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Abstract—Reversible logic finds many applications, especially in
the area of quantum computing. A completely specified n-input,
n-output Boolean function is called reversible if it maps each
input assignment to a unique output assignment and vice versa.
Logic synthesis for reversible functions differs substantially from
traditional logic synthesis and is currently an active area of re-
search. The authors present an algorithm and tool for the synthesis
of reversible functions. The algorithm uses the positive-polarity
Reed–Muller expansion of a reversible function to synthesize the
function as a network of Toffoli gates. At each stage, candidate
factors, which represent subexpressions common between the
Reed–Muller expansions of multiple outputs, are explored in the
order of their attractiveness. The algorithm utilizes a priority-
based search tree, and heuristics are used to rapidly prune the
search space. The synthesis algorithm currently targets the gen-
eralized n-bit Toffoli gate library. However, other algorithms
exist that can convert an n-bit Toffoli gate into a cascade of
smaller Toffoli gates. Experimental results indicate that the au-
thors’ algorithm quickly synthesizes circuits when tested on the
set of all reversible functions of three variables. Furthermore, it is
able to quickly synthesize all four-variable and most five-variable
reversible functions that were in the test suite. The authors
also present results for some benchmark functions widely dis-
cussed in literature and some new benchmarks that the authors
have developed. The algorithm is shown to synthesize many, but
not all, randomly generated reversible functions of as many as
16 variables with a maximum gate count of 25.

Index Terms—Quantum computing, reversible computing,
reversible logic synthesis.

I. INTRODUCTION

W ITH THE computer industry keeping pace with Moore’s
law, energy consumption has become the center of

attention in digital circuit design after performance. Landauer’s
principle [1] states that any logic computation that is not
reversible (i.e., information lossless) will dissipate a certain
amount of energy for every bit of information lost regardless of
the technology chosen for implementation. Today, this energy is
small compared with other forms of heat dissipation. However,
with the exponential packing of transistors on a chip, this
energy is expected to play a dominant role in the next one to
two decades [2].
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Computation in which there is no information loss is called
reversible and the gates that perform such computation are
called reversible gates. Bennett [3] showed that zero energy
dissipation is possible only if a circuit contains reversible gates;
hence, reversibility will be an important issue in future circuit
design. Reversible logic finds many applications, especially in
the area of quantum computing. It is believed that quantum
computing has the ability to considerably speed up some clas-
sical problems such as factorization (using Shor’s algorithm)
or search (using Grover’s algorithm). Quantum gates are re-
versible by nature [4], which provides a powerful motivation
to study reversible circuits.

The problem of reversible logic synthesis is concerned with
the ability to automatically generate a reversible circuit given a
reversible specification. It is different from traditional Boolean
logic synthesis in five major ways [5]. 1) Unlike Boolean
circuits, reversible circuits have an equal number of inputs and
outputs. 2) Fanout is not allowed, and the circuit structure is
constrained to a cascade of reversible gates. 3) Every output of
a gate that is not used in the circuit is a garbage signal. A good
synthesis method minimizes the number of garbage signals.
4) The total number of constants at inputs of the gates should
be kept as low as possible. 5) There are no feedback paths, and
hence, the circuit is acyclic. These differences make traditional
synthesis methods inapplicable.

In this paper, we present Reed–Muller reversible logic
synthesizer (RMRLS), an algorithm and tool that uses the
positive-polarity Reed–Muller (PPRM) expansion of a re-
versible function to synthesize a reversible circuit. A naive
algorithm would simply use as many gates as there are terms
in the Reed–Muller expansion of the function. Clearly, such
a method fails to take advantage of any shared functionality
that exists between multi-output functions. In our algorithm,
candidate factors, which are subexpressions common between
Reed–Muller expansions of multiple outputs, are identified.
The factors are then substituted into the Reed–Muller expan-
sions to determine if they will be favorable in leading to a
solution (i.e., a synthesized circuit). The primary objective of
the algorithm is to minimize the number of gates (i.e., the
number of factors needed to convert a Reed–Muller expansion
into the identity function), whereas its secondary objective is to
minimize the size of the individual gates (i.e., the number of
literals in the factors).

The remainder of this paper is organized as follows.
Section II presents background material that is required to
understand the ideas presented in this paper, whereas previous
work is discussed in Section III. The synthesis algorithm is
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Fig. 1. Reversible function of three variables.

Fig. 2. Augmented full-adder. (a) Original truth table. (b) Possible reversible
specification.

described in detail in Section IV. Our experimental results
are presented in Section V. The conclusions are given in
Section VI.

II. BACKGROUND

We present some preliminary concepts in this section.

A. Reversible Functions

A completely specified n-input, n-output Boolean function
is reversible if it maps each input assignment to a unique
output assignment and vice versa [6]. A reversible function of
n variables can be defined as a truth table or as a permutation
on the set of integers {0, 1, . . . , 2n − 1}. For example, the
reversible function in Fig. 1 can also be specified as {1, 0, 7,
2, 3, 4, 5, 6}. An irreversible function can be converted into
a reversible function by adding extra outputs, called garbage
outputs, such that the input–output mapping is unique. If the
maximum number of identical output vectors is p, then the
total number of garbage outputs needed is equal to �log2 p�
[2]. Of course, constant garbage inputs must then be added, as
necessary, to balance the number of inputs and outputs.

