
Search Space Optimization for
Reversible Logic Synthesis

James Donald and Niraj K. Jha
Department of Electrical Engineering

Princeton University
{jdonald, jha}@princeton.edu

Abstract— The Reed-Muller Reversible Logic Synthesis (RM-
RLS) tool manages to outperform many other reversible synthesis
algorithms in terms of speed and scalability. At the same time,
its algorithm has been shown to be flexible and extensible. In
recent work, it has been used for synthesis with arbitrary gate
types. These attributes make RMRLS a favorable foundation for
future studies in reversible logic synthesis.

On the other hand, the algorithm has its imperfections.
Although it tends to generate better solutions than other al-
gorithms such as template-matching, even for functions with as
few as three variables it can fail to find the optimal solution.
This report reexamines some of the basic assumptions of the
algorithm to suggest some ideas for better approaching fastand
optimal synthesis. We begin by examining results for synthesis
of the 40,320 three-variable reversible functions under various
configurations. We then use these experiences to formulate several
heuristic and fundamental proposals for enhancing RMRLS.

I. I NTRODUCTION

This study arose from looking into some discrepancies
between the results in [1], [5], and the release version of
the Reed-Muller Reversible Logic Synthesis (RMRLS) tool.
Several of the benchmark synthesis results in [5] were different
upon being retested with the release package of RMRLS [4].
However, this was easily explained as the final release of
RMRLS had different heuristics from the development version
used to obtain various results [3].

Like the synthesis results for various benchmarks, the
basic three-variable results were not repeatable either. In this
case, all the functions were synthesized using the exhaustive
method, so this cannot be explained by a change in pruning
heuristics. Although results become non-deterministic iftime-
outs are encountered, all 40,320 functions synthesize within
less than one second, and thus do not come close to reaching
the 180 second time limit [5].

Furthermore, the results in Agrawal’s earlier paper [1] are
actually better than those in Gupta’s later journal paper [5].
In the development of RMRLS over these past two years, this
shift could have been caused indirectly by one of the many
changes to the source code.

In attempting to focus on these fundamental aspects of the
algorithm, a number of new search options were added to the
basic algorithm. These are described below.

• The NOT substitution allows extra substitutions of the
form v → v ⊕ 1 to be used regardless of whether the1
term appears in that variable’s PPRM. This was one of
the “additional” substitutions described in [5], but after
working with the software for a few months it became

apparent that such a substitution is not implemented in
the release version of RMRLS 0.1.

• The basic algorithm, given an output variablevout,i’s
PPRM expression, looks for terms in the PPRM expres-
sion that do not containvi [5]. The misc substitutions
even consider terms that do containvi, remove the
instance ofvi from this term, then generate a Toffoli
transformation accordingly. There is not any good funda-
mental reason to generate such transitions, but this option
was easy to implement in the source code.

• Theminiterms substitutions were derived when search-
ing for a way to synthesize a minimum quantum cost
Fredkin function, which RMRLS would otherwise always
fail to do simply because of its search rules. As a result,
any candidate factor may create not only one branch,
but rather many Toffoli branches using any subset of
that candidate factor. This is by the far the most CPU-
expensive heuristic. Although it can sometimes reduce
gate count, when this heuristic was originally conceived
its main intention was to reduce quantum cost while
maintaining the same gate count.

This report also looks at the various possibilities for heuris-
tic sorting and pruning. At this time there are at least three
known foundations for priority and pruning heuristics:

• Agrawal’s settings ofα = 0.2, β = 0.7, andγ = 0.1 [1].
• The settings claimed in Gupta’s paper ofα = 0.3, β =

0.6, andγ = 0.1 [5].
• The priority algorithm in the release of RMRLS 0.1,

which uses an entirely different system [4].

In Section III we go into further detail on the meaning ofα,
β, γ, and the other heuristics.

The experiments in this writeup—as well as other insights
gathered from experience—lead to several proposals for future
research directions in PPRM-based reversible logic synthesis.
The rest of this paper is structured as follows. Section II
provides an analysis of all three-variable functions under
various assumptions for NCT synthesis. Section III examines
the priority queue scoring mechanisms in RMRLS. Section IV
gives a number of other proposals for future enhancements.
Section V concludes.

