
Reversible Logic Synthesis with
Fredkin and Peres Gates

James Donald and Niraj K. Jha
Department of Electrical Engineering

Princeton University
jdonald@alumni.princeton.edu, jha@princeton.edu

Abstract— Reversible logic has applications in low-power com-
puting and quantum computing. Most reversible logic synthesis
methods are tied to particular gate types, and cannot synthesize
large functions. This paper extends RMRLS, a reversible logic
synthesis tool, to include additional gate types. While classic
RMRLS can synthesize functions using NOT, CNOT, andn-bit
Toffoli gates, our work details the inclusion ofn-bit Fredkin and
Peres gates. We find these additional gates reduce the average
gate count for three-variable functions from 6.10 to 4.56, and
improve the synthesis results of many larger functions, both in
terms of gate count and quantum cost.

I. I NTRODUCTION

Reversible logic is motivated by its applications in low-
power computing. Landauer’s Principle says that some finite
amount of energy will be lost for any irreversible computation,
but this can be avoided in a fully reversible logic implemen-
tation [12]. The challenges of managing power density in
modern and future electronics is a strong reason for seeking
low-power techniques such as reversible logic [5]. Further-
more, reversible logic has applications in communication [23],
optical computing [4], biosynthesis of messenger RNA [3],
and particularly quantum computing [2]. In order for such
reversible logic technologies to be feasibly implemented,full
design flow methodologies, including logic synthesis, mustbe
developed as in the case of conventional irreversible circuits
[22].

In [8], Gupta et al. presented an algorithm for reversible
logic synthesis using networks ofn-bit Toffoli gates. Their
algorithm works by searching for candidate factors in the pos-
itive polarity Reed-Muller (PPRM) forms of the representative
equations that can be substituted to form the operation of a
NOT, CNOT, or n-bit Toffoli gates. By traversing a search
tree along with practical pruning, their algorithm is capable
of synthesizing a wide range of reversible functions with as
many as 16 variables.

An n-bit Toffoli gate can be thought of as a controlled XOR
operation, and is defined as follows [25]:

yi = xi for 1 ≤ i ≤ n− 1

yn = xn ⊕ x1x2...xn−1 (1)

A CNOT gate can be thought of as a two-bit Toffoli gate, and
a one-bit Toffoli gate (y1 = x1 ⊕ 1) is the same as a NOT
gate. In quantum computing, the NOT, CNOT, and three-bit
Toffoli gates are known to have quantum costs of one, one,

and five, respectively, while Toffoli gates of four or more bits
have even greater quantum costs [2]. Another popular gate is
the n-bit Fredkin gate, defined as follows [7]:

yi = xi for 1 ≤ i ≤ n− 2

yn−1 = xn−1x1x2...xn−2 + xnx1x2...xn−2

yn = xnx1x2...xn−2 + xn−1x1x2...xn−2 (2)

For n = 2, a two-bit Fredkin gate can be thought of as an
unconditional SWAP gate (i.e.,y1 = x2 and y2 = x1). A
two-bit SWAP gate has a quantum cost of three and a three-
bit Fredkin gate has a cost of five [24], while higher-order
Fredkin gates are even more expensive [15]. A third type of
gate considered in this paper is the three-bit Peres gate [21].
A Peres gate can simultaneously accomplish the operation
of both a CNOT gate and a three-bit Toffoli gate, with an
operation defined as follows:

y1 = x1 ⊕ x2

y2 = x2

y3 = x3 ⊕ x1x2 (3)

Although the definition of Peres gates given in (3) can be
extended to include multiple control bits and thusn-bit Peres
gates, this work primarily deals with three-bit Peres gatesto
remain consistent with the most common definition used by
the reversible logic community. The three-bit Peres gate is
known to have a quantum cost of four [9].

Because the set of NOT, CNOT, and three-bit Toffoli
gates is known to be capable of synthesizing any reversible
function, many existing reversible synthesis algorithms do not
yet attempt to include “optional” gates such as Fredkin and
Peres.

In addition to [8], there have been many recent works on
reversible logic synthesis, several of which provide synthesis
algorithms that can be practically used, at least for reversible
functions of a limited number of variables. Iwama et al. [10]
presented a framework for synthesis through repeated local
transformations. Shende et al. [23] implemented an algorithm
to find optimal circuits and provided their corresponding
proofs of constructability, although their method is limited
to functions of at most a few variables. Maslov et al. [16]
proposed heuristic methods to synthesize reversible functions
with the aim of minimizing garbage outputs. They further
demonstrated the use of template matching as a heuristic



technique to take suboptimal circuits and simplify them with
a template library [17]. This has even been extended to
include Fredkin gates [18]. However, their template-based
technique generate less efficient circuits compared to [8],and
the addition of new gate types require the generation of an
entirely new template library. Miller et al. [20] demonstrated
an algorithm to synthesize reversible functions using various
bidirectional transformations, although this algorithm often
generates quite suboptimal solutions even for functions ofas
few as three variables.

Our work chooses to build upon RMRLS (Reed-Muller
Reversible Logic Synthesizer) [8] because this algorithm has
been shown to have speed, success rates, and circuit minimiza-
tion ability often exceeding those of the above algorithms.We
further believe this to be a more robust and extensible plat-
form for parameterizable synthesis options, unlike algorithms
requiring pre-derived template libraries, such as those in[18].
This work implements and evaluates extensions to RMRLS for
synthesizing circuits with additional gate types. Our specific
contributions are as follows:

• We propose and implement extensions to the RMRLS
algorithm to includen-bit Fredkin gates and Peres gates,
and detail our methodology that can be applied to any
fundamental reversible logic gate.

• We show that going from the NOT, CNOT, andn-
bit Toffoli gate (NCT) library to the additional SWAP,
Fredkin, and Peres gates (NCTSFP) library reduces the
average gate count for three-variable functions from 6.10
to 4.56.