To demonstrate the process of converting an irreversible
function into a reversible one, consider the augmented full-
adder, which produces carry (co), sum (so), and propagate (po)
signals. Its truth table is shown in Fig. 2(a). The function is not

Fig. 3. (a) NOT gate, (b) CNOT gate, (c) n-bit Toffoli gate, and (d) circuit for
function in Fig. 1.

reversible because there exist repeated output vectors (marked
with † in the figure). An extra garbage output go set equal to
input a or b will make the mapping unique. A garbage input d
must also be added to make the number of inputs and outputs
equal. Fig. 2(b) shows one possible reversible specification of
the augmented full-adder [7].

B. Reversible Gates

A reversible gate implements a reversible function. There are
two main types of reversible gates, namely: 1) Toffoli [8] and
2) Fredkin [9]. Since our algorithm currently does not utilize the
Fredkin gate, we do not discuss it further in this paper. An n-bit
Toffoli gate, denoted by TOFn(x1, x2, . . . , xn), passes the first
n− 1 inputs (referred to as control bits) to the output unaltered
and inverts the nth input (referred to as target bit) if the first
n− 1 inputs are all one. That is

yi =xi, for 1 ≤ i < n
yn =xn ⊕ x1x2 · · ·xn−1. (1)

A one-bit Toffoli gate inverts the input unconditionally and
is called the NOT gate. A two-bit Toffoli gate is called the
Feynman or CNOT gate. Fig. 3 presents a graphical represen-
tation of NOT, CNOT, and n-bit Toffoli gates and the circuit
implementation of the reversible function in Fig. 1.

C. Reed–Muller Expansions

Any Boolean function can be described using an EXOR

sum-of-products (ESOP) expansion [10], [11]. The PPRM
expansion uses only uncomplemented variables and can be
derived from the function’s sum-of-products expression. The
PPRM expansion of a function is canonical and of the form

f(x1, x2, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕ a12x1x2

⊕ a13x1x3 · · · ⊕ an−1,nxn−1xn

⊕ · · · ⊕ a12···nx1x2 · · ·xn (2)
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where ai ∈ {0, 1} and xi are all uncomplemented (positive
polarity). For example, the PPRM expansion of the function
in Fig. 1 is as follows:

ao = a⊕ 1

bo = b⊕ c⊕ ac
co = b⊕ ab⊕ ac. (3)

D. Quantum Cost

The quantum cost of a reversible circuit is the sum of the
quantum cost of its gates. The quantum cost of a gate G is the
number of elementary quantum operations required to realize
the function given by G [2]. These elementary operations are
performed by the NOT, CNOT, and three-bit Toffoli gates. NOT

and CNOT gates have a quantum cost of one. However, they are
not complete because they only realize linear functions. The
addition of the three-bit Toffoli gate makes the set of gates
complete (i.e., have the ability to implement any reversible
function). However, the three-bit Toffoli gate cannot be realized
as a single elementary operation. Fortunately, a realization for
the three-bit Toffoli gate with a quantum cost of five has been
found [12]. Larger Toffoli gates have a higher quantum cost
due to the number of elementary quantum operations required
for their realizations. We use the cost table available from [13]
to calculate the cost for such gates.

Given the current state of technologies for implementing
quantum circuits, it is believed that an n-bit Toffoli (n > 3) gate
will have a high technological cost. These gates are expected
to be macros that will be implemented by elementary gates.
Theoretical lower and upper bounds on the number of elemen-
tary gates required to implement an n-bit Toffoli gate are given
in [12] and [14].

E. Generating PPRM Expansions

Generating the PPRM expansion of a Boolean function is
nontrivial. There are two issues that complicate the process.
First, most functions encountered in practice are irreversible
and/or incompletely specified. To make a function reversible,
it is necessary to add garbage inputs and outputs and assign
bit values (i.e., 0/1) to them. Determining which combination,
among the possible assignments, will lead to the best synthe-
sized circuit, given the optimization criteria (e.g., least number
of Toffoli gates, minimum quantum cost, etc.), is a challenging
and open problem. The second problem is that it is necessary to
convert a reversible function into the ESOP form before it can
be expanded into the PPRM form. Fortunately, this problem
has been addressed, and researchers have developed a state-
of-the-art tool called EXORCISM-4 [15] that uses efficient
heuristics and look-ahead strategies to quickly find the ESOP
form of a Boolean function. Once the ESOP form has been
obtained, it can be transformed into the PPRM form by making
the substitution ā = a⊕ 1 on all the complemented variables,
algebraically expanding the product terms, and canceling out an
even number of identical product terms.

In this paper, the PPRM expansion of a function was obtained
in one of the following ways.

1) Completely specified reversible functions: EXORCISM-
4 was used to convert the specification into the ESOP
form, which was then converted into the PPRM form.

2) Benchmark functions: For the benchmarks for which
the specification was incomplete, the PPRM expansion
was derived manually by examining the synthesized cir-
cuits reported by other researchers [13]. For the bench-
marks that we have developed, we provide the complete
specification.

III. PREVIOUS WORK

In this section, we present a survey of some of the other
reversible logic synthesis algorithms that have been proposed.

An exhaustive algorithm is presented in [16], which
generates all possible circuits containing k gates for increasing
values of k until a circuit is found that implements the given
specification. This is an iterative-deepening approach, and it
can be seen that the result will be optimal. However, the ap-
plicability of this method is restricted to reversible functions of
at most three or four variables that require eight or fewer gates
in their implementation. Important theoretical results on the
synthesis properties of even and odd permutation functions are
also presented. In [17], the authors introduce local optimization
(similar to peephole optimization in compilers) for reversible
circuits where suboptimal subcircuits are replaced with
smaller counterparts to simplify and reduce the overall size of
the circuit.