II. T HREE-VARIABLE RESULTS

Table I shows the results from synthesizing all 40,320
functions using only NCT gates. It includes some of the
various new options, as well as data from prior publications.
Only the gate counts are shown; like prior works in reversible

logic synthesis [1], [2], [5], [7], we do not consider quantum
cost for the 40,320 three-variable functions. All functions were
synthesized under exhaustive mode. We increased the timeout
limit to one hour when synthesis seemed to be taking on the
order of minutes. However, those combinations, which could
require as much as a full hour per synthesis instead of merely
minutes, are not shown below since it is not expected that their
40,320 synthesis runs will ever finish. After a few weeks, some
of the machines running these unfinished tests have crashed.
Others have simply remained unfinished.

An additional completed experiment, not shown in the
table, was obtained by reenabling Gupta’s cleanup-and-restart
heuristic in RMRLS 0.1 [5]. The mechanism of this heuristic
is for the algorithm to backtrack to an initial state after 2,500
steps. The reason we have not provided an extra column for
these results is that the numbers came out to be exactly the
same as the default mode (labeled as RMRLS 0.1 in Table I).

Although the first release version of RMRLS is known as
both version 0.001 (in the source code) and version 0.1 (in
the documentation), throughout this writeup we have opted to
refer to it as version 0.1.

There are certainly more combinations to explore, such
as NOT + miniterms, misc + miniterms, or NOT +
misc+miniterms. Unfortunately, the CPU time can explode
when some of these options are used in combination. The
miniterms and NOT + misc tests each took several days,
which is several times longer than the basic mode which
would take about one day to synthesize all 40,320 functions in
exhaustive mode. TheNOT + miniterms combination took
a few weeks, and some other possible combinations such as
NOT + misc + miniterms would not be expected to finish
within the lifetime one’s Ph.D.

The CPU time ofNOT +misc is several times that of the
basic configuration, but it is still faster than theminiterms
substitutions. This configuration, with an average gate count
of 6.027, manages to beat Maslov’s claimed 6.05 average
acquired by template matching applied to RMRLS’s synthesis
results [5]. Since template matching could be quite CPU-
intensive [6], NOT + misc may still be a more viable
synthesis method which takes on the order of seconds per
benchmark and thus a few days to generate all 40,320 circuits.
It is uncertain how this timing compares to that of iterative
deepening in [7].

Although the motivation for these experiments was to find
sources of discrepancy, none of the modifications came to
exactly match either of the earlier published datasets. Thus,
these results are inconclusive in that aspect. It is difficult
to narrow down such data anomalies. The cause could be
anything from a different algorithm rule, special-case heuristic,
a bug in the old synthesis tool, a bug in the recent RMRLS,
or a bug in the data collection scripts.

One additional issue raised by these experiments is the
computational cost of various additional substitutions. In our
experience, some very simple substitutions dramatically in-
crease CPU time even for three-variable functions. Further-
more, enabling these substitutions can make larger functions
virtually impossible to synthesize. This motivates some better
bounding strategies that can tolerate various kinds of substi-

tutions. Section IV details some of these proposals.

III. PRIORITY QUEUE HEURISTICS

The previous section examined a number of algorithmic
properties of RMRLS for obtaining the best solution in ex-
haustive mode. In this mode, the use of RMRLS’s priority
queue policy does not matter significantly except for obtaining
the solutions sooner. Regardless of how various nodes are
sorted within the priority queue, an exhaustive, non-time-
limited mode would be expected to attempt all of the same
possible solutions.

When running in time-limited, greedy, or non-exhaustive
default modes, however, RMRLS’s priority and pruning mech-
anisms play a significant role. Many of the benchmarks
featured in each paper can only be synthesized in greedy mode,
and some provide their best circuits in the non-exhaustive
default mode. Therefore, the priority and pruning rules are
significantly emphasized in [1] and [5].

The priority value for a given node is set atα(depth) +
β(elim/depth)− γ(num literals). In [1], α = 0.2, β = 0.7,
andγ = 0.1. In [5], α = 0.3, β = 0.6, andγ = 0.1. Although
in both cases the three factors were intentionally set to addup
to 1, there is no good or intuitive reason for this restriction.

The release version of RMRLS, however, does not use either
of these configurations [4]. According to the source code, this
algorithm is significantly more complicated. For one, thereis
no depth term, so effectivelyα = 0. Theβ term is there in a
sense, but not as a fixed quantity. Whendepth < 10, β = 1.0.
Whendepth ≥ 10, β = 0.3.

