOR sum of
products. The positive-polarity Reed-Muller (PPRM) expansion
uses only uncomplemented variables and can be derived easily

Acknowledgments: This work was supported in part by NSF under grant
No. CCR-0303789.

from the function’s sum of products expansion. The PPRM of a
function is unique and of the form:# � � � � � � � � � � � � �

� � $ % $ � � � $ � � � � � � $ � � � $ � � � � � � $ � & � � � & � � � $ � ! � ' � � � ! � � � � � � $ � � (((� � � � � � � � � � � where$ �) � " � � � and � � are all uncomplemented (positive polarity).

III. THE SYNTHESIS ALGORITHM

Fig. 1 gives the main steps of the synthesis algorithm. In the first
stage of the algorithm, a Reed-Muller expansion of all the output
variables * + , � ' � of the reversible function f is obtained in terms
of all the input variables * - and inserted into the priority queue.
In the second stage, the algorithm enters a loop where it pops a
node, curnode, from the priority queue. For each output variable,* + , � ' � , in curnode, the algorithm identifies factors, fac, in the PPRM
expansion of * + , � ' � . For each factor, fac, identified in * + , � ' � , we
make a copy of curnode in newnode and perform the substitution* � � * � fac in the expansions of all the variables contained in
newnode. Next, we examine newnode. If the synthesis is complete
and the solution found is better than any previous solution, we
cache newnode. Otherwise, we decide whether newnode presents
an attractive path to follow for synthesis.

Pop node with highest

priority from priority queue

Select possible factor in the

node popped

Synthesis

complete?

Insert newnode

into priority

queue

Substitute factor selected in

PPRM expansion of function

and form newnode

Yes

End of Algorithm

Store PPRM expansion of

function in priority queue

No

Yes

More

factors?

No

Pop node with highest

priority from priority queue

Select possible factor in the

node popped

Synthesis

complete?

Insert newnode

into priority

queue

Substitute factor selected in

PPRM expansion of function

and form newnode

Yes

End of Algorithm

Store PPRM expansion of

function in priority queue

No

Yes

More

factors?

No

Yes

More

factors?

No

Fig. 1. Synthesis methodology

Depending on the decision, we insert newn-
ode into the priority queue with a priority of:� . / � 	 0 . � 1 � 	 1 � 2 � � 3 4 � . / � 	 0 . � 0 . � 2 5 � � 6 7 4 � init count �
newnode.term count

� 8
newnode.depth() � 9 4 � � : ; < . 1 	 #

� � 2 . 1 $ � = � fac
� �

. The first term gives preference to nodes of larger
depth as all things being equal they are more likely to be close
to the solution. The second term addresses the primary objective
of minimizing the number of gates. The average number of terms
eliminated per stage is used to measure a node’s effectiveness. The
third term addresses the secondary objective of minimizing the
size of individual gates. The weights 3 ,

7
, and 9 add up to 1 and

typical values were 0.2, 0.7, and 0.1, respectively. The algorithm
continues in this manner until the time limit or the search tree is
exhausted. Fig. 2 shows the search tree when the function to be
synthesized is

�
1,0,7,2,3,4,5,6 � , i.e., input vector 0 should map to

output vector 1, input vector 1 to output vector 0, and so on.

IV. EXPERIMENTAL RESULTS

Table I depicts the results of applying various algorithms to
all the > " , ? � " reversible functions of three variables. It shows
how many reversible functions of three variables require a given
number of gates. Synthesis only takes a total of few minutes on
a � � � GHz Athlon processor with @ � � MB RAM for all these
functions using the tool, called RMRLS, that implements our

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

cout = c ∆ ab
bout = b
aout = a

cout = c ∆ ab ∆ ac
bout = b ∆ ab ∆ ac

aout = a

cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

cout = c ∆ ab ∆ ac
bout = b ∆ ac

aout = a

cout = c ∆ b ∆ ab
bout = b ∆ ac
aout = a ∆ 1

cout = b ∆ ab ∆ ac
bout = b ∆ c
aout = a ∆ 1

a = a ∆ 1

b = b ∆ c

b = b ∆ ac

b = b ∆ ac c = c ∆ ab

cout = c
bout = b
aout = a

c = c ∆ ab

cout = c ∆ ab
bout = b
aout = a

cout = c ∆ ab ∆ ac
bout = b ∆ ab ∆ ac

aout = a

cout = b ∆ ab ∆ ac
bout = b ∆ c ∆ ac

aout = a ∆ 1

cout = c ∆ ab ∆ ac
bout = b ∆ ac

aout = a

cout = c ∆ b ∆ ab
bout = b ∆ ac
aout = a ∆ 1

cout = b ∆ ab ∆ ac
bout = b ∆ c
aout = a ∆ 1

a = a ∆ 1

b = b ∆ c

b = b ∆ ac

b = b ∆ ac c = c ∆ ab

cout = c
bout = b
aout = a

c = c ∆ ab

Fig. 2. Algorithm search tree

TABLE I
ALL REVERSIBLE FUNCTIONS OF THREE VARIABLES

#gates Ours Miller [5] Optimal [4]
11 5
10 110
9 30 729
8 3297 4726 577
7 12488 11199 10253
6 13620 12076 17049
5 7503 7518 8921
4 2642 2981 2780
3 625 767 625
2 102 130 102
1 12 15 12
0 1 1 1

Ave. size 6.10 6.18 5.87

synthesis methodology. As can be seen, our tool produces a lower
average gate count than Miller’s heuristic [5] and does not produce
any circuits containing � � or � � Toffoli gates. Furthermore, our
results compare very favorably to the optimal implementations
found using depth-first search with iterative deepening (this is an
exhaustive approach). Note that Miller’s heuristic uses swap gates
in addition to Toffoli gates, and is hence able to do better than
the optimal method (which only uses Toffoli gates) for small gate
counts. Thus, if our and the optimal methodologies are extended to
handle swap gates in addition to Toffoli gates, their average gate
counts would be even better than Miller’s heuristic.