An algorithm based on the Rademacher–Walsh spectrum is
presented in [18]. At any given stage, the circuit is synthesized
from inputs to outputs or vice versa depending upon the best
translation (i.e., an application of a generalized n-bit Toffoli
(GT) gate) that is possible. The best translation is determined
to be that which results in the maximum positive change in
the complexity measure of the function. Because there is no
backtracking or look-ahead, an error is declared if no translation
can be found. The authors are working on a formal proof to
show that the algorithm will always synthesize a valid circuit
given enough time and memory. Their experimental results
indicate that the method holds promise and needs to be further
investigated.

In [5], the authors present an iterative algorithm to implement
an incompletely specified Boolean function as a cascade of
reversible complex Maitra terms (also known as reversible wave
cascades). The remarkable feature about this algorithm is that
it requires at most one constant input and no garbage outputs.
The basic idea is that a cascade implementation of the original
incompletely specified function is equivalent to the cascade
implementation of a completely specified function that has the
same ON-set (minterms) and OFF-set (maxterms) as the original
function. First, the set of completely specified functions repre-
senting a stage of a cascade is computed. Next, the remainder
function is calculated assuming that the completely specified
functions will be used in the cascade. The stages are added to
the synthesized circuit if the remainder function is independent
of at least one (or more) variable(s).
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A bidirectional algorithm is described in [7], in which syn-
thesis proceeds by adding gates to the circuit either at its
inputs or outputs. Synthesis is complete when the reversible
specification has been transformed into the identity function
(i.e., aout = a, bout = b, cout = c, . . .). This is achieved by
inspecting the truth table in lexicographical order until the first
output assignment is encountered, which is not equal to the
input assignment located in the same row of the table. A series
of Toffoli and/or Fredkin gates must be added in such a way that
the output assignment becomes the same as the input assign-
ment. However, mapping each output back to its corresponding
input is often not the best mapping. An output permutation,
which maps output vout to a different input rather than its
corresponding input v (e.g., aout = b, bout = a, cout = c, . . .),
is used to find a better mapping. An output permutation is useful
because it may lead to a simpler specification that needs to
be synthesized. The interesting feature about this algorithm is
that it is guaranteed to synthesize a valid circuit given enough
time and memory. However, the method synthesizes circuits
that frequently contain sequences of gates that can be simpli-
fied. Thus, a processing step is applied postsynthesis where
such sequences, called templates, are identified and simplified.
Templates were first introduced in [19] and later generalized
in [20]–[22].

Finally, the algorithm in [6] has the ability to utilize any
arbitrary gate library (i.e., arbitrary subsets of NOT, CNOT,
n-bit Toffoli, SWAP, and n-bit Fredkin gates) during synthesis.
The main idea is that given a reversible specification, all gates in
a given library are possible candidates for application. For each
gate, assuming it is used, the remainder function is calculated
using shared binary decision diagrams with complementary
edges. The complexity measure of the remainder function is
calculated, and the gate that results in the lowest complexity
measure is chosen to be added to the synthesized circuit. Syn-
thesis then proceeds on the remainder function. If two or more
gates yield the lowest complexity, multiple paths are explored
simultaneously.

IV. SYNTHESIS ALGORITHM

We describe our synthesis algorithm in this section. We
describe the basic algorithm first. We then describe some
heuristics that are used to improve the performance of the basic
algorithm. The input to our algorithm is a PPRM expansion of
a reversible function f(v1, v2, v3, . . . , vn) that is to be synthe-
sized. The output is a network of Toffoli gates that realizes f .
We illustrate the application of our algorithm with an example
and comment on the data structures that we use and whether the
algorithm converges or not.

A. Algorithm

Fig. 4 outlines the pseudocode for the main steps in the basic
version of our synthesis algorithm. Initialization takes place
in lines 1–13. Variable bestDepth, which stores the number
of gates in the best circuit synthesized for f so far, is set to
infinity. Variable bestSolNode stores a pointer to a leaf node,
which represents the last gate of the synthesized circuit. The

total number of terms in the PPRM expansion of f is stored in
initTerms, and a timer (Timer) is created that specifies the
time limit for synthesis.

The root node (rootNode) of the search tree is initial-
ized next. The depth and factor of this node are set to 0
and NULL, respectively. The PPRM expansions of all output
variables vout,i in f are obtained in terms of all its input
variables vi and stored in rootNode.pprm. rootNode.terms
and rootNode.elim contain the total number of terms in the
current PPRM expansion and the total number of terms that
have been eliminated from the original PPRM expansion once
a substitution is made, respectively. Because this is the root
node, rootNode.elim is set to zero. In addition, its priority
rootNode.priority is set to infinity. Finally, an empty priority
queue PQ is initialized, and the root node is pushed onto the
priority queue. This will be the first node that will be explored
during synthesis. The priority queue maintains a list of nodes
sorted with respect to their priorities.

After the initialization phase, the algorithm enters a loop.
The most promising node for further exploration is removed
from the priority queue and stored in parentNode (line 15).
Lines 16 and 17 check to see whether parentNode is worth
exploring or not. If the depth of parentNode is greater than
or equal to bestDepth− 1, then parentNode can be ignored
as it cannot possibly lead to a better solution than the best one
seen so far.