As for γ, the factor multiplied bynum literals, there is
actually no fixed value for this purpose. Instead, a record is
kept on the best partial solution known for each depth. If the
current node is the first at its depth to have a literal count
as low as its own, it gets a special bonus of0.6 added to its
score. In addition, if it has the least number of literals out
of any partial solution seen so far at any depth, there is an
additional bonus of 0.6.

One problem with the above literal counting heuristic is
that the priority of a node is time-dependent on when it
is first analyzed. This can cause unwanted side-effects of
causality. For example, when synthesizingcycle28 2 under
the k = 1 heuristic with a max-depth of 80, the 56-gate
solution is obtained quickly. When usingk = 1 and a max-
depth of 60, one would expect this to be faster as it involves
a smaller search space. Under these settings, however, no
solution is obtained. One possible explanation is that due to
the time-dependency of the priority rules, the larger search
space somehow gives priority to the path leading to the 56-
gate solution, whereas the smaller search space fails to land
on this path.

The heuristics described in the papers, which are not im-
plemented in the release version of RMRLS, do not appear
to have such causality problems. On the other hand, the fact
that Gupta used different heuristics in the release version
suggests that these more complex techniques may have been
providing better results. Because the source code for earlier
incarnations of RMRLS was not publicly released, we cannot
easily compare the simple heuristics to the current ones.

TABLE I

NCT SYNTHESIS RESULTS FOR ALL THREE-VARIABLE REVERSIBLE FUNCTIONS ACCORDING TO VARIOUSRMRLS PUBLICATIONS AND OUR TESTS.

gates Agrawal Gupta RMRLS 0.1 RMRLS 0.2 RMRLS 0.2 RMRLS 0.2 RMRLS 0.2 RMRLS 0.2 Optimal
[1] [5] NOT misc miniterms NOT + misc NOT + miniterms [7]

9 30 36 92 44 28 36 16 36
8 3,297 3,351 4,168 3,427 2,598 3,019 2,169 3,019 577
7 12,488 12,476 12,560 12,503 12,578 12,159 12,293 12,141 10,253
6 13,620 13,596 12,939 13,479 14,135 13,952 14,561 13,952 17,049
5 7,503 7,479 7,224 7,485 7,602 7,736 7,857 7,754 8,921
4 2,642 2,642 2,597 2,642 2,639 2,678 2,684 2,678 2,780
3 625 625 625 625 625 625 625 625 625
2 102 102 102 102 102 102 102 102 102
1 12 12 12 12 12 12 12 12 12
0 1 1 1 1 1 1 1 1 1

Avg. 6.100 6.104 6.159 6.108 6.065 6.071 6.027 6.070 5.866

A possible approach for research on improved priority
and pruning mechanisms would be exploration of various
combinations of the 6 different priority mechanisms covered
in this section. To recap, these mechanisms include not only
the basicα, β, andγ factors, but also a variableβ dependent
on depth, the strange 0.6 priority bonus for the least literals
at each different depth, and the other 0.6 bonus for the least
literals overall.

Thus far we have focused on the priority queue mechanisms.
The priority queue rules all affect pruning implicitly, as low-
priority nodes are more likely to get pruned. However, in
the non-exhaustive default mode there is an additional direct
pruning parameterk. This variable sets the maximum number
of new nodes to create from each parent. [5] states thatk
values of 4 or 5 perform best, while the release version uses
a value ofk = 4. It is important to realize that for only a
few benchmarks does the default non-exhaustive mode actually
do better than exhaustive or greedy modes. Although not
explicitly advertised, this was the general experience when
obtaining results for [2]. In other words, the pruning with
k = 4 is a property of an overall policy that does not perform
very well.

We additionally experimented somewhat with the casek =
1. Our first impression was that this should function identically
with greedy mode. This interpretation seems intuitive because
greedy mode pushes at most one new node onto the queue at
each step. Since results usingk = 1 with the default mode
differ from greedy mode, these two modes are apparently not
identical. k = 1 enables the 56-gate solution forcycle28 2
and 27-gate solutioncycle15 2, which had seemed otherwise
unobtainable. Since these good solutions cannot be obtained
with the greedy or exhaustive modes (with the default heuris-
tics in the release version of RMRLS 0.1) for at least some
functions there is evidently some potential for this unusually
simple heuristic option ofk = 1 in the default mode.

