
ReLoS
(known as RMRLS in the literature)

–
Reversible Logic Synthesizer

Pallav Gupta
James Donald

August 27, 2007
Version 0.2

Abstract

ReLoS is an integrated tool for synthesis, simulation, and test of re-
versible logic circuits.

1 Synopsis

relos [-i file] [-h|–help] [-v|–version]

2 Description

ReLoS can be started in two modes: interactive or batch
interactive mode starts if no command line options are supplied.
batch mode starts if the -i option is used to execute a series of commands

from a file.

3 Options

-i file Execute commands specified in file.

-h|–help Show help message.

-v|–version Show version information.

4 Project Organization

relos/doc Documentation for ReLoS.

relos/include Links to all header files used in ReLoS.

relos/src Source code for ReLoS.

ReLoS (1) 1 Version: 0.2, August 27, 2007

9 AUTHORS

relos/tools Useful scripts for ReLos.

relos/benchmarks Benchmark examples.

relos/INSTALL Installation instructions for ReLoS.

relos/AUTHORS People who have contributed to ReLoS.

relos/THANKS People whose code/tools I have used in ReLoS.

relos/ChangeLog Main changes between revisions of ReLoS.

5 Requirements

GLib Version >= 2.2+ (http://www.gtk.org)

Perl Version >= 5.0004 03+ (http://www.cpan.org)

Argtable Version >= 2.0+ (http://argtable.sourceforge.net)

Platforms Red Hat Linux 8.0+

6 Version

Version: 0.2 of August 27, 2007.

7 Reporting Bugs

Report bugs to pallav.gupta@villanova.edu

8 Copyright and License

Copyright c©2004, 2007, Pallav Gupta, pallav.gupta@villanova.edu

License This program can be redistributed and/or modified under GNU Public
License available at http://www.gnu.org/copyleft/gpl.html

Misc If you use this tool in academic research, please send me an email and
cite the following papers:
- P. Gupta, A. Agrawal, and N. K. Jha. An Algorithm for Synthesis of
Reversible Logic Circuits. IEEE Trans. Computer-Aided Design.
- J. Donald, P. Gupta, and N. K. Jha. Reversible Logic Synthesis with
Fredkin and Peres Gates. Journal on Emerging Technologies in Computing
Systems.

9 Authors

Pallav Gupta
Villanova University

ReLoS (1) 2 Version: 0.2, August 27, 2007

11 REVERSIBLE LOGIC NETLISTS

Email: pallav.gupta@villanova.edu
WWW: http://pandim.ece.villanova.edu/

James Donald
Princeton University, NVIDIA Corporation

10 Basic Commands

The following basic commands are currently supported in ReLoS.

list [-h|–help] List all commands available in ReLoS.

help [-h|–help] command Display usage information on a command.

quit [-h|–help] Terminate session.

time [-h|–help] Display elapsed time between two successive time calls.

history [-h|–help] [num] Display list of successfully executed commands.

source [-h|–help] [-x] file Execute commands given in file.
Note: Any line starting with a # is treated as a comment.

print stats [-h|–help] Prints simple statistics about the reversible network.

11 Reversible Logic Netlists

The following commands are used to read/write reversible logic netlists.

read netlist [-h|–help] file Read a netlist to create an internal reversible
logic network.

write netlist [-h|–help] [file] Write the reversible logic network in netlist for-
mat to file or STDOUT.

print [-h|–help] Shows a textual representation of a reversible logic network.
The equations displayed are not Boolean equations.

read pprm [-h|–help] file Read a positive-polarity reed-muller (PPRM) spec.
Synthesis can only proceed if a valid pprm spec exists.

write pprm file Writes the positive-polarity reed-muller (PPRM) spec in the
network to file or STDOUT.

minterms to pprm [-h|–help] [outfile] -v var -m minterm Generates the
PPRM coefficents from the minterms of a single-output function.

esop to pprm [-h|–help] [outfile] file Generates the PPRM coefficients from
the ESOP representation of a multi-output function.

ReLoS (1) 3 Version: 0.2, August 27, 2007

11.1 Netlist Format 11 REVERSIBLE LOGIC NETLISTS

11.1 Netlist Format

The syntax of the netlist is as follows:

This is a comment
.model <name>
.inputs <in1> <in2> ...
.gate <TOF, FRED, PER, RPER> <1, –, x, y> <1, –, x, y> ...
.gate <TOF, FRED, PER, RPER> <1, –, x, y> <1, –, x, y> ...
...
.end

TOF : n-bit general TOFOLLI gate.