We explore parentNode by examining each output variable
vout,i in the PPRM expansion of f (lines 18 and 19). For each
input variable vi, we search for factors in the PPRM expansion
of vout,i contained in parentNode.pprm that do not contain
vi (line 20). For example, if aout = a⊕ 1 ⊕ bc⊕ ac, then the
appropriate factors are 1 and bc, as neither contains literal a. For
each factor (factor) that has been identified in this manner,
the substitution vi = vi ⊕ factor is made in the PPRM
expansions of parentNode. A new node is created, which
is a child of parentNode. The depth of the child node is
incremented by one (line 23), and a copy of factor is stored
(line 24). The PPRM of the child node is set to be the PPRM
obtained once the substitution has been made (line 25).
The number of terms in the new PPRM and the number
of terms eliminated by making the substitution are stored
in childNode.terms and childNode.elim, respectively
(lines 26 and 27). Finally, childNode is analyzed, and one of
the following actions is taken.

1) If the synthesis of f has been completed (i.e., the PPRM
expansions for all vout,i contain only vi), then the values
of bestDepth and bestSolNode are updated if this solu-
tion improves upon the best solution found so far (lines
28–30).

2) If the number of terms in the PPRM expansion
has not decreased by making the substitution (i.e.,
childNode.elim ≤ 0), then the node is also disregarded
(line 31). This guarantees that we only explore those
nodes where the number of terms in the PPRM expansion
is decreasing monotonically with the application of each
substitution. Otherwise, the priority of childNode is cal-
culated, and the node is inserted into the priority queue.
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Fig. 4. Pseudocode for our basic reversible logic synthesis algorithm.
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Fig. 5. Application of algorithm to reversible function in Fig. 1.

The priority of childNode is calculated as follows:

childNode.priority = α∗childNode.depth

+
β∗childNode.elim
childNode.depth

− γ∗factor.literalCount (4)

where α, β, and γ are weights that sum up to one. In (4), the
first term gives preference to nodes at a larger depth (i.e., depth-
first search) as all things being equal, they are more likely to be
closer to a solution. The second term addresses the primary ob-
jective of minimizing the number of Toffoli gates. The number
of terms eliminated per stage is used to measure a node’s effec-
tiveness. Finally, the third term addresses the secondary objec-
tive of minimizing the number of control bits of the individual
Toffoli gates. After careful experimentation, values of 0.3, 0.6,
and 0.1 for α, β, and γ, respectively, were used in this paper.

The algorithm repeats the above process until the priority
queue becomes empty or the timer expires. The former con-
dition implies that there are no more candidate nodes left to

explore. The latter condition states that we have reached the
time limit for synthesis. Upon termination, bestSolNode con-
tains a pointer to the leaf node, which represents the last gate of
the synthesized circuit. The path from rootNode of the search
tree to bestSolNode represents the series of Toffoli gates in
the synthesized circuit. The edges of the path represent the
substitutions that were made. For each node n along this path,
n.factor contains a copy of the substitution vi = vi ⊕ factor.
Hence, vi is the target bit, and the literals in factor represent
the control bits of the Toffoli gate.

B. Example

Fig. 5 illustrates the application of our basic synthesis al-
gorithm to the reversible function in Fig. 1. In the figure, the
darkly shaded nodes have already been explored, lightly shaded
nodes have been added in the current stage, and nodes with no
shading are yet to be considered. Initially, the PPRM expansion
of the function is stored in Node 0, which is inserted into
the priority queue. Fig. 5(a) shows the search tree and priority
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Fig. 6. Initial search tree expanded to contain additional substitutions.

queue at this point. In the next step, Node 0 is popped from
the priority queue (it is the only item present) and examined for
possible substitutions. The algorithm identifies three possible
substitutions, namely: 1) a = a⊕ 1; 2) b = b⊕ c; and 3) b =
b⊕ ac. For each substitution, a new node is created, the factor
that is identified is substituted in the PPRM expansion to get
the new PPRM expansion. Because all three substitutions result
in fewer terms in the new PPRM expansion, all the nodes are
added to the priority queue. Node 1.0 has a higher priority
than Node 1.1 and Node 1.2 [see Fig. 5(b)]. In the next step,
Node 1.0 is popped from the priority queue and analyzed.
b = b⊕ ac and c = c⊕ ab are the two possible substitutions
identified for this node.Node 2.0 andNode 2.1 corresponding
to these substitutions are inserted into the priority queue with
Node 2.0 at the head of the queue with the highest priority
[see Fig. 5(c)]. In the next iteration, Node 2.0 is popped from
the priority queue. The only possible substitution is c = c⊕ ab,
which leads to a solution [see Fig. 5(d)]. The solution (i.e., the
substitutions shown on the path from the root of the search
tree to Node 3.0) and its depth (i.e., the length of the path)
are cached. At this point, no new nodes are inserted into the
priority queue. Nodes 1.1 and 1.2 are popped in that order,
respectively, but fail to give better solutions from any of their
substitutions. Their children are not added to the queue because
we have already found a solution of depth three, which they will
not be able to beat. Lastly, Node 2.1 is popped but discarded
because its depth is too large to be useful. The solution illus-
trated in Fig. 3(d) is the best solution that the algorithm finds.

C. Data Structures

The data structures that are used in our algorithm are well
known. A priority queue, implemented as a max heap, is
utilized to determine which node is processed next. Doubly
linked lists are used to store the PPRM expansion of a function,
and substitutions are made by traversing the list. The way
the algorithm is implemented requires repetitive searching in
the forward direction of the linked list only. To speed up this
process, a pointer is saved at the last match, and the search
continues from this point onward the next time. A tree data
structure is utilized to keep track of the search space. Because
leaf nodes represent the only candidates for further exploration,

we do not need to store the PPRM expansion at the intermediate
nodes. We only need to store the substitution that was made
in the nonleaf nodes. This memory optimization is very useful
when synthesizing larger functions.

