Search Space Optimization for
Reversible Logic Synthesis

James Donald and Niraj K. Jha
Department of Electrical Engineering
Princeton University
{jdonald, jhg @princeton.edu

Abstract— The Reed-Muller Reversible Logic Synthesis (RM- apparent that such a substitution is not implemented in
RLS) tool manages to outperform many other reversible syntbsis the release version of RMRLS 0.1.
algorithms in terms of speed and scalability. At the same tira, « The basic algorithm, given an output variablg., ;'s
1 52

its algorithm has been shown to be flexible and extensible. In . .
recent work, it has been used for synthesis with arbitrary ge PPRM expression, looks for terms in the PPRM expres-

types. These attributes make RMRLS a favorable foundationdr sion that do not contaim; [5]. The misc substitutions
future studies in reversible logic synthesis. even consider terms that do contain, remove the
On the other hand, the algorithm has its imperfections. instance ofv; from this term, then generate a Toffoli

Although it tends to generate better solutions than other al
gorithms such as template-matching, even for functions wit as
few as three variables it can fail to find the optimal solution

transformation accordingly. There is not any good funda-
mental reason to generate such transitions, but this option

This report reexamines some of the basic assumptions of the was easy to impleme_nt ?n the source -code.
algorithm to suggest some ideas for better approaching fasind o Theminiterms substitutions were derived when search-
optimal synthesis. We begin by examining results for synthss ing for a way to synthesize a minimum quantum cost

of the 40,320 three-variable reversible functions under vaous
configurations. We then use these experiences to formulate\eral
heuristic and fundamental proposals for enhancing RMRLS.

Fredkin function, which RMRLS would otherwise always
fail to do simply because of its search rules. As a result,
any candidate factor may create not only one branch,
but rather many Toffoli branches using any subset of
. INTRODUCTION that candidate factor. This is by the far the most CPU-
expensive heuristic. Although it can sometimes reduce
gate count, when this heuristic was originally conceived
its main intention was to reduce quantum cost while
maintaining the same gate count.

This study arose from looking into some discrepancies
between the results in [1], [5], and the release version of
the Reed-Muller Reversible Logic Synthesis (RMRLS) tool.

Several of the benchmark synthesis results in [5] were reiffe . . —_ .
. ! This report also looks at the various possibilities for eur
upon being retested with the release package of RMRLS [4]. . . L
. . . ' ti¢ sorting and pruning. At this time there are at least three
However, this was easily explained as the final release Bl own foundations for priority and pruning heuristics:
RMRLS had different heuristics from the development varsio , '
used to obtain various results [3]. . Agrawal'_s settmgs ofy = 0.2, 3 = 0.7, andvy = 0.1 [1].
Like the synthesis results for various benchmarks, the® 1he settings claimed in Gupta's paper@f= 0.3, 3 =
basic three-variable results were not repeatable eithehis 0.6, anc_iy_: 0.1 [51' .
case, all the functions were synthesized using the exiausti * The Priority algorithm in the release of RMRLS 0.1,
method, so this cannot be explained by a change in pruning Which uses an entirely different system [4].
heuristics. Although results become non-deterministtinie- I Section 11l we go into further detail on the meaning @f
outs are encountered, all 40,320 functions synthesizeirwiti, 7, and the other heuristics.
less than one second, and thus do not come close to reachinghe experiments in this writeup—as well as other insights
the 180 second time limit [5]. gathered from experience—lead to several proposals fordut
Furthermore, the results in Agrawal’s earlier paper [1] af€search directions in PPRM-based reversible logic sgithe
actually better than those in Gupta’s later journal paper [5]The rest of this paper is structured as follows. Section I
In the development of RMRLS over these past two years, tHgovides an analysis of all three-variable functions under
shift could have been caused indirectly by one of the map@rious assumptions for NCT synthesis. Section Ill exasine
changes to the source code. the priority queue scoring mechanisms in RMRLS. Section IV
In attempting to focus on these fundamental aspects of @¥es a number of other proposals for future enhancements.
algorithm, a number of new search options were added to th&ction V concludes.
basic algorithm. These are described below.