• We synthesize all of the special-purpose reversible func-
tions from [8], in addition to some functions from [15]
that could not be synthesized with classic RMRLS, and
show that the additional gate types can reduce the gate
counts and quantum costs of synthesized circuits.

The rest of the paper is organized as follows. Section II
provides motivational examples for including SWAP,n-bit
Fredkin, or Peres gates in the synthesis algorithm. Section
III provides our methodology for extending RMRLS. Section
IV details our synthesis of numerous reversible functions and
compares these results to those of the existing NCT RMRLS
as well as other synthesis algorithms. Section V offers our
conclusions.

II. M OTIVATIONAL EXAMPLES

This section motivates the need for the support of Fredkin
and Peres gates in reversible logic synthesis. We show some
simple functions that can benefit from synthesis with the
additional gate types, under the suggestion that larger functions
are also likely to benefit, as evidenced by the experimental
results given later.

The simplest kind of Fredkin gate is a two-bit Fredkin gate,
also known as a SWAP gate. For an example of a function

a

b

c

a bc

c

b

Fig. 1. Two-gate implementation of the reversible specification given in (4)
using a Toffoli and a SWAP gate.

a

b

c

a ⊕ bc

c

b

Fig. 2. Four-gate implementation of the reversible specification given in (4)
using Toffoli and CNOT gates.

that might use this gate in synthesis, consider:

aout = a⊕ bc

bout = c

cout = b (4)

This function quite apparently contains a swap between the
variablesb and c. A two-gate realization for this function is
shown in Figure 1. Alternatively, when using only Toffoli and
CNOT gates, a minimum realization with four gates is shown
in Figure 2. Being able to accomplish the swap operation
with a single gate has advantages in the synthesis process. In
the RMRLS algorithm, for example, performing a swap using
three CNOT gates might be a solution that is found only after
branching in many other failed directions. An algorithm that
can properly identify and move forward on swap opportunities
may have a better chance at quickly obtaining a solution.

Our next example presents a function that may be realized
with the use of a three-bit Fredkin gate. The Boolean equiva-
lents of the operations of then-bit Fredkin gates may be less
obvious whenn > 2. For example, suppose we need to realize
the function:

aout = a⊕ bc

bout = b⊕ ab⊕ ac

cout = c⊕ ab⊕ ac (5)

To see how this function could be synthesized using a
controlled swap (i.e., a Fredkin gate), it is easiest to lookat one
such realization, as shown in Figure 3. A four-gate realization
without using Fredkin gates is shown in Figure 4. Even for
n-bit Fredkin gates whose Boolean operations may be less
intuitive, identifying the single-gate substitutions mayimprove
the search algorithm’s synthesis ability and also reduce the
average gate count.

An additional problem arises when attempting to synthesize
the above function using RMRLS. The circuit obtained by
classic RMRLS is shown in Figure 5. Although this circuit
also consists of four gates, it uses more control bits. If the
quantum cost [14] for these circuits is evaluated, the cost of
the circuit in Figure 4 is 12 while the cost of the circuit



a

b

c

a ⊕ bc

b ⊕ ab ⊕ ac

c ⊕ ab ⊕ ac

Fig. 3. Two-gate implementation using a three-bit Fredkin gate.

a

b

c

a ⊕ bc

b ⊕ ab ⊕ ac

c ⊕ ab ⊕ ac

Fig. 4. A practical four-gate implementation of the reversible specification
given in (5) using only Toffoli and CNOT gates.

a

b

c

a ⊕ bc

b ⊕ ab ⊕ ac

c ⊕ ab ⊕ ac

Fig. 5. Suboptimal four-gate implementation of the reversible specification
given in (5) using only Toffoli gates, as can best be found by NCT RMRLS.

a

b

c

a bc

b ab ac

c ab ac

Peres

gate

Fig. 6. Three-gate implementation of the reversible specification given in
(5) using a Peres gate.

in Figure 5 is 20. Although RMRLS has been shown to be
effective at reducing the gate count, its search techniquesdo
not necessarily minimize the number of control bits, and hence
quantum cost, very well.

These examples of circuit simplification provide motivation
for using SWAP orn-bit Fredkin gates. A similar argument
can be made for including the Peres gate in synthesis, as it is
expected to often take the place of a CNOT gate and three-bit
Toffoli gate and thus slightly reduce the gate count. Figure6
shows a possible implementation of (5) using a Peres gate,
Toffoli gate, and CNOT gate. Its quantum cost is only 10.

The examples given in this section show that early detection
and placement of Fredkin and Peres gates enables the possibil-
ity of improved synthesis results. The following section details
our methodology for the modifications that allow RMRLS to
implement these additional gate types.

III. M ETHODOLOGY

We next present our synthesis methodology.

A. Fredkin Candidate Factors

The synthesis technique in this paper is an extension of
RMRLS [8]. RMRLS uses the PPRM expansion of reversible
functions and then traverses a search tree to synthesize a

circuit through matching candidate factors. These factorsrefer
to common sub-expressions in the Reed-Muller expansions.
What ties the original algorithm to Toffoli gates only is that the
candidate factors and corresponding substitutions are designed
to match the operation of Toffoli gates. In order to extend the
algorithm to Fredkin gates, it is necessary to devise a similar
scheme to detect Fredkin candidate factors.

In the original NCT-enabled RMRLS, the candidate factors
for Toffoli gate transitions must be of the form:

vout,i = vi ⊕ factor ⊕ ... (6)

wherevi refers to a single variable,vout,i refers to the unique
output line labeled byvi, and factor is a term that does
not containvi. There may also be other terms in the PPRM
expression forvout,i.