D. Additional Substitutions

So far, the substitutions that we have considered are of the
form vi = vi ⊕ factor, which require variable vi to be present
in the PPRM expansion for the corresponding output variable
vout,i. This requirement is somewhat stringent and needs to be
relaxed to be able to synthesize functions of larger variables.
Enlarging the set of substitutions presents a drawback in that
more substitutions need to be considered when exploring a
node. However, it also increases the likelihood of good sub-
stitutions being found that eliminate more terms in the PPRM
expansion, thus leading to a solution quicker. We allow for two
additional types of substitutions.

• We no longer require that output variable vout,i contains
variable vi for the algorithm to consider factors from the
PPRM expansion of vout,i. For example, in the synthesis
for the reversible function in Fig. 1 just presented, the
algorithm would also select c = c⊕ b and c = c⊕ ab as
possible substitutions in the first stage.

• For any variable vi, we also allow the substitution vi =
vi ⊕ 1 even if the PPRM expansion of vout,i does not
contain 1. In the synthesis of the reversible function in
Fig. 1, substitutions b = b⊕ 1 and c = c⊕ 1 would be
added as possible substitutions in the first stage. For this
special substitution only, we make an exception in that
we allow the number of terms in the PPRM expansion to
increase.

Fig. 6 shows what the initial search tree would look like if the
additional substitutions identified above are also considered.

E. Heuristics for Basic Algorithm

Given enough time and memory, the basic algorithm in Fig. 4
will always find a valid solution. We prove this claim in the
next section. In practice, however, the applicability of the basic
algorithm is limited to reversible functions of at most five vari-
ables before it exceeds the available memory. Consequently, we
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introduce a few heuristics to the basic algorithm to improve its
performance on reversible functions with a much larger number
of variables. The price we pay is that these heuristics can no
longer guarantee that a solution will be found if one exists.

We abandon the entire search process and backtrack to the
first level of the search tree if we have not been able to find a
solution in a user-specified number (e.g., ∼ 10 000) of steps.
The intuition behind this is that if we made a poor substitution,
chances are that we might have made such a substitution very
early (i.e., at higher depths of the search tree) during synthesis.
Given that we have not been able to find a solution after
considerable effort, we choose to abandon the search and restart
the search from the top of the search tree with a different
substitution (i.e., an alternative path).

There are many substitutions that need to be considered at
each level of the search tree. Consequently, the branching factor
in the basic algorithm will be large for larger functions. To
resolve this issue, we apply the greedy method in that only
the best substitution or the best k substitutions with the highest
score are added to the priority queue at every iteration for each
input variable vi. The score of each substitution is given by
its priority, which is calculated using (4). If there are n input
variables, then either n or kn factors are added to the priority
queue at each level of the search tree. The value of k used in our
heuristics varies from three to five. This heuristic considerably
reduces the memory requirements, speeds up the search, and
enables the basic algorithm to handle large functions.

F. Algorithm Convergence

The remaining question that needs to be addressed is whether
the algorithm will always synthesize a valid circuit, i.e., termi-
nate with a valid solution. We claim that this is indeed the case
for the basic algorithm, and the proof is given next.

Given a PPRM expansion, a solution is found if and only
if for each input variable vi, vout,i = vi. That is the PPRM
expansion, through repeated applications of substitutions, has
been reduced to the identity function. The substitutions that
are applied are of the form vi = vi ⊕ factor, where vi is the
target bit of a Toffoli gate and the literals in factor are the
control bits of the Toffoli gate. Note that the literals in factor
cannot contain vi (i.e., the substitution vi = vi ⊕ vi · factor is
illegal) because vi cannot both be the target and control bit in a
Toffoli gate.

The basic algorithm allows for three types of substitutions:
1) vi = vi ⊕ factor, where vi is present in the PPRM ex-

pansion of output variable vout,i;
2) vi = vi ⊕ factor, where vi is not present in the PPRM

expansion of output variable vout,i;
3) vi = vi ⊕ 1.

The union of these types of substitutions are all the possible
substitutions that can be made in a PPRM expansion. There are
no other valid substitutions that can be applied. Consequently,
the algorithm considers all the possible substitutions that can
be applied at each stage. All of these candidates will be stored
in the priority queue. Given enough time and memory, each of
the possible substitutions will eventually be analyzed. Although
this occurs at every stage, in the worst case scenario, the entire

search space will be searched. Therefore, the algorithm will
always find a valid solution. This concludes the proof.

As mentioned in the previous section, heuristics must be
utilized to improve the performance of the basic algorithm on
larger examples. The heuristics choose a subset of the list of
possible substitutions based on their order of attractiveness.
Depending upon the heuristic, it is possible to miss making
a critical substitution that is required to find a solution for
a given example. Because the heuristics described above are
greedy in nature, they may prune such a critical substitution
because other substitutions may have higher priorities than the
one that is pruned. Consequently, if the basic algorithm is used
in conjunction with the heuristics described above, there is no
guarantee that a valid solution will be found.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results. The
synthesis algorithm has been implemented in C and is a part of a
tool called RMRLS [23]. All experiments were conducted on a
Dell PowerEdge 600SC server featuring a Pentium IV 1.6-GHz
processor, 512-kB cache, 768-MB RAM, and running RedHat
Linux 8.0.