« The NOT substitution allows extra substitutions of the Il. THREE-VARIABLE RESULTS
form v — v @ 1 to be used regardless of whether the Table | shows the results from synthesizing all 40,320
term appears in that variable’s PPRM. This was one &inctions using only NCT gates. It includes some of the
the “additional” substitutions described in [5], but aftevarious new options, as well as data from prior publications
working with the software for a few months it becam@®nly the gate counts are shown; like prior works in reveesibl

logic synthesis [1], [2], [5], [7], we do not consider quamtu tutions. Section IV details some of these proposals.
cost for the 40,320 three-variable functions. All funcgomere
synthesized under exhaustive mode. We increased the ttmeou [1l. PRIORITY QUEUE HEURISTICS
limit to one hour when synthesis seemed to be taking on theThe previous section examined a number of algorithmic
order of minutes. However, those combinations, which coufstoperties of RMRLS for obtaining the best solution in ex-
require as much as a full hour per synthesis instead of mer@kustive mode. In this mode, the use of RMRLS’s priority
minutes, are not shown below since it is not expected that thgueue policy does not matter significantly except for otian
40,320 synthesis runs will ever finish. After a few weeks, 8omhe solutions sooner. Regardless of how various nodes are
of the machines running these unfinished tests have crashggtted within the priority queue, an exhaustive, non-time-
Others have simply remained unfinished. limited mode would be expected to attempt all of the same
An additional completed experiment, not shown in thpossible solutions.
table, was obtained by reenabling Gupta’s cleanup-artdstes When running in time-limited, greedy, or non-exhaustive
heuristic in RMRLS 0.1 [5]. The mechanism of this heuristidefault modes, however, RMRLS'’s priority and pruning mech-
is for the algorithm to backtrack to an initial state aftes®) anisms play a significant role. Many of the benchmarks
steps. The reason we have not provided an extra column featured in each paper can only be synthesized in greedy,mode
these results is that the numbers came out to be exactly gl some provide their best circuits in the non-exhaustive
same as the default mode (labeled as RMRLS 0.1 in Table dpfault mode. Therefore, the priority and pruning rules are
Although the first release version of RMRLS is known asignificantly emphasized in [1] and [5].
both version 0.001 (in the source code) and version 0.1 (inThe priority value for a given node is set afdepth) +
the documentation), throughout this writeup we have opted B(elim/depth) — y(num_iterals). In [1], o = 0.2, 3 = 0.7,
refer to it as version 0.1. andy =0.1. In [5], @« = 0.3, 5 = 0.6, andy = 0.1. Although
There are certainly more combinations to explore, sudh both cases the three factors were intentionally set toupdd
as NOT + miniterms, misc + miniterms, or NOT + to 1, there is no good or intuitive reason for this restrictio
misc+miniterms. Unfortunately, the CPU time can explode The release version of RMRLS, however, does not use either
when some of these options are used in combination. Tbkthese configurations [4]. According to the source codis, th
miniterms and NOT + misc tests each took several daysalgorithm is significantly more complicated. For one, thisre
which is several times longer than the basic mode whicto depth term, so effectively = 0. The 3 term is there in a
would take about one day to synthesize all 40,320 functionssense, but not as a fixed quantity. Whempth < 10, 8 = 1.0.
exhaustive mode. Th& OT + miniterms combination took Whendepth > 10, 8 = 0.3.
a few weeks, and some other possible combinations such a#s for ~, the factor multiplied bynum_literals, there is
NOT + misc + miniterms would not be expected to finishactually no fixed value for this purpose. Instead, a record is
within the lifetime one’s Ph.D. kept on the best partial solution known for each depth. If the
The CPU time ofNOT + misc is several times that of the current node is the first at its depth to have a literal count
basic configuration, but it is still faster than theiniterms as low as its own, it gets a special bonus0df added to its
substitutions. This configuration, with an average gatentouscore. In addition, if it has the least number of literals out
of 6.027, manages to beat Maslov’s claimed 6.05 averagkany partial solution seen so far at any depth, there is an
acquired by template matching applied to RMRLS’s synthesaslditional bonus of 0.6.
results [5]. Since template matching could be quite CPU-One problem with the above literal counting heuristic is
intensive [6], NOT + misc may still be a more viable that the priority of a node is time-dependent on when it
synthesis method which takes on the order of seconds ferfirst analyzed. This can cause unwanted side-effects of
benchmark and thus a few days to generate all 40,320 circu¢tausality. For example, when synthesiziagele28_2 under
It is uncertain how this timing compares to that of iterativehe k¥ = 1 heuristic with a max-depth of 80, the 56-gate
deepening in [7]. solution is obtained quickly. When usifg= 1 and a max-
Although the motivation for these experiments was to findepth of 60, one would expect this to be faster as it involves
sources of discrepancy, none of the modifications came dosmaller search space. Under these settings, however, no
exactly match either of the earlier published datasets.sThgolution is obtained. One possible explanation is that due t
these results are inconclusive in that aspect. It is difficthe time-dependency of the priority rules, the larger dearc
to narrow down such data anomalies. The cause could dEace somehow gives priority to the path leading to the 56-
anything from a different algorithm rule, special-caserigtic, gate solution, whereas the smaller search space fails tb lan
a bug in the old synthesis tool, a bug in the recent RMRL®n this path.
or a bug in the data collection scripts. The heuristics described in the papers, which are not im-
One additional issue raised by these experiments is thiemented in the release version of RMRLS, do not appear
computational cost of various additional substitutiomsolr to have such causality problems. On the other hand, the fact
experience, some very simple substitutions dramatically ithat Gupta used different heuristics in the release version
crease CPU time even for three-variable functions. Furtheuggests that these more complex techniques may have been
more, enabling these substitutions can make larger fumetigroviding better results. Because the source code foreearli
virtually impossible to synthesize. This motivates somttdse incarnations of RMRLS was not publicly released, we cannot
bounding strategies that can tolerate various kinds oftsubgasily compare the simple heuristics to the current ones.