The k heuristic (pruning for fewer branches at each stage)
works by sorting all candidates by their priority then only
pushing the firstk nodes onto the priority queue. One strange
characteristic of this routine is that it sorts the candidates from
lowest priority value to highest priority value and then prunes
away the higher-valued nodes. Since the priority formulas were
designed for higher values to symbolize better node potential,
this appears to incorrectly prune good nodes. This is perhaps

an oversight, and possibly much better results may be achieved
by sorting in the opposite direction.

Tweaking the value ofk, changing the sort direction, and
adjusting the other six priority tuning parameters mentioned
earlier form a total of 8 different parameters to tune the
existing heuristics. Each one of these has some evidence
that it may do good in some situations. Thus, using just the
techniques that have been partially tested already, there is
already an enormous design space for which exploration could
potentially yield a much better combination of techniques for
practical priority sorting and pruning.

Before attempting to tune these complex heuristic settings,
however, it may be better to first implement some fundamental
improvements in the core algorithm such as the enhancement
described in Section IV-A.

IV. OTHER PROPOSALS

While the previous section examined some ideas for im-
proving heuristic sorting and pruning, this section proposes
some more bold changes to the algorithm. Many of these
are motivated by the poor runtime aspects observed in the
experiments from Section II.

A. Duplicate Node Detection

We use the termbounding distinctly from pruning, where
pruning refers to heuristic pruning of potential nodes even
though sometimes a poor pruning choice may be made. In
algorithm terminology, branch-and-bound techniques reduce
the search space by applying strict bounds. The use of the
bestDepth variable in RMRLS is an example of this, since if
we are optimizing for circuit size there is no point in exploring
solutions that are guaranteed to have more gates than the
bestDepth. When configured to minimize the quantum cost,
the bestCost variable plays this same role of bounding.

The explosion in CPU time with additional substitutions
naturally occurs because of an exponential increase in potential
nodes for exploration. However, many of these nodes are
probably duplicates created when different paths result in
the same PPRM expressions. With theNOT substitution in
particular, twoNOT gates end up creating the original node
with increased depth. If this happens at a depth lower than the
current bestDepth, it cannot be bounded using the current

system. Although the original algorithm’s system of Toffoli
candidate factors often prevents an excess of duplicates, this
cannot be guaranteed with additional gate types.

Thus, we propose duplicate node detection and filtering.
Pointers to all nodes should be stored in a hash table where
their search key is based on their PPRM expressions. Upon
attempted creation of a new node, its PPRM expression is first
checked in the hash table. If there is already a matching node
with the same or better depth, there is no need to push this
new term onto the priority queue. If the new node has a better
depth, the old node should be deleted from the queue and
replaced in the hash table.

This trimming can be applicable in any of the three modes
(greedy, default, or exhaustive), although it will probably
provide the most benefit in the default and exhaustive modes.

B. Trimming the Back of the Queue

Whenever the algorithm obtains a new solution, and thus
updatesbestDepth (or bestCost in the case of minimizing
quantum cost), there is an additional opportunity for bounding.
At this point, the algorithm should go to the back of the
priority queue and trim off all unapplicable nodes which are
guaranteed to be useless by the new value ofbestDepth (or
bestCost). Furthermore, by reporting the number of solutions
eliminated at these points, the algorithm can give the user a
better idea of how the search space is being reduced.

C. Bidirectional and Divide-and-Conquer Synthesis

Many other papers use bidirectional algorithms, yet their
algorithms still do not perform as well as RMRLS. It is also
possible to extend RMRLS to use coarse-grain bidirectional
synthesis. If this results in some better solutions in some of
the three-variable cases, it can give some insight into someof
RMRLS’s unidirectional properties.

The currently known procedure for bidirectional synthesis
consists of synthesizing the input function, simulating itfor
various inputs, using EXORCISM to generate the PPRM
expressions for the reverse function, then finally synthesizing
the reverse function.

