Reversible Logic Synthesis with
Fredkin and Peres Gates

James Donald and Niraj K. Jha
Department of Electrical Engineering
Princeton University
jdonald@alumni.princeton.edu, jha@princeton.edu

Abstract— Reversible logic has applications in low-power com- and five, respectively, while Toffoli gates of four or moresbi

puting and quantum computing. Most reversible logic synthsis have even greater quantum costs [2]. Another popular gate is

methods are tied to particular gate types, and cannot synttsze _hi ; : .
large functions. This paper extends RMRLS, a reversible loig the n-bit Fredkin gate, defined as follows [7]

synthesis tool, to include additional gate types. While cksic yi=x;for1 <i<n-—2

RMRLS can synthesize functions using NOT, CNOT, andn-bit

Toffoli gates, our work details the inclusion of n-bit Fredkin and Yn—1 = Tp—121T2.--Tp—2 + TpT122...Tn—2

Peres gates. We find these additional gates reduce the aveeag — O T T TS _ o

gate count for three-variable functions from 6.10 to 4.56, ad Un = TnT1T2-Tn—2 + Tn—1 7172 Tn—2)
improve the synthesis results of many larger functions, bdt in Forn = 2, a two-bit Fredkin gate can be thought of as an
terms of gate count and quantum cost. unconditional SWAP gate (i.ey; = z2 andys = z1). A

two-bit SWAP gate has a quantum cost of three and a three-
bit Fredkin gate has a cost of five [24], while higher-order
Reversible logic is motivated by its applications in lowfredkin gates are even more expensive [15]. A third type of
power computing. Landauer’s Principle says that some finiggite considered in this paper is the three-bit Peres gale [21
amount of energy will be lost for any irreversible compuiati A Peres gate can simultaneously accomplish the operation
but this can be avoided in a fully reversible logic implemeref both a CNOT gate and a three-bit Toffoli gate, with an
tation [12]. The challenges of managing power density igperation defined as follows:
modern and future electronics is a strong reason for seeking
low-power techniques such as reversible logic [5]. Further
more, reversible logic has applications in communicatsj,[Y2 = T2
optical computing [4], biosynthesis of messenger RNA [3], Y3 = T3 B T122 (3)
and particularly quantum computing [2]. In order for such
reversible logic technologies to be feasibly implementat,

design flow methodologies, including logic synthesis, nhest extended_ to include_ mu_ltiple contrpl bits and_tllusbit Peres
developed as in the case of conventional irreversible 'n:ﬁcugates,’ this vv_ork p””.‘a“'y deals with three-bit .P\.e.res gaees
[22] remain consistent with the most common definition used by

@e reversible logic community. The three-bit Peres gate is

I. INTRODUCTION

Y1 = 21 D T2

Although the definition of Peres gates given in (3) can be

In [8], Gupta et al. presented an algorithm for reversibk h £ 9
logic synthesis using networks of-bit Toffoli gates. Their ngwn to a;/f? a qL:an:curEC():_lczsthg_:_Jr[]'d th bit Toffoll
algorithm works by searching for candidate factors in the-po ecause he set o ' » an ree-bit fottol

itive polarity Reed-Muller (PPRM) forms of the represeivat gates is known to be capable of synthesizing any reversible

equations that can be substituted to form the operation oflja('Ct'On’ many existing reversible synthesis algorithrasdt

NOT, CNOT, or n-bit Toffoli gates. By traversing a searchyEt attempt to include “optional” gates such as Fredkin and
’ ' ' Peres.

tree along with practical pruning, their algorithm is caleab ”
9 P P g 9 apa In addition to [8], there have been many recent works on

of synthesizing a wide range of reversible functions with as ible loai thesi | of which ” "
many as 16 variables. reversible logic synthesis, several of which provide sga

An n-bit Toffoli gate can be thought of as a controlled XO Igorjthms that.ca_m be practically us_ed, at least for rébiers
operation, and is defined as follows [25]: unctions of a limited number of varllables. Iwama et al. [10]
presented a framework for synthesis through repeated local
yi=x;for1 <i<n-—1 transformations. Shende et al. [23] implemented an algorit
to find optimal circuits and provided their corresponding
proofs of constructability, although their method is liedt
A CNOT gate can be thought of as a two-bit Toffoli gate, antb functions of at most a few variables. Maslov et al. [16]
a one-bit Toffoli gate ; = x1 @ 1) is the same as a NOT proposed heuristic methods to synthesize reversible ifumt
gate. In quantum computing, the NOT, CNOT, and three-hitith the aim of minimizing garbage outputs. They further
Toffoli gates are known to have quantum costs of one, ordgemonstrated the use of template matching as a heuristic

Yn = T B T1T2...Tn—1 1)

technique to take suboptimal circuits and simplify themhwit a —697 a®bc

a template library [17]. This has even been extended to b —4 c

include Fredkin gates [18]. However, their template-based > b

technique generate less efficient circuits compared toafid,

the addition of new gate types require the generation of an _ _ _ L
. . . Fig. 1. Two-gate implementation of the reversible spedificagiven in (4)

entirely new template library. Miller et al. [20] demons&d g a Toffoli and a SWAP gate.

an algorithm to synthesize reversible functions usingotesi

CcC —=¢

bidirectional transformations, although this algorithrftea a D a®be
generates quite _subopt|mal solutions even for functionasof b T M .
few as three variables. N

Our work chooses to build upon RMRLS (Reed-Muller ¢ N b

Reversible Logic Synthesizer) [8] because this algorithas h
been shown to have speed, success rates, and circuit miﬂimi-‘lg. 2. Four-gate implementation of the reversible spatific given in (4)
tion ability often exceeding those of the above algorithWiie. using Toffoli and CNOT gates.