TABLE |
NCT SYNTHESIS RESULTS FOR ALL THREEVARIABLE REVERSIBLE FUNCTIONS ACCORDING TO VARIOUSRMRLS PUBLICATIONS AND OUR TESTS

gates| Agrawal | Gupta | RMRLS 0.1 | RMRLS 0.2 | RMRLS 0.2 | RMRLS 0.2 RMRLS 0.2 RMRLS 0.2 Optimal
[1] [5] NOT misc miniterms | NOT + misc | NOT + miniterms [7]
9 30 36 92 44 28 36 16 36
8 3,297 3,351 4,168 3,427 2,598 3,019 2,169 3,019 577
7 12,488 | 12,476 12,560 12,503 12,578 12,159 12,293 12,141 10,253
6 13,620 | 13,596 12,939 13,479 14,135 13,952 14,561 13,952 17,049
5 7,503 7,479 7,224 7,485 7,602 7,736 7,857 7,754 8,921
4 2,642 2,642 2,597 2,642 2,639 2,678 2,684 2,678 2,780
3 625 625 625 625 625 625 625 625 625
2 102 102 102 102 102 102 102 102 102
1 12 12 12 12 12 12 12 12 12
0 1 1 1 1 1 1 1 1 1
Avg. 6.100 6.104 6.159 6.108 6.065 6.071 6.027 6.070 5.866

A possible approach for research on improved prioritgn oversight, and possibly much better results may be agthiev
and pruning mechanisms would be exploration of variodsy sorting in the opposite direction.
combinations of the 6 different priority mechanisms codere Tweaking the value of, changing the sort direction, and
in this section. To recap, these mechanisms include not omlgjusting the other six priority tuning parameters mergibn
the basico, 3, and~ factors, but also a variablé dependent earlier form a total of 8 different parameters to tune the
on depth, the strange 0.6 priority bonus for the least li¢ereexisting heuristics. Each one of these has some evidence
at each different depth, and the other 0.6 bonus for the le#isat it may do good in some situations. Thus, using just the
literals overall. techniques that have been partially tested already, there i
Thus far we have focused on the priority queue mechanisrageady an enormous design space for which exploratiordcoul
The priority queue rules all affect pruning implicitly, asn- potentially yield a much better combination of techniques f
priority nodes are more likely to get pruned. However, ifractical priority sorting and pruning.
the non-exhaustive default mode there is an additionactire Before attempting to tune these complex heuristic settings
pruning parametek. This variable sets the maximum numbehowever, it may be better to first implement some fundamental
of new nodes to create from each parent. [5] states thatmprovements in the core algorithm such as the enhancement
values of 4 or 5 perform best, while the release version uségscribed in Section IV-A.
a value ofk = 4. It is important to realize that for only a
few benchmarks does the default non-exhaustive mode actual IV. OTHER PROPOSALS

do better than exhaustive or greedy modes. Although nOt\Nhile the previous section examined some ideas for im-
explicitly advertised, this was the general experience nwhe

obtaining results for [2]. In other words, the pruning witt VN9 heuristic sorting and pruning, this section prasos

k = 4 is a property of an overall policy that does not performSome more bold changes to the algorithm. Many of these

are motivated by the poor runtime aspects observed in the
very well. : ;
. . . experiments from Section II.