A. Three-Variable Reversible Functions

We first synthesized all reversible functions of three vari-
ables, which number 8! or 40 320. Although our algorithm
targets the GT gate library, circuits of three variables can
contain gates from the NCT library, which contains the NOT,
CNOT, and three-bit Toffoli gates only. Consequently, we take
the liberty of saying that we are using the NCT library for this
case only. Table I compares our results with those reported by
other researchers. The column “No. gates” shows the number of
gates in the circuit, whereas the data in other columns indicate
the number of such circuits that were synthesized. The synthesis
methods in [6] and [7] utilize the more general NCTS library,
which, in addition to the gates in the NCT library, contains a
SWAP gate. A SWAP gate unconditionally exchanges a pair of
inputs. Optimal results for three-variable reversible functions,
using both the NCT and NCTS libraries, are from [16]. As can
be seen from Table I, our algorithm synthesizes good quality
circuits for the case of three-variable functions. Furthermore, it
took less than half a second to synthesize each function.

By extending our algorithm to include the SWAP gate, it
may be possible to achieve results comparable to those in [6].
The reason why our algorithm achieves better results than [7]
despite the lack of a SWAP gate is mainly because substitution
of common subexpressions in a PPRM expansion seems to be
a more powerful technique in reducing a reversible function to
the identity function than trying to map each output back to
its corresponding input. Of course, templates [20]–[22] provide
a very useful method for improving the synthesized circuit
further and should be utilized as a postprocessing step by
any synthesis algorithm. In fact, it was reported in a personal
communication [24] that the average circuit size was improved
from 6.10 to 6.05 when our results were postprocessed through
a template-based simplification tool [21]. However, because we
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TABLE I
ALL REVERSIBLE FUNCTIONS OF THREE VARIABLES

do not have access to this tool, the other results we report do
not have the benefit of this postprocessing step.

B. Four- and Five-Variable Reversible Functions

We attempted to synthesize completely specified four- and
five-variable reversible functions next. We generated a sample
of 50 000 and 3000 random PPRM specifications of four and
five variables, respectively. This was done because synthesizing
all possible functions was beyond reach (there are 16! and 32!
reversible functions of four and five variables, respectively).
The following synthesis options were specified.

1) For four variables, a time limit of 60 s per function,
maximum circuit size of 40 gates, and the greedy option
for substitution pruning was set.

2) For five variables, a time limit of 180 s per function,
maximum circuit size of 60 gates, and the greedy option
for substitution pruning was set.

The synthesis results are shown in Tables II and III. Here,
circuit size refers to the number of Toffoli gates. The majority of
four-variable functions could be synthesized in 5–20 s, whereas
some took longer. For five-variable functions, the majority of
functions that could be synthesized took 40–75 s.

We observe that the algorithm successfully synthesized all
four-variable functions in our test suite. However, this was not
true for five-variable functions, where 194 examples (6.5%)
failed to synthesize. We believe this could be due to many
reasons. First, the algorithm might have needed a longer
time to synthesize the functions. Second, it could be that
these functions require more than 60 gates. Since these were
randomly generated functions, we had no way of knowing
a priori the number of gates needed for their implementation.
However, if we look at Table III, we see that the number
of gates required for the majority of synthesized functions is
in the 30–45 range. Thus, it seems that the heuristics in our
algorithm are not able to prune the search space well enough
to handle five-variable functions, which require more than
45 gates. The search space at a depth of 45 is s45, where s is

the number of substitutions possible. At every node, s can be
in the range 0–20. This is a huge search space. To be able to
handle examples that require more than 45 gates, it seems to
be necessary to improve upon the current heuristic of choosing
which substitutions to explore further. It should be mentioned
that the algorithm can still synthesize some functions that
require more than 45 gates and also sometimes fail to synthesize
some functions that require fewer than 30 gates.

C. Examples From Literature and New Benchmarks

We now consider several examples from the literature and
introduce some new ones for the first time here. A time limit
of 60 s and the greedy option for substitution pruning was
specified for synthesis. Some of the examples were synthesized
in a fraction of a second, others took a few seconds, and the
remaining, namely, rd53, alu, and the shifters took longer.
However, all examples were successfully synthesized within the
specified time limit. The first two examples are from [7].
Example 1:

Specification: {1, 0, 3, 2, 5, 7, 4, 6}.
Toffoli circuit: TOF3(c, a, b) TOF3(c, b, a) TOF3(c, a, b)

TOF1(a).
This means that there are four Toffoli gates cascaded together,
as shown in Fig. 7.
Example 2: This represents a wraparound shift to the right

of one position for a three-variable function.

Specification: {7, 0, 1, 2, 3, 4, 5, 6}.
Toffoli circuit: TOF1(a) TOF2(a, b) TOF3 (b, a, c).

The next series of examples is from [18].
Example 3: This represents the realization of a Fredkin gate

using Toffoli gates.

Specification: {0, 1, 2, 3, 4, 6, 5, 7}.
Toffoli circuit: TOF3(c, a, b) TOF3(c, b, a) TOF3(c, a, b).
Example 4: This represents a simple swap between two

positions in a three-variable function.

Specification: {0, 1, 2, 4, 3, 5, 6, 7}.
Toffoli circuit: TOF2(c, b) TOF3(c, b, a) TOF3(b, a, c)

TOF3(c, b, a) TOF2(c, b).
Example 5: This is an extension of Example 4 to four

variables.

Specification: {0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13,14,
15}.

Toffoli circuit: TOF2(d, b) TOF3(d, b, a) TOF4(d, b, a, c)
TOF4(c, b, a, d) TOF4(d, b, a, c) TOF3(d, b, a)
TOF2(d, b).

Example 6: This represents a wraparound shift to the left of
one position for a three-variable function.

Specification: {1, 2, 3, 4, 5, 6, 7, 0}.
Toffoli circuit: TOF3(b, a, c) TOF2(a, b) TOF1(a).
Example 7: This represents a wraparound shift to the left of

one position for a four-variable function.