Here we propose something faster which would work
well with RMRLS. The PPRM expression can be generated
directly from a netlist by calling some existing routines.
Just as calling the substitution functions (e.g.substitute(),
fredkin substitute(), or peres substitute()) in succession
can turn a PPRM specification into the identity PPRM ex-
pression, while calling these routines in reverse can change
the identity function back into the original PPRM expres-
sion. Furthermore, calling the substitution functions in order,
but starting with the unique identity PPRM expression, can
actually generate the PPRM expression of thereverse of
the original function. There is an amazing duality between
substitution andoperation of algebra that we can exploit.

In other words, by using the existingsubstitute() functions,
rather than having to write new Boolean manipulation routines,
the reverse synthesis process can be automated.

In addition to synthesizing functions in reverse, this tech-
nique enables many more synthesis approaches. One could

take an existing specification of many gates generated through
the greedy search, generate the PPRM specification for only
its first half of gates, then perform a more exhaustive synthesis
on just that first half-function. If a better specification isfound
for the half-function, it can be replaced. This broad approach
of taking existing suboptimal circuits and optimizing them
resembles the philosophy of template matching, yet it does
not require a template library!

D. Garbage Outputs

There could be many naive strategies for efficiently dealing
with garbage outputs. The current setup requires that the
garbage outputs be preassigned to certain values. Working in
this framework, one could simply try various combinations
of assignments. However, the number of possible garbage
assignments grows quite rapidly with the number of garbage
inputs as well as total inputs.

Our idea for assigning garbage outputs involves the syn-
thesis algorithm continually keeping track of garbage lines
and exercising the freedom to modify these lines. When an
additional gate change the PPRM specifications such that
only the garbage lines are affected, this substitution can be
considered “for free” and not increase the currentdepth. This
way, the garbage outputs will also possibly make it easier to
zero in on a solution when substitutions can push potential
smart solutions taking advantage of garbage to the top of the
priority queue.

One problem with this proposed approach is the direction-
ality of the algorithm. Garbage should be monitored from
the start so that these “free” substitutions can be used early.
However, RMRLS synthesizes functions from their input to
output. Until the output is reached, it may not be known
which lines are affected by garbage. Thus, the garbage bit
management approach as described here can only be applied
by synthesizing functions in reverse. Before attempting the
efficient assignment of garbage outputs using the technique
proposed in this section, it would be best to first implement the
bidirectional synthesis framework as described in the previous
section.

V. CONCLUSIONS

The numerical studies presented in Section II provide in-
sight into the shortcomings of the basic algorithm. The primary
motivation for testing these various configurations was to
find the cause of differences between various three-variable
results from different versions of RMRLS. Since all of the
test options—including one based on a rule presented in [5]—
were unable to create results matching either of the original
two papers, we can conclude that none of these options alone
can fully explain the various discrepancies.

Some additional heuristic options, such as themisc substi-
tution, dramatically increase the CPU time of the algorithm.
A major cause of this problem is the number of duplicate
expressions in the search tree generated indirectly by such
heuristics. The problem of this excessive computational over-
head motivates the need for the duplicate detection mechanism

described in Section IV. This report has also proposed a num-
ber of other enhancements that may dramatically improve the
synthesis power of RMRLS, including proper experimentation
on the existing heuristics, bidirectional synthesis, and efficient
assignment of garbage outputs.

REFERENCES

[1] A. Agrawal and N. K. Jha, “Synthesis of Reversible Logic,” in Proc.
Design, Automation, & Test in Europe Conf., vol. 2, Feb. 2004, pp. 1384–
1385.

[2] J. Donald and N. K. Jha, “Reversible Logic Synthesis withFredkin and
Peres Gates,”ACM Journal on Emerging Technologies in Computing
Systems, 2007.

[3] P. Gupta, personal communication, 2006.
[4] ——, “RMRLS 0.1,” available for download:

http://www.princeton.edu/∼ cad/, 2007.
[5] P. Gupta, A. Agrawal, and N. K. Jha, “An Algorithm for Synthesis of

Reversible Logic Circuits,”IEEE Trans. CAD, vol. 25, no. 11, pp. 2317–
2330, Nov. 2006.

[6] D. Maslov and G. W. Dueck, “Toffoli Network Synthesis With Tem-
plates,” IEEE Trans. CAD, vol. 24, no. 6, pp. 807–817, June 2005.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible
Logic Circuit Synthesis,” inProc. IEEE/ACM Conf. Computer-Aided
Design, Nov. 2002.