We additionally experimented somewhat with the chse
1. Our first impression was that this should function ideriyca
with greedy mode. This interpretation seems intuitive bgea A- Duplicate Node Detection
greedy mode pushes at most one new node onto the queue e use the ternbounding distinctly from pruning, where
each step. Since results usikg= 1 with the default mode pruning refers to heuristic pruning of potential nodes even
differ from greedy mode, these two modes are apparently Rabugh sometimes a poor pruning choice may be made. In
identical. k = 1 enables the 56-gate solution feycle28 2 algorithm terminology, branch-arfsbund techniques reduce
and 27-gate solutionyclel5_2, which had seemed otherwisethe search space by applying strict bounds. The use of the
unobtainable. Since these good solutions cannot be obtaingst Depth variable in RMRLS is an example of this, since if
with the greedy or exhaustive modes (with the default heurige are optimizing for circuit size there is no point in exjihgy
tics in the release version of RMRLS 0.1) for at least som@|utions that are guaranteed to have more gates than the
functions there is evidently some potential for this unligua pest Depth. When configured to minimize the quantum cost,
simple heuristic option of = 1 in the default mode. the bestCost variable plays this same role of bounding.

The k heuristic (pruning for fewer branches at each stage) The explosion in CPU time with additional substitutions
works by sorting all candidates by their priority then onlyaturally occurs because of an exponential increase impate
pushing the first: nodes onto the priority queue. One strangeodes for exploration. However, many of these nodes are
characteristic of this routine is that it sorts the candiddtom probably duplicates created when different paths result in
lowest priority value to highest priority value and thenmpes the same PPRM expressions. With the)T' substitution in
away the higher-valued nodes. Since the priority formulasew particular, twoNOT gates end up creating the original node
designed for higher values to symbolize better node patientiwith increased depth. If this happens at a depth lower than th
this appears to incorrectly prune good nodes. This is paerhairrent best Depth, it cannot be bounded using the current

system. Although the original algorithm’s system of Toiffoltake an existing specification of many gates generated dgihrou
candidate factors often prevents an excess of duplicdiis, the greedy search, generate the PPRM specification for only
cannot be guaranteed with additional gate types. its first half of gates, then perform a more exhaustive sysithe
Thus, we propose duplicate node detection and filteringn just that first half-function. If a better specificatiorfasind
Pointers to all nodes should be stored in a hash table whése the half-function, it can be replaced. This broad apphoa
their search key is based on their PPRM expressions. Upaintaking existing suboptimal circuits and optimizing them
attempted creation of a new node, its PPRM expression is firessembles the philosophy of template matching, yet it does
checked in the hash table. If there is already a matching nau# require a template library!
with the same or better depth, there is no need to push this
new term onto the priority queue. If the new node has a better
depth, the old node should be deleted from the queue ald Garbage Outputs
replaced in the hash table. There could be many naive strategies for efficiently dealing
This trimming can be applicable in any of the three modegith garbage outputs. The current setup requires that the
(greedy, default, or exhaustive), although it will probablgarbage outputs be preassigned to certain values. Working i
provide the most benefit in the default and exhaustive modésis framework, one could simply try various combinations
of assignments. However, the number of possible garbage
B. Trimming the Back of the Queue assignments grows quite rapidly with the number of garbage
bnsputs as well as total inputs.
Our idea for assigning garbage outputs involves the syn-

updatesbest Depth (or bestCost in the case of minimizing : . : ; .
quantum cost), there is an additional opportunity for boogd thesis algorithm continually keeping track of garbage dine
' and exercising the freedom to modify these lines. When an

At. th's point, the algorlthm should go to the back .Of th%1dditional gate change the PPRM specifications such that
priority queue and trim off all unapplicable nodes which are

guaranteed to be useless by the new valuéesf Depth (or only the garbage lines are affected, this substitution can b

bestCost). Furthermore, by reporting the number of soIutiongons'dered for free” and noF Increase th_e curr&mﬁ_L. Th|s_
- . . . way, the garbage outputs will also possibly make it easier to
eliminated at these points, the algorithm can give the user a