We now provide results for several examples from the literature.
Unless otherwise stated, our results are equal in the number of
gates to the best published solution and were synthesized in less
than 0.1 seconds. The following examples are from [5] and [9].

a
b
c

aout

bout

cout

a
b
c

aout

bout

cout
Fig. 3. Example 1 realization

Example 1: Specification:
�
1, 0, 3, 2, 5, 7, 4, 6 � . Toffoli network

produced: TOF3(c,a,b) TOF3(c,b,a) TOF3(c,a,b) TOF1(a). Thus
there are four cascaded Toffoli gates as shown in Fig. 3.
Example 2: Specification:

�
7, 0, 1, 2, 3, 4, 5, 6 � . Toffoli network

produced: TOF1(a) TOF2(a,b) TOF3(b,a,c). The heuristic in [5]
initially synthesized a circuit with seven gates for this specification
which was improved to three gates using bidirectional synthesis.
Example 3: This example deals with the realization of a Fredkin

gate using Toffoli gates. Specification:
�
0, 1, 2, 3, 4, 6, 5, 7 � . Toffoli

network produced: TOF3(c,a,b) TOF3(c,b,a) TOF3(c,a,b).
Example 4: Simple swap between two positions in the truth table.
Specification:

�
0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15 � .

Toffoli network produced: TOF2(d,b) TOF3(d,b,a) TOF4(d,b,a,c)
TOF4(c,b,a,d) TOF4(d,b,a,c) TOF3(d,b,a) TOF2(d,b).
Example 5: This represents a wraparound shift of one position for
four variables. Specification:

�
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 0 � . Toffoli network produced: TOF4(c,b,a,d) TOF3(b,a,c)
TOF2(a,b) TOF1(a).

The above examples show that our algorithm matches the best
results presented in the literature for specifications with a small
number of variables. Due to the inability of previous algorithms
to deal with specifications with a large number of variables, such
examples do not exist in the literature. However, the main advantage
of our algorithm is that it can easily tackle larger functions because
of its ability to backtrack quickly once a path through the search
tree has become inefficient. We next consider larger benchmarks.
Adder: This reversible full-adder generates sum, carry, and propa-
gate signals, and requires one garbage output and one corresponding
input for a total of four inputs and four outputs. Specification:� � � � � � 	
 � 	 � � 	
 � (carry bit), � � � � �
 	 � 	 � (sum bit),� � � � �
 	 � (propagate bit), and
 � � � �
 (garbage bit). Toffoli
network produced: TOF3(b,a,d) TOF2(a,b) TOF3(c,b,d) TOF2(b,c).
rd53: Benchmark rd53 is from the MCNC [10] benchmark suite
and we used the same reversible specification as in [5]. Toffoli net-
work produced: TOF2(c,b) TOF5(e,d,b,a,g) TOF3(b,a,f) TOF3(c,a,f)
TOF2(b,a) TOF3(d,a,f) TOF2(a,d) TOF4(e,d,c,g) TOF3(e,d,f)
TOF2(d,e) TOF5(d,c,b,a,g) TOF3(b,a,g).
Shifter: This function has two control bits and ten input bits. It
does a wraparound shift of zero, one, two, or three positions on the
input depending on the control bits. Toffoli network produced: a 26
gate solution was synthesized in 1.2 seconds.

V. CONCLUSIONS

We have presented an algorithm which uses a positive-polarity
Reed-Muller decomposition of a reversible function to select suc-
cessive Toffoli gates. The algorithm searches the tree of possible
factors in priority order to try to find the best possible solutions. We
applied our algorithm to all 40,320 functions of three variables and
obtained near-optimal results. Several examples of functions with a
large number of variables were also presented to demonstrate the
suitability of the algorithm for synthesizing complex functions. As
part of future work, we would like to incorporate Fredkin gates
into our algorithm. A Fredkin gate is equivalent to three Toffoli
gates. Thus, the use of Fredkin gates could yield a significant
improvement in circuit quality. We are also working on ways to
efficiently synthesize functions with don’t cares by using dynamic
assignment instead of pre-assignment of values.

REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[2] R. C. Merkle, “Two types of mechanical reversible logic,” Nanotech-
nology, vol. 4, pp. 114–131, 1993.

[3] C. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev.,
vol. 17, pp. 525–532, 1973.

[4] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible
logic circuit synthesis,” in Proc. Int. Conf. Computer-Aided Design,
Nov. 2002, pp. 125–132.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Proc. Design Automation
Conf., June 2003, pp. 318–323.

[6] A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic syn-
thesis by iterative compositions,” in Proc. Int. Wkshp. Logic Synthesis,
June 2002, pp. 261–266.

[7] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules for
designing CNOT-based quantum circuits,” in Proc. Design Automation
Conf., June 2002, pp. 419–424.

[8] A. Mishchenko and M. Perkowski, “Logic synthesis of reversible wave
cascades,” in Proc. Int. Wkshp. Logic Synthesis, June 2002, pp. 197–
202.

[9] D. M. Miller and G. W. Dueck, “Spectral techniques for reversible logic
synthesis,” in Proc. 6th Int. Symp. Representations & Methodology of
Future Computing Technologies, Mar. 2003.

[10] N.C.S.U. Collaborative Benchmarking Laboratory, Dept. of Computer
Science, North Carolina State University, “Benchmark archives at
CBL.” [Online]. Available: http://www.cbl.ncsu.edu/benchmarks/

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