FRED : n-bit general FREDKIN gate.

PER : n-bit general PERES gate.

RPER : n-bit general REVERSE-PERES gate.

1 : control.

– : no connection.

x : target.

y : second distinguishable target (only for PERES and REVERSE-PERES)

Note: See relos/benchmarks/netlists for examples specified in this format.

11.2 PPRM Format

The syntax of the PPRM is as follows:

This is a comment
.model <name>
.inputs <in1> <in2> ...
.z <1, 0> <1, 0> ...
.p <1, –, 0><1, –, 0>... <1, –, 0><1, –, 0>...
.p <1, –, 0><1, –, 0>... <1, –, 0><1, –, 0>...
...
.end

z A bit vector indicating which inputs is a constant 0.

p A product term in a PPRM.

11.3 A PPRM Example

Consider the full-adder spec whose PPRM spec is given as follows:

ReLoS (1) 4 Version: 0.2, August 27, 2007

11.4 PPRM Generation of CSOP Functions11 REVERSIBLE LOGIC NETLISTS

dout = d XOR ab XOR bc XOR ac (carry bit)
cout = a XOR b XOR c (sum bit)
bout = a XOR b (propagate bit)
aout = a (garbage bit)

The PPRM spec is then:

.model adder

.inputs d c b a

.z 1 0 0 0 (d is constant 0)

.p 0001 0111 (a is in cout, bout, aout)

.p 0010 0110 (b is in cout, bout)

.p 0100 0100 (c is in cout)

.p 0011 1000 (ab is in dout)

.p 0101 1000 (ac is in dout)

.p 0110 1000 (bc is in dout)

.end

Note: See relos/benchmarks/pprm for examples specified in this format.

11.4 PPRM Generation of CSOP Functions

To generate the PPRM specification of a single-output function specificed in
canonical sum of products form, use the minterms to pprm command. To gen-
erate the PPRM spec of f(x1, x2, ..., xn) = m(0, 2, 3, 7), say:
minterms to pprm -v 3 -m 0 -m 2 -m 3 -m 7

000 1
100 1
110 1
001 1
101 1

Thus, the PPRM is f = 1 XOR x3 XOR x2x3 XOR x1 XOR x1x3.

11.5 PPRM Generation of Arbitrary Reversible Functions

To generate the PPRM of a multi-output function, use the esop to pprm com-
mand. A tool called EXORCISM is used which takes an aribtrary reversible
function in PLA or BLIF format and converts it into a XOR sum of products
(ESOP). By using the relationship, x bar = x XOR 1, it is possible to convert
the ESOP into PPRM.

Note: It is the user’s responsibility to ensure that the function being converted
into PPRM format is a reversible function.

ReLoS (1) 5 Version: 0.2, August 27, 2007

13 NETWORK SYNTHESIS

12 Netlist Simulation

The following commands are used in simulation of reversible logic networks.

simulate [-o outfile] [-h|–help] file Simulate the reversible logic network with
vectors supplied in file.

Note: See relos/benchmarks/vectors for examples on how to supply the sim-
ulation vectors. The output (and only certain bits of the output) are valid only
when the garbage bits on the input have the proper assignment. It is assumed
the user is familiar with this.

TODO: It would be nice to specify which bits are garbage bits in the netlist
format specification and then, those bits should not get output during simula-
tion.

UPDATE: J. Donald has thought out a scheme to do this. It involves allowing
”free” substitutions that do not increase the gate count and thus bring more
potential solutions to the front of the priority queue. As I’ve reasoned it out
so far, however, the input function would have to be the reverse of the original
input function.

13 Network Synthesis

The following commands are used in synthesis of reversible logic networks.

syn [-q|–quit] [-h|–help] [-g|–greedy] [-e|–exhaustive] [-d|–depth int]
[-t|–time int] [-s|–swap] [-f|–fredkin] [-p|–peres] [-b|–bigperes]
[-x|–extra] [-y|–misc] [-m|–miniterms] [-c|–quantum] [-l|–limit int]
Synthesize a reversible logic network given a valid PPRM specification.