The corresponding substitution performed if such a candi-
date factor is found mimics the operation of a Toffoli gate,
and thus looks similar to the expression given in (6):

vi → vi ⊕ factor (7)

In fact, a relaxed rule allows the substitution to be performed
even in the case whenvi does not appear in the original
expression. Any sort of relaxed detection schemes are legal,
but the substitution itself must be carried out in its entirety
as without omittingvi. For example, even if a Toffoli gate
substitution is initiated from just the PPRM expressionaout =
bc, the substitution performed would bea→ a⊕ bc.

Just as Toffoli candidate factors are Boolean expressions
revealing the operation of Toffoli gates, the form of a Fredkin
candidate factor can be obtained by looking at the definition
of the operation of a Fredkin gate. This requires rewriting the
definition from (2) in PPRM form. Since the expression must
be in positive polarity, there can be no complement operations,
and all intermediate operations must be either AND or XOR.
Thus, the expressions become:

yn−1 = xn−1 ⊕ xn−1(x1x2...xn−2)⊕ xn(x1x2...xn−2)

yn = xn ⊕ xn−1(x1x2...xn−2)⊕ xn(x1x2...xn−2) (8)

When we represent the common terms as a characteristic
factor, this becomes:

vout,i = vi ⊕ vi(factor)⊕ vj(factor)

vout,j = vj ⊕ vi(factor) ⊕ vj(factor) (9)

This is more restrictive than the candidate factors that give
rise to Toffoli substitutions. For one, it requires a total of six
matching terms. Second, it requires terms in a PPRM expres-
sion forvout,i to match terms in another PPRM expression for
vout,j . As a result, these expressions are not a subset of those
with Toffoli candidate factors, but rather a disjoint set.

Just as the Toffoli conditions have a relaxed form, we also
opt to use relaxed rules for Fredkin conditions so as to not
require all six matching terms. One advantage of a relaxed
approach is simplification of the candidate factor detection
scheme. Another advantage is that there may still be a benefit
from using a Fredkin gate even when not all six terms are



present. If all six terms are present, use of a Fredkin gate can
potentially reduce the six terms to only two terms. If one of the
six terms is missing, for example, we could likely end up with
three terms remaining, whereas the substitution of a Toffoli
gate is typically made with the expectation of reducing the
complexity by one term. If the result of a substitution turnsout
to be ineffective, it will automatically be given a low priority
in the search tree. The downside of such relaxed conditions is
that many of these extra nodes along with their children can
pollute the priority queue and slow down the algorithm.

In the end, we chose to use a candidate factor requirement
requiring only two matching terms. The requirement is that
a PPRM expression forvout,i must contain termsvi(factor)
and vj(factor). This simplifies the search procedure, since
such a restriction does not depend on terms in the PPRM
expression ofvout,j . Under this condition alone, a potential
Fredkin branch in the search tree can be created with as little
as two out of six of the ideal matching terms. Our search
procedure mirrors that of the search for Toffoli candidate
factors. In the Toffoli case, we would search for terms in
vout,i that do not containvi. For the Fredkin case, instead we
examine any terms that do containvi. Once these are found,
we search for any matching subfactor in the same PPRM
expression that is identical to the candidate factor, except for
replacingvi with some other variablevj . For example, the
PPRM expressioncout = abc ⊕ abd satisfies this condition,
becauseabc does containc and abd is the corresponding
subfactor withc replaced byd.

Among special cases, assumingfactor to be 0 in (9) results
in mere pass-through gates, or gates that do nothing. De-
tecting and substituting in such expressions is useless. When
factor = 1, however, this is a candidate for a direct SWAP
(two-bit Fredkin). This case must be detected differently from
typical n-bit Fredkin cases wheren ≥ 3. This can be seen by
substitutingfactor = 1 into the expressions and seeing that
the vi(factor) term cancels out and thus cannot be detected
directly. Thus, the two-bit swap is somewhat of an exception
in the candidate factor detection scheme. The requirement for
a matching candidate factor is that of a term containing only
a single variable that is different fromvout,i. Again, this is
one form of a relaxed rule. A more restrictive requirement
would be thatvout,i containsvj while vout,j containsvi (for
example,aout = b and bout = a). However, we opt for the
less restrictive case because it gives us the most room for
exploration.

B. Fredkin Substitutions

Appropriate substitutions are performed upon locating suit-
able candidate factors and their matching subfactors. These
substitutions match the operation of a Fredkin gate, as shown
earlier, and are specified as follows:

vi → vi ⊕ vi(factor)⊕ vj(factor)

vj → vj ⊕ vi(factor) ⊕ vj(factor) (10)

There is one additional complexity in the implementation of
complex substitutions, such as the one required for a Fredkin

substitution. For the Toffoli substitutions, we have the advan-
tage thatfactor would never contain its correspondingvi. One
convenient effect of this is that when a PPRM expression is
represented as a sorted linked list, to perform the substitution
the appropriate terms can be added without the worry that
they may affect later substitutions. When performing a Fredkin
substitution, or even a two-way SWAP, we do not have this
luxury since the additional terms will contain instances of
vi and vj . In order to work around this, we do not insert
new terms into the linked list “in place”. Rather, we create
an entirely new linked list of PPRM terms, then destroy the
old one. This implementation issue likely adds some overhead,
although its runtime is at most linear with respect to the length
of the linked list of PPRM terms.

C. Peres Candidate Factors

The Peres gate presented in Section I must also have its
corresponding candidate factors and substitutions in order to
be implemented in synthesis. Since a Peres gate is equivalent
to a three-bit Toffoli gate followed by a CNOT gate, we in fact
use the same candidate factor search mechanism as already
implemented. Since we restrict our study to three-bit Peres
gates, we add the artificial restriction that thefactor, which
does not containvi, must consist of exactly two variables.