further believe this to be a more robust and extensible plat-

form for parameterizable synthesis options, unlike athons
requiring pre-derived template libraries, such as tho4é& 8h
This work implements and evaluates extensions to RMRLS for Qout = a D be
synthesizing circuits with additional gate types. Our #ec
contributions are as follows:

that might use this gate in synthesis, consider:

bout =cC

Cout = b (4)
o We propose and implement extensions to the RMRLS i .)
algorithm to includen-bit Fredkin gates and Peres gates, This function quite apparently contains a swap between the

and detail our methodology that can be applied to aMZriable_sb gnd c. A two-gat_e realization f_or this functio_n is
fundamental reversible logic gate. shown in Figure 1. Alternatively, when using only Toffolichn

We show that going from the NOT, CNOT, and- CNOT gates, a minimum realization with four gates is shown

bit Toffoli gate (NCT) library to the additional SWAP, in Figure 2. Being able to accomplish the swap operation

Fredkin, and Peres gates (NCTSFP) library reduces tH8h @ single gate has advantages in the synthesis proeess. |
average gate count for three-variable functions from 6.13¢ RMRLS algorithm, for example, performing a swap using
to 4.56. three CNOT gates might be a solution that is found only after

« We synthesize all of the special-purpose reversible fungranching in many other failed directions. An algorithmtt_h.a
tions from [8], in addition to some functions from [15]¢@n Properly identify and move forward on swap opportusitie
that could not be synthesized with classic RMRLS, arfd@y have a better chance at quickly obtaining a solution.

show that the additional gate types can reduce the gateour next example presents a function that may be realized
counts and quantum costs of synthesized circuits. with the use of a three-bit Fredkin gate. The Boolean equiva-

lents of the operations of the-bit Fredkin gates may be less

The rest of the paper is organized as follows. Section dbvious whem > 2. For example, suppose we need to realize
provides motivational examples for including SWARsbit the function:

Fredkin, or Peres gates in the synthesis algorithm. Section

Il provides our methodology for extending RMRLS. Section Gout = a @ be

IV details our synthesis of numerous reversible functiomd a bout =b® ab® ac

compares these results to those of the existing NCT RMRLS Cout = € B ab® ac (5)

as well as other synthesis algorithms. Section V offers our]]]]
conclusions. To see how this function could be synthesized using a

controlled swap (i.e., a Fredkin gate), it is easiest to lab&ne
such realization, as shown in Figure 3. A four-gate redbirat
without using Fredkin gates is shown in Figure 4. Even for
n-bit Fredkin gates whose Boolean operations may be less
intuitive, identifying the single-gate substitutions mmyprove
This section motivates the need for the support of Fredkife search algorithm’s synthesis ability and also reduee th
and Peres gates in reversible logic synthesis. We show SofM@rage gate count.
simple functions that can benefit from synthesis with the aAn additional problem arises when attempting to synthesize
additional gate types, under the suggestion that largetifums the above function using RMRLS. The circuit obtained by
are also likely to benefit, as evidenced by the experiment@ssic RMRLS is shown in Figure 5. Although this circuit
results given later. also consists of four gates, it uses more control bits. If the
The simplest kind of Fredkin gate is a two-bit Fredkin gatejuantum cost [14] for these circuits is evaluated, the cést o
also known as a SWAP gate. For an example of a functitime circuit in Figure 4 is 12 while the cost of the circuit

II. MOTIVATIONAL EXAMPLES

a 9— a®bc circuit through matching candidate factors. These faatefier

b L b®ab®ac to common sub-expressions in the Reed-Muller expansions.
What ties the original algorithm to Toffoli gates only is thiae
candidate factors and corresponding substitutions aiigrokes

to match the operation of Toffoli gates. In order to exteral th
algorithm to Fredkin gates, it is necessary to devise a amil

[—— c®abdac

Fig. 3. Two-gate implementation using a three-bit Fredlateg

T scheme to detect Fredkin candidate factors.
RN a®be In the original NCT-enabled RMRLS, the candidate factors
b () 1 () b®ab®ac for Toffoli gate transitions must be of the form:
¢ % c®ab®ac Vout,i = V; B factor & ... (6)
Fig. 4. A practical four-gate implementation of the revelsispecification Wherevi_ refers to a smgle Varlabl@o“t=i_ refers to the unique
given in (5) using only Toffoli and CNOT gates. output line labeled byv;, and factor is a term that does
not containv;. There may also be other terms in the PPRM
a C) a® be expression fomout,z-_. o . _
b N M beabeac The corresponding substitution performed if such a candi-
Y KN Y date factor is found mimics the operation of a Toffoli gate,
c N c®ab®ac and thus looks similar to the expression given in (6):
Fig. 5. Suboptimal four-gate implementation of the revsesispecification vi = i @ factor (7)
given in (5) using only Toffoli gates, as can best be found B(JINRMRLS. | fact, a relaxed rule allows the substitution to be perfedm
even in the case when; does not appear in the original
a () a®bc expression. Any sort of relaxed detection schemes are,legal
b B P—bveawea but the substitution itself must be carried out in its enyire
c () c®ab®ac as W|_tho_ut omittingv;. For e_xample, even if a Tof_foll gate
Peres.” substitution is initiated from just the PPRM expressiQp; =
gate be, the substitution performed would le— a @ be.

Just as Toffoli candidate factors are Boolean expressions
Fig. 6. Three-gate implementation of the reversible spetitin given in revealing the operation of Toffoli gates, the form of a Friedk
(5) using a Peres gate. candidate factor can be obtained by looking at the definition
of the operation of a Fredkin gate. This requires rewritimg t
o) definition from (2) in PPRM form. Since the expression must
in Figure 5 is 20. Although RMRLS has been shown to bge in positive polarity, there can be no complement opematio

effective at reducing the gate count, its search technidoes 5ng gl intermediate operations must be either AND or XOR.
not necessarily minimize the number of control bits, andceenThys, the expressions become:

guantum cost, very well.