Specification: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15,
0}.

Toffoli circuit: TOF4(c, b, a, d) TOF3(b, a, c) TOF2(a, b)
TOF1(a).



2326 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

TABLE II
RANDOM FOUR-VARIABLE REVERSIBLE FUNCTIONS

TABLE III
RANDOM FIVE-VARIABLE REVERSIBLE FUNCTIONS

Fig. 7. Example 1 realization.

Fig. 8. Augmented full-adder realization.

Example 8: This represents the augmented full-adder dis-
cussed in Section II.

Specification: {0, 7, 6, 9, 4, 11, 10, 13, 8, 15, 14, 1, 12, 3, 2,
5}.

Toffoli circuit: TOF3(b, a, d) TOF2(a, b) TOF3(c, b, d)
TOF2(b, c).

The circuit implementation is shown in Fig. 8.
Example 9: The rd53 example is from the MCNC [25]

benchmark suite and has five inputs and three outputs. The
output vector is the binary encoding of the number of ones
in the input vector. Thus, {00000} yields {000}, {00101}
yields {010}, and {11111} yields {101}. Output vectors {010}
and {011} both occur ten times, and hence, we need to add
�log2 10� = 4 garbage outputs for a total of seven outputs. This
requires the addition of two more constant inputs to the five
existing ones.

Specification: We use the same specification as that in [18].
Toffoli circuit: TOF3(a, b, f) TOF2(b, a) TOF3(a, c, f)

TOF2(c, a) TOF5(a, b, c, d, g) TOF3(a, d, f)
TOF2(a, d) TOF4(b, d, e, g) TOF2(c, b) TOF3(d, e, f)
TOF5(a, b, d, e, g) TOF5(b, c, d, e, g) TOF2(d, e).

The next set of examples is introduced for the first time in
this work.
Example 10: The majority5 function outputs one if three

or more of the five inputs are one. Otherwise, it outputs zero.

Four garbage outputs are necessary to make the function
reversible.

Specification: {0, 1, 2, 3, 4, 5, 6, 27, 7, 8, 9, 28, 10, 29, 30,
31, 11, 12, 13, 16, 14, 17, 18, 19, 15, 20, 21, 22, 23, 24,
25, 26}.

Toffoli circuit: TOF3(d, e, a) TOF4(a, d, e, b) TOF2(e, d)
TOF2(d, a) TOF3(a, d, b) TOF3(c, d, a) TOF3(b, d, c)
TOF4(a, b, c, d) TOF4(a, b, d, c) TOF3(c, d, b)
TOF2(e, c) TOF3(c, d, e) TOF4(a, d, e, b) TOF2(e, d)
TOF4(a, b, d, e) TOF3(c, e, d).

Example 11: The decod24 function is a 2:4 decoder with two
inputs and four outputs. To make the function reversible, it is
necessary to add two garbage inputs.

Specification: {1, 2, 4, 8, 0, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14,
15}.

Toffoli circuit: TOF2(c, a) TOF2(d, b) TOF2(c, b)
TOF3(a, d, b) TOF2(d, a) TOF2(b, c) TOF4(a, b, c, d)
TOF3(b, d, c) TOF2(c, a) TOF2(a, b) TOF1(a).

Example 12: The 5one013 function outputs one if the num-
ber of ones in the binary encoding of the input vector is equal
to zero, one, or three. Otherwise, it outputs zero. Four garbage
outputs are necessary to make the function reversible.

Specification: {16, 17, 18, 3, 19, 4, 5, 20, 21, 6, 7, 22, 8, 23,
24, 9, 25, 10, 11, 26, 12, 27, 28, 13, 14, 29, 30, 15, 31,
0, 1, 2}.

Toffoli circuit: TOF2(d, a) TOF1(e) TOF2(e, d) TOF2(e, c)
TOF2(e, b) TOF2(a, b) TOF2(c, a) TOF2(c, e)
TOF5(a, b, c, d, e) TOF1(a) TOF2(d, c)
TOF4(a, b, e, c) TOF1(e) TOF1(d) TOF2(b, e)
TOF2(e, b) TOF3(b, c, d) TOF3(a, e, b)
TOF5(a, b, c, e, d).

Function 5one245 is similar but outputs one if the number of
ones in the binary encoding of the inputs is equal to two, four,
or five. Functions 6one135 and 6one0246 are an extension of
Example 12 to six variables. Results for these functions will be
presented later.
Example 13: The Boolean specification for the alu function

is given in Fig. 9. There are three control signals, i.e.: 1) C0;
2) C1; and 3) C2, and two data inputs, i.e.: 1) A and 2) B.
The control signals determine the logic operation performed on
the data inputs. Four garbage outputs are necessary to make the
function reversible.
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Fig. 9. Boolean specification for alu benchmarck.

Specification: {16, 17, 18, 19, 0, 20, 21, 22, 23, 24, 25, 11,
12, 26, 27, 15, 28, 13, 14, 29, 8, 9, 10, 30, 31, 1, 2, 3, 4,
5, 6, 7}.

Toffoli circuit: TOF2(e, c) TOF2(c, e) TOF2(e, d) TOF1(e)
TOF4(a, b, d, e) TOF3(b, c, a) TOF3(a, c, e)
TOF3(d, e, a) TOF2(c, d) TOF4(a, d, e, b)
TOF3(b, c, a) TOF4(a, c, e, b) TOF2(d, c)
TOF5(a, b, c, e, d) TOF1(c) TOF2(e, c) TOF3(d, e, c)
TOF4(b, d, e, c).