Unlike Toffoli and Fredkin gates, the Peres gate is not self-
reversible. This means that the reverse of the Peres gate [21]
is actually a different gate, and we must account for this in our
synthesis. The PPRM functional specification of the reverse-
Peres gate is shown below:

y1 = x1 ⊕ x2

y2 = x2

y3 = x2 ⊕ x3 ⊕ x1x2 (11)

In all, the only difference between this specification and
that of the Peres gate is the additionalx2 term in the PPRM
expression fory3. Thus, we can use this as the distinguishing
choice to decide between whether to apply a Peres or reverse-
Peres gate upon encountering the appropriate two-variable
candidate factor. Suppose a PPRM contains a Toffoli candidate
factor as specified in (6):

vout,i = vi ⊕ factor ⊕ ...

To be considered as a Peres candidate, thefactor term
must contain two variables, saya and b. If a also appears in
the PPRM expression forvout,i, a search branch is attempted
using a reverse-Peres gate witha as the control bit. Ifb also
appears in the PPRM expression forvout,i, a search branch is
attempted using a reverse-Peres gate withb as the control bit.
If either a or b does not appear in the PPRM expression, then
branches would be created using a regular Peres gate witha

or b as the control bit.
As with relaxed candidate factor detection schemes before,

the Peres detection schemes do not requirevi to appear in
the PPRM forvout,i. Even if many of these substitutions turn
out to be poor choices, the optimistic approach here assumes



that poor substitutions will be properly tagged as such in the
search algorithm.

D. Peres Substitutions

The non-self-reversibility of Peres gates brings up another
issue when considering the appropriate substitutions to apply
upon matching candidate factors. To properly transform the
PPRM expressions, we find that the substitutions on applying
a Peres gate turn out to be the exact substitutions that define
the operation of a reverse-Peres gate. The substitutions applied
are as follows:

vi → b⊕ vi ⊕ factor

a→ a⊕ b (12)

wherefactor refers to the two-variable expression,b refers
to one of two variables chosen to be the control bit, while
a is the other variable. Thus,factor = ab. For the above
transformations, it may be tempting to serialize the substitu-
tions asa → a⊕ b followed by vi → vi ⊕ factor. Although
this implementation leads to a correct result while the other
possible serialization does not, it is best to reason about
and implement all multiple substitution rules as simultaneous
substitutions. This is especially important in Fredkin gate
substitutions, as no possible serialization for (10) can correctly
perform a controlled swap.

Because the substitution required for a reverse-Peres gate
reflects the operation of a Peres gate, its expressions are
slightly simpler, matching the equations defining the operation
of a forward Peres gate given in (3):

vi → vi ⊕ factor

a→ a⊕ b (13)

In Section III-F, we provide further intuition for why Peres
gate substitutions are defined by the reverse-Peres gate equa-
tions, and explain how this duality applies to other gates.

As in the implementation of Fredkin substitutions, the
modification of the PPRM linked lists requires creating an
entirely new list. The optimization of an “in place” linked list
modification is probably only applicable for the special case
of Toffoli gates.

E. Algorithm

The encompassing algorithm framework is still the same
as the one used in the original NCT-enabled RMRLS [8]. A
priority queue is used for storing partial solutions, and ateach
iteration a new node is explored. The differences between our
algorithm and the original one are two new kinds of candidate
factor detection schemes and their corresponding substitutions.
A flow chart depicting a high-level view of the algorithm is
given in Figure 7. This diagram is in the form of the algorithm
given in [1], although it has been extended to include all three
kinds of candidate factor detections and their corresponding
substitutions.

Our method for adding new gates into the RMRLS frame-
work suggests that synthesis with any other primitive gate

types, such as Miller [19] and Margolus [13] gates, could also
be developed using the same basic approach. The two primary
requirements for enabling synthesis of any arbitrary gate are
a candidate factor condition and a procedure for performing
the gate’s substitutions. Candidate factor conditions canbe
obtained by writing the gate’s functional specification in
PPRM form. The substitution used for such a branch can be
derived by writing the functional specification of the gate’s
reverse in PPRM form. The reasons for this slight technicality
with non-self-reversible gates is explained in Section III-F.

The flow given in Figure 7 actually only considers the case
of an exhaustive search where the algorithm terminates once
a solution is found. There are actually other customizable
options such as a greedy heuristic search and the ability to
continue searching for better solutions after one solutionis
found.

RMRLS also contains many heuristic parameters to tune
its priority queue mechanism and pruning limits. Although
we also believe that these heuristics may have potential
for dramatically improving the algorithm’s performance and
success rate, we opted not to modify these configurations. This
way we were able to provide fair comparisons against the NCT
results provided in [8].

F. Reversed Substitutions

Because RMRLS synthesizes reversible circuits in the for-
ward direction, it may not be obvious as to why the sub-
stitutions for a Peres gate reflect the operation of a reverse-
Peres gate. Because NOT, CNOT, and Toffoli gates are self-
reversible, this directionality was not an issue in the original
RMRLS.

Although RMRLS adds new gates from the beginning to
the end of a synthesized circuit, its starting point is the target
function and ending point is the identity function. Thus, a
reversal effect is achieved while still applying gates in the
forward order. This comes about because of a duality between
substitution and operation. An operation (for example,aout ←

bout⊕ cout) setsaout based on the current PPRM expressions
for other output variables. A substitution (for example,a →

b ⊕ c) modifies any and all PPRM expressions that contain
a. An operation has the effect of placing a new gate at the
output, while a substitution has the effect of placing a new
gate at theinput of the currently expressed function.

Because each substitution has the purpose of gradually
simplifying the original function toward the identity function,
the proper transformations must actually represent the reverse
of each applied gate. This technicality does not matter when
defining the substitutions for self-reversible gates such as
Toffoli and Fredkin gates, but must be upheld with Peres gates.
If we were to implement any other non-self-reversible gate,
such as the Margolus gate, its substitutions must also take
into account this directionality.

G. Synthesis Example

To provide examples of using the various substitutions, we
demonstrate the process of synthesizing the specification given



Store PPRM expansions of 
function in priority queue

Pop node with highest priority 
from priority queue

Toffoli: Select 
possible factor

Fredkin: Select possible 

matching terms vi(factor)
and vj(factor)

Peres: Select possible 

factor containing exactly 
two variables

Substitute vi vi factor into PPRM 
expansions to form newnode

Synthesis complete?