These examples of circuit simplification provide motivatio Yn—1 = Tn—1 & Tn—1(T122...Tn—2) ® Tn(T122...Tp—2)
for using SWAP orn-bit Fredkin gates. A similar argument Yn = Tp B Tp—1(X12T2...Tp—2) B Tp(X122...2p—2) (8)
can be made for including the Peres gate in synthesis, as it is L
expected to often take the place of a CNOT gate and three-\éllpen we represent the common terms as a characteristic
Toffoli gate and thus slightly reduce the gate count. Figaire/ @¢t0T this becomes:

'Srh?fwl's a possiZIeC li\lng)_ll_ementa:tion of (5) using.a P(Trelsogate, Vout.i = vi ® vi(factor) @ v (factor)
offoli gate, an gate. Its quantum cost is only 10. _

The examples given in this section show that early detection Vout.j = v; ® vi(factor) & vy (factor) ©)
and placement of Fredkin and Peres gates enables the jpossilliis is more restrictive than the candidate factors thae giv
ity of improved synthesis results. The following sectioails rise to Toffoli substitutions. For one, it requires a totélsox
our methodology for the modifications that allow RMRLS tanatching terms. Second, it requires terms in a PPRM expres-
implement these additional gate types. sion forve,:,; to match terms in another PPRM expression for
Vout,;- AS a result, these expressions are not a subset of those
with Toffoli candidate factors, but rather a disjoint set.

We next present our synthesis methodology. Just as the Toffoli conditions have a relaxed form, we also

)) opt to use relaxed rules for Fredkin conditions so as to not
A. Fredkin Candidate Factors require all six matching terms. One advantage of a relaxed

The synthesis technique in this paper is an extension aproach is simplification of the candidate factor detectio
RMRLS [8]. RMRLS uses the PPRM expansion of reversiblecheme. Another advantage is that there may still be a benefit
functions and then traverses a search tree to synthesiz&oan using a Fredkin gate even when not all six terms are

I1l. METHODOLOGY

present. If all six terms are present, use of a Fredkin gate caubstitution. For the Toffoli substitutions, we have thead
potentially reduce the six terms to only two terms. If oneh&f t tage thatf actor would never contain its corresponding One
six terms is missing, for example, we could likely end up witkonvenient effect of this is that when a PPRM expression is
three terms remaining, whereas the substitution of a Tioffsepresented as a sorted linked list, to perform the subistitu
gate is typically made with the expectation of reducing thithe appropriate terms can be added without the worry that
complexity by one term. If the result of a substitution tuong they may affect later substitutions. When performing a kired
to be ineffective, it will automatically be given a low prityr substitution, or even a two-way SWAP, we do not have this
in the search tree. The downside of such relaxed condit®nduxury since the additional terms will contain instances of
that many of these extra nodes along with their children cap and v;. In order to work around this, we do not insert
pollute the priority queue and slow down the algorithm. new terms into the linked list “in place”. Rather, we create
In the end, we chose to use a candidate factor requiremantentirely new linked list of PPRM terms, then destroy the
requiring only two matching terms. The requirement is thald one. This implementation issue likely adds some ovathea
a PPRM expression far,,; ; must contain terms; (factor) although its runtime is at most linear with respect to theythn
and v;(factor). This simplifies the search procedure, sincef the linked list of PPRM terms.
such a restriction does not depend on terms in the PPRM i
expression ofv,,; ;. Under this condition alone, a potentialC- Peres Candidate Factors
Fredkin branch in the search tree can be created with a&s littl The Peres gate presented in Section | must also have its
as two out of six of the ideal matching terms. Our searatorresponding candidate factors and substitutions inraae
procedure mirrors that of the search for Toffoli candidatee implemented in synthesis. Since a Peres gate is equivalen
factors. In the Toffoli case, we would search for terms ito a three-bit Toffoli gate followed by a CNOT gate, we in fact
Vout,; that do not contain;. For the Fredkin case, instead wause the same candidate factor search mechanism as already
examine any terms that do contain Once these are found,implemented. Since we restrict our study to three-bit Peres
we search for any matching subfactor in the same PPR)ates, we add the artificial restriction that tfiector, which
expression that is identical to the candidate factor, extmp does not contain;, must consist of exactly two variables.
replacinguv; with some other variable;. For example, the Unlike Toffoli and Fredkin gates, the Peres gate is not self-
PPRM expressior,,; = abc @ abd satisfies this condition, reversible. This means that the reverse of the Peres gafe [21
becauseabc does containc and abd is the corresponding is actually a different gate, and we must account for thisuin o
subfactor withe replaced byd. synthesis. The PPRM functional specification of the reverse
Among special cases, assumifigctor to be 0 in (9) results Peres gate is shown below:
in mere pass-through gates, or gates that do nothing. De-
tecting and substituting in such expressions is useles&nwh
factor = 1, however, this is a candidate for a direct SWAP Y2 = T2
(two-bit Fredkin). This case must be detected differertyrf ys = To B T3 B T1T2 (11)
typical n-bit Fredkin cases where > 3. This can be seen by
substituting factor = 1 into the expressions and seeing that !N all, the only difference between this specification and
the v;(factor) term cancels out and thus cannot be detectéfit of the Peres gate is the additionalterm in the PPRM
directly. Thus, the two-bit swap is somewhat of an exceptigipPression foys. Thus, we can use this as the distinguishing
in the candidate factor detection scheme. The requirenoent €hoice to decide between whether to apply a Peres or reverse-
a matching candidate factor is that of a term containing onf}eres gate upon encountering the appropriate two-variable
a single variable that is different from,,, ;. Again, this is candidate factor. Suppose a PPRM contains a Toffoli catelida
one form of a relaxed rule. A more restrictive requiremefictor as specified in (6):
would be thatv,.:,; containsv; while v, ; containsv; (for
example,a,,; = b andb,,; = a). However, we opt for the
less restrictive case because it gives us the most room foifo be considered as a Peres candidate, fthetor term
exploration. must contain two variables, sayandb. If a also appears in
B. Eredkin Substitutions the_ PPRM expression foroutyl-,_a search branch i_s attempted
) o _ using a reverse-Peres gate withas the control bit. I also
Appropr_late substitutions are performgd upon Iocatmtj;—suhppears in the PPRM expression fgr, ;, a search branch is
able F:ar!dldate factors and th_elr matching §ubfactors. eTh%ﬁtempted using a reverse-Peres gate wiéls the control bit.
sub'_stltuuons match t_hg operation of a Fredkin gate, as BhOW aither ¢ or b does not appear in the PPRM expression, then
earlier, and are specified as follows: branches would be created using a regular Peres gateawith
vi — v; @ vi(factor) @ v, (factor) orb as .the control bit. . _
v; — v; vi(factor) @ v; (factor) (10) As with relaxed candidate factor detection schemes before,
J I J the Peres detection schemes do not requjréo appear in
There is one additional complexity in the implementation ahe PPRM forv,,,. ;. Even if many of these substitutions turn
complex substitutions, such as the one required for a Fnedkiut to be poor choices, the optimistic approach here assumes