Many new options were added in version 0.2. -s|–swap, -f|–fredkin, -p|–peres
enable various gate types other than Toffoli gates. -b|–bigperes permits n-bit
Perse and n-bit reverse-Peres gates.

-c|–quantum tells the algorithm to optimize for quantum cost rather than gate
count, and can only work if a cost table is loaded. -l|–limit prevents the syn-
thesis from using any gates beyond a certain size.

-x|–extra enables the additional NOT substitution for any variable as described
in Section 4.D of the journal paper, although this extra substitution apparently
was not actually implemented in the original release version. -y|–misc enables
a lightweight decision to base Toffoli candidate factors even on terms that do
include the target variable. -m|–miniterms enables the miniterms substitu-
tion that creates many branches based on subsets of candidate factors, and so
far is the only known way to synthesize a minimum cost Fredkin gate. Note:

ReLoS (1) 6 Version: 0.2, August 27, 2007

15 USEFUL SCRIPTS

Only the last of these three options has any effect on Fredkin gate substitutions.

Note: The algorithm currently implemented may not be to always synthesize a
reversible logic network. Clearly, a lot of research needs to be done to be able
to handle arbitrary specifications.

14 Quantum Cost Calculation

The following command is used in reading a quantum cost table from which the
quantum cost of a reversible logic network is calculated. This table should be
kept in sync with the table at http://www.cs.uvic.ca/∼maslov/definitions.html

read cost table [-h|–help] file Read the quantum cost of Toffoli gates from
the specified file.

In cost calculation, the minimal cost of an n-Toffoli gate is used (if several im-
plementation of a gate are known) provided that the sum of size of the gate
and garbage does not exceed the number of lines in the circuit. Take a look
at relos/benchmarks/quantum cost.txt for the syntax of a sample file. The
first column indicates gate size, the second column indicates garbage, the third
column indicates cost. The cost of an n-Fredkin gate is just the cost of an n-
Toffoli gate +2. An exception to this is the 3-Fredkin gate, which has a cost of 5.

The standard 3-bit Peres gate has a quantum cost of 4. If n-Peres gates are
specified, Peres gates and reverse-Peres gates of a size greater than 3 are each
measured with the pessimistic cost of an n-Toffoli plus an (n− 1)-Toffoli.

Note: It is the user’s responsibility to ensure correct syntax. Three columns
with each row containing three integers. No other tokens are allowed.

15 Useful Scripts

The relos/tools directory contains some useful scripts.

1. gen pprmcir

2. gen shift

3. PPRMbenchmarkgen.pl

4. PPRMcirgen.pl

5. PPRMsyn.pl

6. parse log

gen pprmcir - This program will generate all reversible functions of three vari-
ables. 40, 320 files will be generated so run this program in a separate directory.

ReLoS (1) 7 Version: 0.2, August 27, 2007

16 CONTRIBUTING YOUR SOURCE CODE

gen shift - This program generates correct PPRM specifications for the shifter
functions.

Usage: gen_shift <num_bits>

PPRMbenchmarkgen.pl - This scripts generates random PPRM circuits. It is
more robust than PPRMcirgen.pl.

Usage: PPRMbenchmarkgen.pl <options>
--var Number of variables (default is 3).
--depth Max depth of circuit (default is 10).
--num Number of circuits to generate (default is 1).
--nct Use NOT, CNOT, 2-Toffoli gates.
--help Show this message.

PPRMcirgen.pl - This script generates random PPRM circuits of n variables.

Usage: PPRMcirgen.pl <options>
--var Number of variables.
--num Number of circuits to generate.
--dir Name of directory to put the circuits in.
--help Show this message.

PPRMsyn.pl - This script synthesizes PPRM circuits and logs the result in
relos.log.

Usage: PPRMsyn.pl <options>
--dir Directory containing benchmarks.
--help Show this message.

parse log - This program reads a relos.log file generated by PPRMsyn.pl and
reports the distribution of circuit sizes.

Usage: parse_log <filename>

16 Contributing Your Source Code

If you want to contribute your source code to ReLoS and/or make improvement,
add new features, etc., please contact the authors. This is so we do not have
multiple versions floating around.

ReLoS (1) 8 Version: 0.2, August 27, 2007