Substitute vi vi vi(factor) vj(factor)

and vj vj vi(factor) vj(factor) into 
PPRM expansions to form newnode

Substitute a a b and vi vi b factor

(or vi vi factor for reverse-Peres) into 
PPRM expansions to form newnode

More factors?

No

No

Yes

Yes

End of Algorithm

Insert newnode

into priority queue

Fig. 7. Flow chart depicting the search procedure in RMRLS with multiple gate types.

in (5). Because the circuits shown in Figures 3, 5, and 6 can
all be synthesized with the extended RMRLS (we will see
later in Section IV-D how the circuit in Figure 4 can also be
obtained), an exhaustive search would actually encounter all
three solutions, as shown in Figure 8. The synthesis example
shown depicts various search paths that reach these solutions.
A large number of other search nodes, many of which do
not lead to solutions, would also be covered in an exhaustive
search. For clarity, these have been omitted in the figure.

IV. EXPERIMENTAL RESULTS

We next provide experimental results.

A. Functions of Three Variables

A standard practice for comparing heuristic reversible logic
synthesis algorithms is to examine the success at gate mini-
mization for all three-variable reversible functions. We obtain
these results by running synthesis on all 40,320 possible three-
variable functions. Table I shows our synthesis results in
NCTS, NCTSF, and NCTSFP modes, which are formed by
enabling the SWAP (S),n-bit Fredkin (F), and Peres (P) gates.

We compare our results against various other heuristic
algorithms, as well as the optimal results reported in [23]
and [6]. Among heuristic algorithms, RMRLS provides better
results than the use of extensive template libraries in [18].
Not shown in the table are the NCTS results for templates
[18], which have been shown to be inferior to the NCTS
results in [11]. Also not shown are the NCTSF results from
[11], which were unable to improve upon the NCTSF template
library results in [18]. We have not reported the optimal gate

counts for the NCTSFP as we were unable to find such data
in the literature. Overall, the extended RMRLS provides better
gate counts than all existing heuristic NCTS and NCTSF
algorithms, and to the best of our knowledge this is the first
algorithm to target the NCTSFP gate library.

B. Other Benchmarks

One of the significant capabilities of the RMRLS algorithm
is its ability to synthesize functions of as many as 16 variables
[8], whereas some other algorithms may become impractical
for such a regime. Since our extensions allow types of gates
to be optionally specified by the user, at the very least the
modified RMRLS retains all the capabilities of the original
algorithm. The question then remains as to whether enabling
new gates retains the algorithm’s usability and can further
reduce gate counts for large functions.

To answer this question, we use the same benchmark suite
as in [8], and synthesize all benchmarks with Fredkin and
Peres gates enabled. All of these benchmarks are included in
the public releases of the original RMRLS as well as the new
version featured in this paper. Each benchmark was attempted
in the greedy, exhaustive, and default modes, and the best
result was chosen from among these. If given infinite time
and memory, the exhaustive mode could theoretically always
provide the best results. On our system, however, for several of
the larger functions the exhaustive search cannot be completed
even in 24 hours. Most results shown were obtainable in the
default timeout limit of 180 seconds. Thecycle and adder

functions, however, have relatively large specifications and



cout = c ⊕ ab ⊕ ac

bout = b ⊕ ab ⊕ ac

aout = a ⊕ bc

cout = c ⊕ ab ⊕ ac

bout = b ⊕ ab ⊕ ac

aout = a

cout = c ⊕ ab

bout = b ⊕ ab ⊕ ac

aout = a

cout = c 
bout = b ⊕ ac
aout = a

cout = c 
bout = b 
aout = a

cout = c
bout = b
aout = a ⊕ bc

cout = c
bout = b
aout = a

cout = c ⊕ ab

bout = b ⊕ c ⊕ ab

aout = a

cout = c

bout = b ⊕ c

aout = a

cout = c
bout = b
aout = a

Toffoli:

a → a ⊕ bc
Fredkin:

b → b ⊕ ab ⊕ ac

c → c ⊕ ab ⊕ ac

Toffoli:

b → b ⊕ ac

Toffoli:

c → c ⊕ ab

Toffoli:

b → b ⊕ ac

Toffoli:

a → a ⊕ bc

Peres:

a → a ⊕ c ⊕ bc

b → b ⊕ c

Toffoli:

c → c ⊕ ab

Toffoli (CNOT):

b → b ⊕ c

SOLUTION:
4 gates

quantum cost = 20

SOLUTION:

2 gates
quantum cost = 10

SOLUTION:

3 gates
quantum cost = 10

Fig. 8. Various search paths taken in the synthesis of the reversible specification given in (5).

TABLE I

SYNTHESIS RESULTS FOR ALL THREE-VARIABLE REVERSIBLE FUNCTIONS. RMRLS IMPROVES UPON ALL OTHER HEURISTIC ALGORITHMS IN BOTH THE

NCTSAND NCTSFCATEGORIES. THE AVERAGE GATE COUNT ALSO REDUCES SIGNIFICANTLY WITH THE ADDITION OF PERES GATES.

No. Miller [20] Kerntopf [11] Maslov [18] Optimal [23] Optimal [23] Optimal [6] RMRLS [8] RMRLS RMRLS RMRLS
Gates. NCTS NCTS NCTSF NCT NCTS NCTSF NCT NCTS NCTSF NCTSFP

11 5
10 110
9 792 86 9 36 2
8 4,726 2,740 512 577 32 3,351 574 18
7 11,199 11,774 5,503 10,253 6,817 496 12,476 9,242 2,201 18
6 12,076 13,683 13,914 17,049 17,531 14,134 13,596 15,893 15,105 3,567
5 7,518 8,068 13,209 8,921 11,194 17,695 7,479 9,998 15,521 19,786
4 2,981 3,038 5,680 2,780 3,752 6,474 2,642 3,617 5,984 13,198
3 767 781 1,290 625 844 1,318 625 844 1,288 3,290
2 130 134 184 102 134 184 102 134 184 430
1 15 15 18 12 15 18 12 15 18 30
0 1 1 1 1 1 1 1 1 1 1

Avg. 6.18 6.01 5.44 5.87 5.63 5.13 6.10 5.75 5.25 4.56

thus took much longer. Some benchmarks, such as these, were
given extra time ranging up to one hour.