Y1 =21 O x2

Vout,i = Vi @ factor @ ...

that poor substitutions will be properly tagged as such @ tltypes, such as Miller [19] and Margolus [13] gates, could als
search algorithm. be developed using the same basic approach. The two primary
o requirements for enabling synthesis of any arbitrary gate a
D. Peres Substitutions a candidate factor condition and a procedure for performing
The non-self-reversibility of Peres gates brings up anothie gate’s substitutions. Candidate factor conditions lban
issue when considering the appropriate substitutions pdyapobtained by writing the gate’s functional specification in
upon matching candidate factors. To properly transform tiPRM form. The substitution used for such a branch can be
PPRM expressions, we find that the substitutions on applyidgrived by writing the functional specification of the gate’
a Peres gate turn out to be the exact substitutions that defieeerse in PPRM form. The reasons for this slight techrticali
the operation of a reverse-Peres gate. The substitutiguiedp with non-self-reversible gates is explained in SectiorFllI
are as follows: The flow given in Figure 7 actually only considers the case
of an exhaustive search where the algorithm terminates once
a solution is found. There are actually other customizable
a—a®b (12) options such as a greedy heuristic search and the ability to
where factor refers to the two-variable expressianyefers ?;J‘r:'gue searching for better solutions after one soluton
to one of two variables chosen to be the control bit, while ' . -
. . - RMRLS also contains many heuristic parameters to tune
a is the other variable. Thusfactor = ab. For the above . . . i -
transformations, it may be tempting to serialize the stupsti Its priority queue mechanism and_ pruning limits. Although
we also believe that these heuristics may have potential

tions asa — a @ b followed by v; — v; @ factor. Although for dramatically improving the algorithm’s performancedan
this implementation leads to a correct result while the iothe y Imp 9 9 P

possible serialization does not, it is best to reason aboUIcCeess rate, we opted not to modify these configuratioris. Th

and implement all multiple substitution rules as simul way we were able to provide fair comparisons against the NCT

substitutions. This is especially important in Fredkin egatreSUItS provided in [8].

substitutions, as no possible serialization for (10) camemtly E Reversed Substitutions
perform a controlled swap. : Because RMRLS synthesizes reversible circuits in the for-
Because the substitution required for a reverse-Peres %te

: . . ard direction, it may not be obvious as to why the sub-
reflects the operation of a Peres gate, its expressions are .. .
. :) : - . stitutions for a Peres gate reflect the operation of a reverse
slightly simpler, matching the equations defining the oplena

of a forward Peres gate given in (3): Peres gate. Because NOT, CNOT, and Toffoli gates are self-
' reversible, this directionality was not an issue in the ioag

v; — v; ® factor RMRLS.

(13) Although RMRLS adds new gates from the beginning to
the end of a synthesized circuit, its starting point is thgda

In Section IlI-F, we provide further intuition for why Peresfunction and ending point is the identity function. Thus, a

gate substitutions are defined by the reverse-Peres gate eqeversal effect is achieved while still applying gates ie th

tions, and explain how this duality applies to other gates. forward order. This comes about because of a duality between

As in the implementation of Fredkin substitutions, theubstitution and operation. An operation (for examplgs «
modification of the PPRM linked lists requires creating aby,.; ® cou:) SetsSa,,: based on the current PPRM expressions
entirely new list. The optimization of an “in place” linkedt for other output variables. A substitution (for exampie—
modification is probably only applicable for the specialeas) ¢ ¢) modifies any and all PPRM expressions that contain
of Toffoli gates. a. An operation has the effect of placing a new gate at the

) output, while a substitution has the effect of placing a new
E. Algorithm gate at thd@nput of the currently expressed function.

The encompassing algorithm framework is still the same Because each substitution has the purpose of gradually
as the one used in the original NCT-enabled RMRLS [8]. Aimplifying the original function toward the identity futian,
priority queue is used for storing partial solutions, anéath the proper transformations must actually represent thersev
iteration a new node is explored. The differences between @f each applied gate. This technicality does not matter when
algorithm and the original one are two new kinds of candidatiefining the substitutions for self-reversible gates sush a
factor detection schemes and their corresponding sutistitu Toffoli and Fredkin gates, but must be upheld with Peresgyate
A flow chart depicting a high-level view of the algorithm islf we were to implement any other non-self-reversible gate,
given in Figure 7. This diagram is in the form of the algorithngsuch as the Margolus gate, its substitutions must also take
given in [1], although it has been extended to include ak¢hrinto account this directionality.
kinds of candidate factor detections and their correspandi)
substitutions. G. Synthes's Example

Our method for adding new gates into the RMRLS frame- To provide examples of using the various substitutions, we
work suggests that synthesis with any other primitive gatlemonstrate the process of synthesizing the specificaiien g

v; = b@v; & factor

a—>a®db

Store PPRM expansions of
function in priority queue

!