Example 14: The shifter function has two control signals,
i.e.: 1) s0 and 2) s1, and n inputs. Depending on the value
of the control signals, the function does a wraparound shift
of zero, one, two, or three positions on the input. The control
signals are passed unchanged to the output. For example, if the
control signals are 10, then {0, 1, 2, 3, . . . , 2n − 1} will become
{2, 3, . . . , 2n − 1, 0, 1}. When n is 10, 15, and 28, respectively,
the synthesized circuit contains 27, 30, and 56 Toffoli gates,
respectively.

D. Benchmark Functions

We next present synthesis results for many of the benchmarks
available from [13]. Note that the results presented in [13] are
the best available for each benchmark from various sources
in the literature, i.e., these results are not all due to the same
algorithm from the literature. Table IV shows the circuit name,
how many real and garbage inputs it contains, the number of
gates required for its implementation, and its quantum cost. The
quantum cost is calculated by using the cost table for Toffoli
gates available in [13]. To make a fair comparison, we compare
our results with the best published results for the GT library
available from [13]. In cases where the circuit contains gates
from the NCT library only, we compare our results with the best
published results for the NCT library. The † symbol annotating
the benchmark name in Table IV highlights such cases.

In general, our results are on par with those from [13]. In
some examples, we get identical results. In other cases, we
synthesize a circuit with fewer gates but with a higher quantum
cost or vice versa. There are only two cases, namely, 5mod5
and shift10, in which our tool synthesizes a circuit that contains
more Toffoli gates and a higher quantum cost. With the aid of
the postprocessing step using the template-based simplification
tool [21], it may be possible to further reduce both the gate
count and quantum cost of the circuits synthesized by our tool.
Note that no comparison can be made for the examples that

TABLE IV
REVERSIBLE LOGIC BENCHMARKS

we have developed. We will make these examples available to
the reversible logic community. Due to memory constraints, our
algorithm was not able to find a solution to some examples,
namely, in the ham#, hwb#, and #symm family of functions
given in [13].

E. Scalability

In the final set of experiments, we wanted to test the scal-
ability of our algorithm on reversible functions with a rel-
atively large number of inputs. Experiments with four- and
five-variable functions indicate that the algorithm can synthe-
size circuits with gate counts up to around 45. Consequently,
we generated random reversible logic circuits of 6–16 vari-
ables with a prespecified number of gates. The circuit was
constructed by picking a gate at random from a given library
(GT or NCT). The gate was then concatenated to the end
of the circuit. The process was repeated until the specified
number of gates had been selected and added. In the case of
the GT library, the number of control bits for each Toffoli
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TABLE V
RANDOM REVERSIBLE FUNCTIONS WITH MAXIMUM GATE COUNT OF 15

TABLE VI
RANDOM REVERSIBLE FUNCTIONS WITH MAXIMUM GATE COUNT OF 20

gate was determined randomly as well. The circuits were then
simulated to obtain their reversible specifications. Next, the
PPRM expansions for this specification were derived. Finally,
synthesis was performed on the PPRM specification. The CPU
time limit for synthesis for each function was again set to 60 s,
and the greedy option for substitution pruning was used.

Tables V–VII show the results for three different scenarios.
In Table V, 500 examples each, containing 6–16 variables, with
at most 15 gates, were generated randomly. In Tables VI and
VII, 1000 such examples each were generated requiring at most
20 and 25 gates, respectively. For testing the scalability of our
algorithm, all we were interested in observing was whether a
solution (not necessarily the best) could be found or not. As
soon as a solution was found, we chose to move on to the next
example. That is why, for example, Table V contains results
that require more than 15 gates, although we know that all
the examples require at most 15 gates. The column “Failed”
indicates the number of examples that failed to synthesize in
the allotted time.

From Tables V and VI, we see that a vast majority of
the circuits could be synthesized in 60 s. If more time were
allowed, the circuit size would improve. However, we see a
large proportion of circuits failing to synthesize in Table VII in
the allotted time. This is again because we are pruning a lot of
potential substitutions at each iteration with the greedy option.
Better pruning strategies need to be developed to improve
this algorithm. Nonetheless, it is comforting to see that the
algorithm can still quickly synthesize more than half (50%) of
the circuits in such cases.

VI. CONCLUSION

We have described an algorithm and tool that uses a PPRM
expansion of a reversible function to synthesize a network
of Toffoli gates. The algorithm searches the tree of possible
factors in priority order to try to find the best possible solution.
The use of extensive pruning leads to very fast synthesis. We
applied our algorithm to all 40 320 reversible functions of three
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TABLE VII
RANDOM REVERSIBLE FUNCTIONS WITH MAXIMUM GATE COUNT OF 25

variables and obtained good quality results. We also showed
that it can handle all four-variable functions and most five-
variable functions that were in our test suite. We presented
results on several benchmarks and also introduced some new
ones. Experiments on scalability indicate that our algorithm can
quickly find solutions to a good proportion of the randomly
generated functions with 6–16 inputs. However, it has most
success in synthesizing those functions that require no more
than 25 gates on average.

As part of future work, we would like to incorporate Fredkin
gates into our algorithm. A Fredkin gate is equivalent to three
Toffoli gates. Thus, the use of Fredkin gates could yield a
significant improvement in circuit quality. We also want to
improve the pruning process, so that we can handle circuits
that are currently beyond the capabilities of our algorithm. In
particular, there is a need for more powerful heuristics. We are
also working on ways to efficiently synthesize functions with
“don’t cares.” We currently preassign values to “don’t care”
outputs. It would be better if we could find a way to dynamically
assign these values during synthesis.
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