We compare our results in terms of gate count and quantum
cost. Although RMRLS was originally designed to optimize
only the gate count, improved quantum cost over results
from existing algorithms has sometimes been a side effect
[8]. Building upon this, we reasoned that the algorithm can
focus on any metric, so we added an option to optimize for
quantum cost. We report our gate counts and quantum costs
in two categories in Table II. Shown are our best results when
optimizing for the minimum number of gates, as well as our

best results when optimizing for reduced quantum cost.
In calculating quantum costs, we use the table and rules

from [15]. The cost of a Fredkin gate is typically obtained
by taking the cost for a Toffoli gate with the same number
of inputs, and then adding two to account for two CNOT
gates which can combine with a Toffoli gate to form a
controlled swap. If all cost calculations were of this form,the
best possible quantum cost would not improve with Fredkin
gates. There is, however, a known implementation of three-bit
Fredkin gates with a quantum cost of five, which is the same
as the cost of a three-bit Toffoli gate. When such gates are



TABLE II

SYNTHESIS RESULTS FOR REVERSIBLE LOGIC BENCHMARKS IN THENCTSFPMODE COMPARED TO THE BASICNCT MODE OF THE ORIGINALRMRLS.

Benchmark Real Constant Gates Cost Gates Cost Gates Cost
inputs inputs NCT [8] NCT [8] NCTSFP min-gates NCTSFP min-gates NCTSFP min-cost NCTSFP min-cost

2of5 5 2 20 100 20 96 20 92
alu 5 0 19† 163† 16 171 21 119

rd32 3 1 4 12† 4 12 5 9
rd53 5 2 13 116 13 91 17 78
3 17 3 0 6 14 5 12 5 11
4 49 4 0 13 61 10 36 12 29
xor5 5 0 4 4 4 4 4 4

4mod5 4 1 5 13 5 13 5 13
5mod5 5 1 11 91 11 93 11 91
ham3 3 0 5 9 4 9 4 7
ham7 7 0 —† —† 20 76 22 67
hwb4 4 0 15 35 9 27 10‡ 19‡

hwb5 5 0 — — 26 196 35 175
decod24 4 0 11 31 10 48 11 30
cycle102 12 0 27 1,469 17 1,198 24 1,060
cycle152 17 0 41† 4,201† 27 3,242 27 3,242
cycle282 30 0 80† 19,105† 78 19,101 78 19,101
5one013 5 0 19 95 16 97 16 93
5one245 5 0 20 104 14 101 18 79
6one135 6 0 5 5 5 5 5 5
6one0246 6 0 6 6 6 6 6 6
majority3 3 0 4 16 3 14 4 13
majority5 5 0 16 104 13 94 14 81
graycode6 6 0 5 5 5 5 5 5
graycode10 10 0 9 9 9 9 9 9
graycode20 20 0 19 19 19 19 19 19
mod5adder 6 0 19 127 16 139 18 103
mod15adder 8 0 10 71 7 65 11 54
mod32adder 10 0 15 154 11 146 19 127
mod64adder 12 0 26 333 20 346 20 289

† Some results in [8] are not repeatable with the publicly available RMRLS due to modified heuristics in the released version. For these, we have compared
to our best obtainable NCT results running on the released version.
‡ In only one case,hwb4, did the extended branch heuristic improve the best obtainable quantum cost.

usable, the addition of Fredkin gates can serve to reduce the
quantum cost. The Peres gate itself is also a special case, with
a quantum cost of four even though an equivalent circuit using
Toffoli gates would consist of a three-bit Toffoli alongside a
CNOT gate for a total cost of six.

As one example of a synthesized circuit, our
minimum cost realization of themajority5 function is
as follows: TOF3(a, b; e) TOF2(a; b) RPER(b; d; e)
TOF3(b, c; e) TOF2(a; c) TOF3(b, d; c) TOF3(b, c; a)
TOF3(a, e; d) PER(a; d; b) TOF4(b, d, e; a) PER(c; b; a)
FRED4(d, e; a, b) TOF2(c; a) TOF4(a, d, e; c) for a
quantum cost of 81 realized with 14 gates. We denote Toffoli
gates asTOF#(cbit1...cbitn−1; tbit) where # denotes the
size of the gate, thecbit terms designate zero or more control
bits, and tbit designates the target bit. Fredkin gates have
a similar notation ofFRED#(cbit1...cbitn−2; tbit1, tbit2)
where there are two target bits. Peres gates are denoted as
PER(cbit; tbitTOF ; tbitCNOT ), wheretbitTOF signifies the
target bit for the output characteristic of a three-bit Toffoli
gate and tbitCNOT represents the remaining target bit.
Reverse-Peres gates are denoted byRPER with the same
format.

Overall, our results show that the addition of Fredkin and
Peres gates can always match and often improve the gate count

of various benchmarks. When optimizing for quantum cost,
we often obtain different circuits possibly with an increased
gate count, but always with a quantum cost that matches or
improves upon the circuits obtained in [8] or by the heuristic
that optimizes the gate count. Furthermore, the addition of
Fredkin and Peres gates allowed synthesis ofham7 andhwb5
that (within the constraints of our 4 GB RAM and non-infinite
runtime) are not synthesizable in the NCT-only mode.