Pop node with highest priority
from priority queue

More factors?

Yes

Toffoli: Select Substitute v, —» v; ® factor into PPRM
possible factor expansions to form newnode
Fredkin: Select possible Substitute v; — v; ® v{(factor) @ v{factor) Insert newnode
matching terms v/ factor) and v;— v; ® v{factor) ® v{factor) into . -
i i !) into priority queue
and v{factor) PPRM expansions to form newnode
Peres: Select possible Substitute a > a ® band v, — v, ® b @ factor
factor containing exactly (or v; > v; @ factor for reverse-Peres) into
two variables PPRM expansions to form newnode

Synthesis complete?

End of Algorithm

Fig. 7. Flow chart depicting the search procedure in RMRL8& wiultiple gate types.

in (5). Because the circuits shown in Figures 3, 5, and 6 caounts for the NCTSFP as we were unable to find such data
all be synthesized with the extended RMRLS (we will seim the literature. Overall, the extended RMRLS provideddyet
later in Section IV-D how the circuit in Figure 4 can also bgate counts than all existing heuristic NCTS and NCTSF
obtained), an exhaustive search would actually encoutiter @lgorithms, and to the best of our knowledge this is the first
three solutions, as shown in Figure 8. The synthesis examplgorithm to target the NCTSFP gate library.

shown depicts various search paths that reach these sdutio

A large number of other search nodes, many of which d9® Other Benchmarks

not lead to solutions, would also be covered in an exhaustive o o)
search. For clarity, these have been omitted in the figure. ~ One of the significant capabilities of the RMRLS algorithm
is its ability to synthesize functions of as many as 16 vdeiab

IV. EXPERIMENTAL RESULTS [8], whereas some other algorithms may become impractical
We next provide experimental results. for such a regime. Since our extensions allow types of gates
to be optionally specified by the user, at the very least the

A. Functions of Three Variables modified RMRLS retains all the capabilities of the original

A standard practice for comparing heuristic reversibledogalgorithm. The question then remains as to whether enabling
synthesis algorithms is to examine the success at gate mimgw gates retains the algorithm’s usability and can further
mization for all three-variable reversible functions. Wetain reduce gate counts for large functions.
these results by running synthesis on all 40,320 possibéeth To answer this question, we use the same benchmark suite
variable functions. Table | shows our synthesis results @&s in [8], and synthesize all benchmarks with Fredkin and
NCTS, NCTSF, and NCTSFP modes, which are formed Weres gates enabled. All of these benchmarks are included in
enabling the SWAP (Sh-bit Fredkin (F), and Peres (P) gatesthe public releases of the original RMRLS as well as the new

We compare our results against various other heuristiersion featured in this paper. Each benchmark was atteimpte
algorithms, as well as the optimal results reported in [2% the greedy, exhaustive, and default modes, and the best
and [6]. Among heuristic algorithms, RMRLS provides bettaesult was chosen from among these. If given infinite time
results than the use of extensive template libraries in.[1&nd memory, the exhaustive mode could theoretically always
Not shown in the table are the NCTS results for templatgsovide the best results. On our system, however, for seotra
[18], which have been shown to be inferior to the NCT#he larger functions the exhaustive search cannot be coedple
results in [11]. Also not shown are the NCTSF results fromven in 24 hours. Most results shown were obtainable in the
[11], which were unable to improve upon the NCTSF templatiefault timeout limit of 180 seconds. Thegcle and adder
library results in [18]. We have not reported the optimalegafunctions, however, have relatively large specificatiomsl a

Coit=C®ab®ac
by =b®ab®ac

out —

=a®bc

Peres:
a—>ad®c®bc
bo>b®c

3out

Toffoli:

a—>a®hbc Fredkin:

b—-b®ab®ac
c—o>c®ab®ac

Cot=C @ab®ac Cop=C@ab

byy=b®c®ab
Bou =2

Toffoli:
a—adbc

Toffoli:
b—b®ac

SOLUTION:
2 gates
quantum cost = 10

Toffoli:
c—oc®ab

Toffoli (CNOT):
b->b®c

SOLUTION:
3 gates
quantum cost = 10

SOLUTION:
4 gates
quantum cost = 20

Fig. 8. Various search paths taken in the synthesis of thersible specification given in (5).

TABLE |
SYNTHESIS RESULTS FOR ALL THREEVARIABLE REVERSIBLE FUNCTIONS RMRLSIMPROVES UPON ALL OTHER HEURISTIC ALGORITHMS IN BOTH THE
NCTSAND NCTSFCATEGORIES THE AVERAGE GATE COUNT ALSO REDUCES SIGNIFICANTLY WITH THE ADITION OF PERES GATES

No. Miller [20] | Kerntopf [11] | Maslov [18] || Optimal [23] | Optimal [23] | Optimal [6] || RMRLS [8] | RMRLS | RMRLS | RMRLS
Gates. NCTS NCTS NCTSF NCT NCTS NCTSF NCT NCTS NCTSF | NCTSFP

11 5

10 110

9 792 86 9 36 2

8 4,726 2,740 512 577 32 3,351 574 18

7 11,199 11,774 5,503 10,253 6,817 496 12,476 9,242 2,201 18

6 12,076 13,683 13,914 17,049 17,531 14,134 13,596 15,893 | 15,105 3,567

5 7,518 8,068 13,209 8,921 11,194 17,695 7,479 9,998 15,521 19,786

4 2,981 3,038 5,680 2,780 3,752 6,474 2,642 3,617 5,984 13,198

3 767 781 1,290 625 844 1,318 625 844 1,288 3,290

2 130 134 184 102 134 184 102 134 184 430

1 15 15 18 12 15 18 12 15 18 30

0 1 1 1 1 1 1 1 1 1 1
Avg. 6.18 6.01 5.44 5.87 5.63 5.13 6.10 5.75 5.25 4.56

thus took much longer. Some benchmarks, such as these, west results when optimizing for reduced quantum cost.