. . ; zero in on a solution when substitutions can push potential
better idea of how the search space is being reduced. : .
smart solutions taking advantage of garbage to the top of the

S o) priority queue.
C. Bidirectional and Divide-and-Conquer Synthesis One problem with this proposed approach is the direction-

Many other papers use bidirectional algorithms, yet thedlity of the algorithm. Garbage should be monitored from
algorithms still do not perform as well as RMRLS. It is alsahe start so that these “free” substitutions can be used.earl
possible to extend RMRLS to use coarse-grain bidirectiondbwever, RMRLS synthesizes functions from their input to
synthesis. If this results in some better solutions in sore output. Until the output is reached, it may not be known
the three-variable cases, it can give some insight into smimewhich lines are affected by garbage. Thus, the garbage bit
RMRLS’s unidirectional properties. management approach as described here can only be applied

The currently known procedure for bidirectional synthesisy synthesizing functions in reverse. Before attempting th
consists of synthesizing the input function, simulatingoit efficient assignment of garbage outputs using the technique
various inputs, using EXORCISM to generate the PPRIroposed in this section, it would be best to first implembat t
expressions for the reverse function, then finally syn#tiegi bidirectional synthesis framework as described in theipres
the reverse function. section.

Here we propose something faster which would work
well with RMRLS. The PPRM expression can be generated
directly from a netlist by calling some existing routines.

Just as calling the substitution functions (esgbstitute(), The numerical studies presented in Section Il provide in-
fredkin_substitute(), or peres_substitute()) in succession sight into the shortcomings of the basic algorithm. The priyn

can turn a PPRM specification into the identity PPRM exnotivation for testing these various configurations was to
pression, while calling these routines in reverse can oharignd the cause of differences between various three-variabl
the identity function back into the original PPRM expresresults from different versions of RMRLS. Since all of the
sion. Furthermore, calling the substitution functions der, test options—including one based on a rule presented in [5]—
but starting with the unigue identity PPRM expression, camere unable to create results matching either of the orligina
actually generate the PPRM expression of theerse of two papers, we can conclude that none of these options alone
the original function. There is an amazing duality betweetan fully explain the various discrepancies.

substitution and operation of algebra that we can exploit. Some additional heuristic options, such as #hisc substi-

In other words, by using the existingbstitute() functions, tution, dramatically increase the CPU time of the algorithm
rather than having to write new Boolean manipulation reegin A major cause of this problem is the number of duplicate
the reverse synthesis process can be automated. expressions in the search tree generated indirectly by such

In addition to synthesizing functions in reverse, this techeuristics. The problem of this excessive computational-ov
nigue enables many more synthesis approaches. One cdwddd motivates the need for the duplicate detection mestmani

Whenever the algorithm obtains a new solution, and th

V. CONCLUSIONS

described in Section 1V. This report has also proposed a num-
ber of other enhancements that may dramatically improve the
synthesis power of RMRLS, including proper experimentatio
on the existing heuristics, bidirectional synthesis, affidient
assignment of garbage outputs.

REFERENCES

[1] A. Agrawal and N. K. Jha, “Synthesis of Reversible Logiry Proc.
Design, Automation, & Test in Europe Conf., vol. 2, Feb. 2004, pp. 1384—
1385.

[2] J. Donald and N. K. Jha, “Reversible Logic Synthesis vktledkin and
Peres Gates,ACM Journal on Emerging Technologies in Computing
Systems, 2007.

[3] P. Gupta, personal communication, 2006.

[4] —, “‘RMRLS 0.1 available for download:
http://www.princeton.edd/ cad/, 2007.

[5] P. Gupta, A. Agrawal, and N. K. Jha, “An Algorithm for Sysis of
Reversible Logic Circuits,IEEE Trans. CAD, vol. 25, no. 11, pp. 2317—
2330, Nov. 2006.

[6] D. Maslov and G. W. Dueck, “Toffoli Network Synthesis \WitTem-
plates,”|[EEE Trans. CAD, vol. 24, no. 6, pp. 807-817, June 2005.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. HayeseV&sible
Logic Circuit Synthesis,” inProc. IEEE/ACM Conf. Computer-Aided
Design, Nov. 2002.