C. Runtime

In [8], RMRLS was shown to be extremely robust in terms
of its ability to find solutions within a practical amount of
time. Our extensions for additional gates can be turned off at
runtime. Thus, if the goal is to find a solution, even if it is
suboptimal, then at the very least a user can obtain this using
the NCT mode only.

As expected, using additional gates in the search tree does
slow down exhaustive searches. This is because the additional
branches at each node can further lead to more branches
spawning from them, effectively increasing the exponential
growth rate of the search tree. In many cases, we found that
exhaustive searches when including Fredkin and Peres gates
could take up to four times as long as their corresponding
NCT runtimes.



On the other hand, we did not see the same increase in
runtime for greedy searches where the purpose was to find
any solution. In fact, when asked to find any—not necessarily
optimal—solution, for the majority of benchmarks in Table II,
we were able to obtain some solution in less than a second. The
only benchmarks that took longer than 10 seconds to obtain a
solution in the greedy mode wereham7 (67 seconds),hwb5
(77 seconds), and5one245 (39 seconds).

All results in this paper were obtained on a platform
utilizing an AMD Athlon X2 2.0 GHz processor along with 4
GB of RAM running Fedora Core Linux.

D. Extended Branches Heuristic

The discrepancy between the circuit given in Figure 4 and
the equivalent circuit in Figure 5 raises an issue for the
original substitution rules of RMRLS. Even in the exhaustive
search mode, RMRLS would never come across the solution
shown in Figure 4 simply because all of the candidate factors
encountered contain at least two variables and thus result in
transformations representing only three-bit Toffoli gates. In
order to obtain the circuit in Figure 5, which has a reduced
quantum cost, the algorithm would have to traverse branches
signifying CNOT gates even when a one-variable candidate
factor is not available.

An even simpler case that signifies this problem can be
found when attempting to synthesize a three-bit Fredkin gate
using only Toffoli gates. As revealed in [8], RMRLS cannot
synthesize the minimum quantum cost solution for this basic
case, even if its solution is minimal in terms of the gate
count of three. In general, the observed effect is that lacking
any protection against these cases can result in circuits with
higher than expected quantum cost. However, we would not
necessarily expect much difference in gate count.

To address this problem, we provide the option of additional
substitutions. Like the conventional substitutions, these are
still based on detected candidate factors. Our special rule,
however, is that for any givenfactor, as depicted in (6), we
may substitute a term based on a subset of the variables in
factor. For instance, if a substitution of the forma→ a⊕ bc

is suggested by a candidate factor, this substitution wouldbe
performed in addition toa→ a⊕b, a→ a⊕c, anda→ a⊕1.
The same expansion is also applied to Fredkin candidates.
With this extended branching heuristic, there can quickly arise
an intractable number of nodes in the search tree. Thus, at
the current time this heuristic is only usable for functionsof
relatively few variables.

Among all benchmarks, the only one which this heuristic
improved upon washwb4, with its quantum cost reduced from
27 to 19.

E. n-bit Peres gates

The bulk of this paper assumes three-bit Peres gates. We
chose this because it is the accepted definition used by the
reversible logic community, and assuming a system ofn-bit
Peres gates would exaggerate the gate count reduction for our
benchmark results. Nonetheless, it is interesting to consider

TABLE III

GATE COUNTS FOR THE10 BENCHMARKS FROMTABLE II THAT CAN BE

SYNTHESIZED WITH FEWER GATES IF THENCTSFPLIBRARY ASSUMES

PERES GATES OF MORE THAN THREE INPUTS.

Benchmark Gates NCTSFP Gates NCTSFP
three-bit Peres n-bit Peres

alu 16 14
ham7 21 18

cycle102 17 12
cycle152 27 16
cycle282 78 32
5one013 16 15
majority5 13 11

mod15adder 7 6
mod32adder 11 9
mod64adder 20 18

how our results would change if we assumedn-bit Peres gates
as well asn-bit reverse-Peres gates.

In general, anyn-bit Peres gate serves as the equivalent of
ann-bit Toffoli gate followed by an(n−1)-bit Toffoli gate, as
long as the control bits and target bit of the smaller Toffoligate
form a subset of the control bits of the larger gate. A reverse-
Peres gate performs a similar function except the equivalent
circuit would have the smaller Toffoli gate placed first.

Because there are no known quantum costs for Peres gates
better than their equivalent Toffoli gate-based realizations, it
cannot be assumed that use ofn-bit Peres gates is expected
to reduce the quantum cost, at least under our current cost
calculation schemes.n-bit Peres gates would, however, be
expected to reduce the gate counts of various reversible
benchmarks. If it is later found thatn-bit Peres gates also
have quantum costs less than their correspondingn-bit Toffoli
gates, as in the three-bit case, it will make sense to expect
n-bit Peres gates to be a fundamental building block in gate
libraries.

Table III shows the subset of benchmarks that can be synthe-
sized with fewer gates using then-bit Peres gate assumption.
Only 10 out of the original 30 benchmarks were able to utilize
Peres gates of more than three bits. Regarding quantum cost,
with only a pessimistic assumption for higher-ordered Peres
gates, these realizations do not reduce the cost under our
calculation methods. Thus, we have only listed the number
of gates.

As a Peres gate fulfills the function of two Toffoli gates
in sequence, thecycle benchmarks benefit by far the most
from the n-bit Peres gate assumption. The realizations of
cycle functions typically include long chains of Toffoli gates
operating on a large set of control bits gradually decreasing in
size. Replacing each pair of Toffoli gates with a single Peres
gate effectively halves the total number of gates.

While in an ideal situation, then-bit Peres gate assumption
could reduce circuit size by half, this does not explain how
the circuit size ofcycle28 2 reduced by even more than 50%.
Taking this realization and decomposing the larger Peres gates
back into their Toffoli equivalents results in a gate count of 59,
better than the other realization of 78 gates. This appears to be



a result of the unpredictable side effects of heuristic pruning
under different configurations.