given extra time ranging up to one hour. In calculating quantum costs, we use the table and rules
We compare our results in terms of gate count and quantdimmm [15]. The cost of a Fredkin gate is typically obtained
cost. Although RMRLS was originally designed to optimizéy taking the cost for a Toffoli gate with the same number
only the gate count, improved quantum cost over result$ inputs, and then adding two to account for two CNOT
from existing algorithms has sometimes been a side effedtes which can combine with a Toffoli gate to form a
[8]. Building upon this, we reasoned that the algorithm carontrolled swap. If all cost calculations were of this forttme
focus on any metric, so we added an option to optimize ftest possible quantum cost would not improve with Fredkin
guantum cost. We report our gate counts and quantum cogédes. There is, however, a known implementation of thiee-b
in two categories in Table 1. Shown are our best results whé&medkin gates with a quantum cost of five, which is the same
optimizing for the minimum number of gates, as well as ows the cost of a three-bit Toffoli gate. When such gates are

TABLE I
SYNTHESIS RESULTS FOR REVERSIBLE LOGIC BENCHMARKS IN THEICTSFPMODE COMPARED TO THE BASICNCT MODE OF THE ORIGINALRMRLS.

Benchmark Real | Constant| Gates Cost Gates Cost Gates Cost
inputs inputs NCT [8] | NCT [8] NCTSFP min-gatess NCTSFP min-gates|| NCTSFP min-costf NCTSFP min-cost
20f5 5 2 20 100 20 96 20 92
alu 5 0 19t 163f 16 171 21 119
rd32 3 1 4 12t 4 12 5 9
rd53 5 2 13 116 13 91 17 78
3.17 3 0 6 14 5 12 5 11
4.49 4 0 13 61 10 36 12 29
xor5 5 0 4 4 4 4 4 4
4mod5 4 1 5 13 5 13 5 13
5mod5 5 1 11 91 11 93 11 91
ham3 3 0 5 9 4 9 4 7
ham?7 7 0 —T —t 20 76 22 67
hwb4 4 0 15 35 9 27 10t 19t
hwb5 5 0 — — 26 196 35 175
decod24 4 0 11 31 10 48 11 30
cyclelQ2 12 0 27 1,469 17 1,198 24 1,060
cycle152 17 0 41t 4,201 27 3,242 27 3,242
cycle282 30 0 80f 19,108 78 19,101 78 19,101
50ne013 5 0 19 95 16 97 16 93
50ne245 5 0 20 104 14 101 18 79
60nel35 6 0 5 5 5 5 5 5
60ne0246 6 0 6 6 6 6 6 6
majority3 3 0 4 16 3 14 4 13
majority5 5 0 16 104 13 94 14 81
graycode6 6 0 5 5 5 5 5 5
graycodel0 10 0 9 9 9 9 9 9
graycode20 20 0 19 19 19 19 19 19
mod5adder 6 0 19 127 16 139 18 103
modl15adder 8 0 10 71 7 65 11 54
mod32adder 10 0 15 154 11 146 19 127
mod64adder 12 0 26 333 20 346 20 289

T Some results in [8] are not repeatable with the publicly latsé RMRLS due to modified heuristics in the released verskor these, we have compared
to our best obtainable NCT results running on the releasesiore
¥ In only one casehwb4, did the extended branch heuristic improve the best obilnguantum cost.

usable, the addition of Fredkin gates can serve to reduce tfevarious benchmarks. When optimizing for quantum cost,

guantum cost. The Peres gate itself is also a special cate, wie often obtain different circuits possibly with an increds

a quantum cost of four even though an equivalent circuitgisigate count, but always with a quantum cost that matches or

Toffoli gates would consist of a three-bit Toffoli alongsi@ improves upon the circuits obtained in [8] or by the heuristi

CNOT gate for a total cost of six. that optimizes the gate count. Furthermore, the addition of
As one example of a synthesized circuit, oufredkin and Peres gates allowed synthesisof7 andhwb5

minimum cost realization of thenajority5 function is that (within the constraints of our 4 GB RAM and non-infinite

as follows: TOF3(a,b;e) TOF2(a;b) RPER(b;d;e) runtime) are not synthesizable in the NCT-only mode.
TOF3(b,c;e) TOF2(a;c) TOF3(b,d;c) TOF3(b,c;a))
TOF3(a,e;d) PER(a;d;b) TOFA(b,d,e;a) PER(c;b;a) C. Runtime
FREDA(d,e;a,b) TOF2(c;a) TOF4(a,d,e;c) for a |n[8], RMRLS was shown to be extremely robust in terms
quantum cost of 81 realized with 14 gates. We denote Toff@j its ability to find solutions within a practical amount of
gates asI'OF#(cbity...chit,—1;tbit) where # denotes the time. Our extensions for additional gates can be turnedtoff a
size of the gate, thebit terms designate zero or more controjyntime. Thus, if the goal is to find a solution, even if it is
bits, andbit designates the target bit. Fredkin gates hawghoptimal, then at the very least a user can obtain thigusin
a similar notation of FRED# (cbity...cbitn—2;tbity, thit2) the NCT mode only.
where there are two target bits. Peres gates are denoted 3&s expected, using additional gates in the search tree does
PER(cbit; thitror; thitonor), wheretbitror signifies the giow down exhaustive searches. This is because the aduition
target bit for the output characteristic of a three-bit ®ff pranches at each node can further lead to more branches
gate and thiloyor represents the remaining target bitspawning from them, effectively increasing the exponéntia
Reverse-Peres gates are denotediyER with the same growth rate of the search tree. In many cases, we found that
format. exhaustive searches when including Fredkin and Peres gates
Overall, our results show that the addition of Fredkin ancbuld take up to four times as long as their corresponding
Peres gates can always match and often improve the gate cd@T runtimes.