V. CONCLUSIONS

This work builds upon the state-of-the-art reversible logic
synthesis algorithm to include Fredkin and Peres gates. We
have shown that the process of adding new gates to the
algorithm is a generalizable methodology applicable to any
arbitrary gate.

For three-variable functions we show that, when including
SWAP and Fredkin gates, RMRLS outperforms all other
known heuristic methods. Including Peres gates as well re-
duces the average gate count for three-variable functions to
4.56, notably better than even the optimal case of 5.13 when
using Toffoli, SWAP, andn-bit Fredkin gates. For reversible
benchmarks, the additional gate types are often able to reduce
circuit size in terms of gate count or quantum cost, depending
on the option requested by the user.

We have implemented these extensions into RMRLS such
that the combination of gate types, limitations on those
gates, and choice of whether to optimize for gate count or
quantum cost can be chosen by the user at runtime. This
new release of RMRLS is freely available for download at
http://www.princeton.edu/∼cad/.

VI. A CKNOWLEDGMENTS

We would like to thank Pallav Gupta for his assistance
with RMRLS, and the anonymous reviewers for their helpful
comments. This work was supported in part by NSF under
Grant No. CCF-0429745.

REFERENCES

[1] A. Agrawal and N. K. Jha, “Synthesis of Reversible Logic,” in Proc.
Design Automation & Test in Europe Conf., vol. 2, Feb. 2004, pp. 1384–
1385.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. di Vincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary Gates for
Quantum Computation,”Phys. Rev. A., vol. 52, pp. 3457–3467, 1995.

[3] C. H. Bennett, “Logical Reversibility of Computation,”IBM Journal of
Research and Development, vol. 17, no. 6, pp. 525–532, 1973.

[4] R. Cuykendall and D. R. Andersen, “Reversible Optical Computing
Circuits,” Optics Letters, vol. 12, no. 7, pp. 542–544, 1987.

[5] A. de Vos, “Proposal for an Implementation of ReversibleGates in
CMOS,” Intl. Journal of Electronics, vol. 76, pp. 293–302, 1994.

[6] G. W. Dueck, D. Maslov, and D. M. Miller, “Transformation-based Syn-
thesis of Networks of Toffoli/Fredkin Gates,” inProc. IEEE Canadian
Conf. Electrical and Computer Engineering, May 2003, pp. 211–214.

[7] E. Fredkin and T. Toffoli, “Conservative Logic,”Journal of Theoretical
Physics, vol. 21, pp. 219–253, 1982.

[8] P. Gupta, A. Agrawal, and N. K. Jha, “An Algorithm for Syn-
thesis of Reversible Logic Circuits,”IEEE Trans. CAD, vol. 25,
no. 11, pp. 2317–2330, Nov. 2006, tool available for download:
http://www.princeton.edu/∼ cad/.

[9] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Quantum Logic Synthesis by Symbolic Reachability Analysis,” in Proc.
Design Automation Conf., June 2004, pp. 838–841.

[10] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for
Designing CNOT-based Quantum Circuits,” inProc. Design Automation
Conf., June 2002, pp. 419–424.

[11] P. Kerntopf, “A New Heuristic Algorithm for ReversibleLogic Synthe-
sis,” in Proc. Design Automation Conf., June 2004, pp. 834–837.

[12] R. Landauer, “Irreversibility and Heat Generation in the Computing
Process,”IBM Journal of Research and Development, vol. 5, pp. 183–
191, July 1961.

[13] N. Margolus, “Physics and Computation,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1988.

[14] D. Maslov, “Reversible Logic Synthesis,” Ph.D. dissertation, The Uni-
versity of New Brunswick, Fredericton, New Brunswick, Canada, 2003.

[15] ——, “Reversible Logic Synthesis Benchmarks Page,”
http://www.cs.uvic.ca/∼dmaslov/, 2007.

[16] D. Maslov and G. W. Dueck, “Reversible Cascades With Minimal
Garbage,”IEEE Trans. CAD, vol. 23, no. 11, pp. 1497–1509, Nov. 2004.

[17] ——, “Toffoli Network Synthesis with Templates,”IEEE Trans. CAD,
vol. 24, no. 6, pp. 807–817, June 2005.

[18] D. Maslov, G. W. Dueck, and D. M. Miller, “Fredkin/Toffoli Tem-
plates for Reversible Logic Synthesis,” inProc. IEEE/ACM Intl. Conf.
Computer-Aided Design, Nov. 2003, pp. 256–261.

[19] D. M. Miller, “Spectral and Two-Place Decomposition Techniques in
Reversible Logic,” inProc. IEEE Midwest Symp. Circuits and Systems,
vol. 2, Aug. 2002, pp. 493–496.

[20] D. M. Miller, D. Maslov, and G. W. Dueck, “A Transformation Based
Algorithm for Reversible Logic Synthesis,” inProc. Design Automation
Conf., June 2003, pp. 318–323.

[21] A. Peres, “Reversible Logic and Quantum Computers,”Phys. Rev. A,
vol. 32, pp. 3266–3276, 1985.

[22] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske,
A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, and
B. Massey, “Regular Realization of Symmetric Functions Using Re-
versible Logic,” inProc. EUROMICRO Symp. Digital Systems Design,
2001, pp. 245–252.

[23] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of Reversible Logic Circuits,”IEEE Trans. CAD, vol. 22, no. 6, pp.
710–722, June 2003.

[24] J. A. Smolin and D. P. DiVincenzo, “Five Two-bit QuantumGates are
Sufficient to Implement the Quantum Fredkin Gate,”Phys. Rev. A.,
vol. 53, pp. 2855–2856, 1996.

[25] T. Toffoli, “Reversible Computing,” inAutomata, Languages and Pro-
gramming, J. W. de Bakker and J. van Leeuwen, Eds. Springer Verlag,
1980, pp. 632–644.