TABLE Il

On the other hand, we did not see the same increase |
g] TE COUNTS FOR THELO BENCHMARKS FROMTABLE |l THAT CAN BE

runtime for greedy searches where the purpose was to fin
. . .. SYNTHESIZED WITH FEWER GATES IF THENCTSFPLIBRARY ASSUMES
any solution. In fact, when asked to find any—not necessarily
PERES GATES OF MORE THAN THREE INPUTS

optimal—solution, for the majority of benchmarks in Tablg |

we were able to obtain some solution in less than a second. The Benchmark | Gates NCTSFP| Gates NCTSFP|
only benchmarks that took longer than 10 seconds to obtain a | thfee'fg Peres ”'b'tlfe“?s
. . alu
solution in the greedy mode weraim7 (67 seconds)hwb5 ham?7 o1 18
(77 seconds), anflone245 (39 seconds). cycle102 17 12
All results in this paper were obtained on a platform cyc:e%gg % ég
A . cycle
utilizing an AMD Athlon X2 2.0 GHz_ processor along with 4 Sone0l3 16 15
GB of RAM running Fedora Core Linux. majority5 13 11
mod15adder 7 6
D. Extended Branches Heuristic mod32adder 1 9
mod64adder 20 18

The discrepancy between the circuit given in Figure 4 and
the equivalent circuit in Figure 5 raises an issue for the
original substitution rules of RMRLS. Even in the exhaustiv
search mode, RMRLS would never come across the solutia@w our results would change if we assumedit Peres gates
shown in Figure 4 simply because all of the candidate factct§ well asn-bit reverse-Peres gates.
encountered contain at least two variables and thus rasult i In general, any:-bit Peres gate serves as the equivalent of
transformations representing only three-bit Toffoli gatén ann-bit Toffoli gate followed by an» —1)-bit Toffoli gate, as
order to obtain the circuit in Figure 5, which has a reducd@ng as the control bits and target bit of the smaller Toffaite
quantum cost, the algorithm would have to traverse brancHesm a subset of the control bits of the larger gate. A reverse
signifying CNOT gates even when a one-variable candiddteres gate performs a similar function except the equivalen
factor is not available. circuit would have the smaller Toffoli gate placed first.

An even simpler case that signifies this problem can beBecause there are no known quantum costs for Peres gates
found when attempting to synthesize a three-bit Fredkie gdietter than their equivalent Toffoli gate-based realagi it
using only Toffoli gates. As revealed in [8], RMRLS canno€annot be assumed that userobit Peres gates is expected
synthesize the minimum quantum cost solution for this badie reduce the quantum cost, at least under our current cost
case, even if its solution is minimal in terms of the gatealculation schemesa-bit Peres gates would, however, be
count of three. In general, the observed effect is that ragkiexpected to reduce the gate counts of various reversible
any protection against these cases can result in circutts wpenchmarks. If it is later found that-bit Peres gates also
higher than expected quantum cost. However, we would reave quantum costs less than their correspondibg@ Toffoli
necessarily expect much difference in gate count. gates, as in the three-bit case, it will make sense to expect

To address this problem, we provide the option of additionatbit Peres gates to be a fundamental building block in gate
substitutions. Like the conventional substitutions, ¢hese libraries.
still based on detected candidate factors. Our special ruleTable Il shows the subset of benchmarks that can be synthe-
however, is that for any giveffiactor, as depicted in (6), we sized with fewer gates using thebit Peres gate assumption.
may substitute a term based on a subset of the variableOnly 10 out of the original 30 benchmarks were able to utilize
factor. For instance, if a substitution of the forin— a © bc Peres gates of more than three bits. Regarding quantum cost,
is suggested by a candidate factor, this substitution wbeld with only a pessimistic assumption for higher-ordered Pere
performed in addition tae — a®b, a — a®c, anda — a®1. gates, these realizations do not reduce the cost under our
The same expansion is also applied to Fredkin candidateslculation methods. Thus, we have only listed the number
With this extended branching heuristic, there can quickisea of gates.
an intractable number of nodes in the search tree. Thus, aAAs a Peres gate fulfills the function of two Toffoli gates
the current time this heuristic is only usable for functiamis in sequence, theycle benchmarks benefit by far the most
relatively few variables. from the n-bit Peres gate assumption. The realizations of

Among all benchmarks, the only one which this heuristicycle functions typically include long chains of Toffoli gates
improved upon waswb4, with its quantum cost reduced fromoperating on a large set of control bits gradually decregisin

27 to 19. size. Replacing each pair of Toffoli gates with a single Bere
] gate effectively halves the total number of gates.
E. n-bit Peres gates While in an ideal situation, the-bit Peres gate assumption

The bulk of this paper assumes three-bit Peres gates. Wéild reduce circuit size by half, this does not explain how
chose this because it is the accepted definition used by the circuit size ofcycle28_2 reduced by even more than 50%.
reversible logic community, and assuming a systemudifit Taking this realization and decomposing the larger Pertesga
Peres gates would exaggerate the gate count reduction ffor back into their Toffoli equivalents results in a gate couirb®,
benchmark results. Nonetheless, it is interesting to demsi better than the other realization of 78 gates. This appedre t

a result of the unpredictable side effects of heuristic prgin [13] N. Margolus, “Physics and Computation,” Ph.D. disagon, Mas-

under different configurations.

V. CONCLUSIONS

This work builds upon the state-of-the-art reversible ¢ogi

synthesis algorithm to include Fredkin and Peres gates.

have shown that the process of adding new gates to thg
algorithm is a generalizable methodology applicable to a

arbitrary gate.

For three-variable functions we show that, when including
SWAP and Fredkin gates, RMRLS outperforms all othét®]
known heuristic methods. Including Peres gates as well re-
duces the average gate count for three-variable functionsido)
4.56, notably better than even the optimal case of 5.13 when
using Toffoli, SWAP, andr-bit Fredkin gates. For reversible[21
benchmarks, the additional gate types are often able taceedu
circuit size in terms of gate count or quantum cost, dependi22]

on the option requested by the user.

We have implemented these extensions into RMRLS such
that the combination of gate types, limitations on those
gates, and choice of whether to optimize for gate count B?
guantum cost can be chosen by the user at runtime. This
new release of RMRLS is freely available for download d24]

http://www.princeton.edu/cad/.

VI. ACKNOWLEDGMENTS

We would like to thank Pallav Gupta for his assistance
with RMRLS, and the anonymous reviewers for their helpful
comments. This work was supported in part by NSF under

Grant No. CCF-0429745.

REFERENCES
[1] A. Agrawal and N. K. Jha, “Synthesis of Reversible Logiry, Proc.

Design Automation & Test in Europe Conf., vol. 2, Feb. 2004, pp. 1384—

1385.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. di Vincenzo, Nargblus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elemantaates for
Quantum Computation,Phys. Rev. A., vol. 52, pp. 3457-3467, 1995.

[3] C. H. Bennett, “Logical Reversibility of Computation\BM Journal of
Research and Development, vol. 17, no. 6, pp. 525-532, 1973.

[4] R. Cuykendall and D. R. Andersen, “Reversible Opticalnaiting
Circuits,” Optics Letters, vol. 12, no. 7, pp. 542-544, 1987.

[5] A. de Vos, “Proposal for an Implementation of Reversiltkates in
CMOS,” Intl. Journal of Electronics, vol. 76, pp. 293-302, 1994.

[6] G.W. Dueck, D. Maslov, and D. M. Miller, “Transformatidmased Syn-
thesis of Networks of Toffoli/Fredkin Gates,” iRroc. |IEEE Canadian
Conf. Electrical and Computer Engineering, May 2003, pp. 211-214.

[7] E. Fredkin and T. Toffoli, “Conservative LogicJournal of Theoretical
Physics, vol. 21, pp. 219-253, 1982.

[8] P. Gupta, A. Agrawal, and N. K. Jha, “An Algorithm for Syn-

thesis of Reversible Logic Circuits,IEEE Trans. CAD, vol. 25,

no. 11, pp. 2317-2330, Nov. 2006, tool available for dowdioa

http://www.princeton.edd’ cad/.

[9] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,

“Quantum Logic Synthesis by Symbolic Reachability Anadysin Proc.
Design Automation Conf., June 2004, pp. 838-841.

[10] K. lwama, Y. Kambayashi, and S. Yamashita, “TransfdfaraRules for
Designing CNOT-based Quantum Circuits,””noc. Design Automation
Conf., June 2002, pp. 419-424.

[11] P. Kerntopf, “A New Heuristic Algorithm for Reversibleogic Synthe-
sis,” in Proc. Design Automation Conf., June 2004, pp. 834-837.

[12] R. Landauer, “Irreversibility and Heat Generation imetComputing
Process,"|BM Journal of Research and Development, vol. 5, pp. 183—
191, July 1961.

sachusetts Institute of Technology, Cambridge, MA, 1988.

D. Maslov, “Reversible Logic Synthesis,” Ph.D. didsgion, The Uni-
versity of New Brunswick, Fredericton, New Brunswick, Cdaa2003.
——, “Reversible Logic Synthesis Benchmarks Page,”
http://www.cs.uvic.caf dmaslov/, 2007.

D. Maslov and G. W. Dueck, “Reversible Cascades With iMed
Garbage,"EEE Trans. CAD, vol. 23, no. 11, pp. 1497-1509, Nov. 2004.
——, “Toffoli Network Synthesis with TemplatesfEEE Trans. CAD,
vol. 24, no. 6, pp. 807-817, June 2005.

D. Maslov, G. W. Dueck, and D. M. Miller, “Fredkin/Toffio Tem-
plates for Reversible Logic Synthesis,” Rroc. IEEE/ACM Intl. Conf.
Computer-Aided Design, Nov. 2003, pp. 256-261.

D. M. Miller, “Spectral and Two-Place Decomposition chaiques in
Reversible Logic,” inProc. IEEE Midwest Symp. Circuits and Systems,
vol. 2, Aug. 2002, pp. 493-496.

D. M. Miller, D. Maslov, and G. W. Dueck, “A Transformat Based
Algorithm for Reversible Logic Synthesis,” iAroc. Design Automation
Conf., June 2003, pp. 318-323.

] A. Peres, “Reversible Logic and Quantum ComputeRs. Rev. A,

vol. 32, pp. 3266-3276, 1985.

M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowskeske,
A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppotnd
B. Massey, “Regular Realization of Symmetric FunctionsndsRe-
versible Logic,” inProc. EUROMICRO Symp. Digital Systems Design,
2001, pp. 245-252.

] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Haye3yrithesis

of Reversible Logic Circuits,’EEE Trans. CAD, vol. 22, no. 6, pp.
710-722, June 2003.

J. A. Smolin and D. P. DiVincenzo, “Five Two-bit Quantu@ates are
Sufficient to Implement the Quantum Fredkin Gat€hys. Rev. A,

vol. 53, pp. 2855-2856, 1996.

T. Toffoli, “Reversible Computing,” inAutomata, Languages and Pro-
gramming, J. W. de Bakker and J. van Leeuwen, Eds. Springer Verlag,
1980, pp. 632—-644.

