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Abstract

Power dissipation is now a primary limiting factor in the design of future micro-

processors. As a consequence, effective control of on-chip temperature is continually

becoming more costly. Most transistor failure mechanisms increase exponentially with

temperature. While cooling mechanisms such as fans can modulate temperature, such

solutions can be expensive, noisy, and have further reliability issues. Furthermore, due

to non-uniform power density, non-uniform temperature profiles may create localized

heating in the form of hotspots. In future process technologies, the power problem is

exacerbated with relative increases in leakage power as opposed to dynamic power,

and significant variation in leakage power.

This thesis explores policies for power and thermal management in modern proces-

sors. Such techniques can increase overall reliability while mitigating the cost of other

cooling solutions. In particular, I approach power management with parameter varia-

tion from an analytical view, develop novel dynamic thermal management techniques

for multithreaded processors, and explore a fairly exhaustive design space for ther-

mal management in multicore processors. The overall contributions of this work are

concepts, policies, analyses, and frameworks for management of power, temperature,

variation, and performance on multicore processor platforms.

This thesis can be divided into two major parts. The first proposes a power man-

agement scheme for parallel applications. Rather than assuming predictable power

characteristics, this study takes into account the natural variation in deep-submicron

technologies. It is shown that while power variation can offset power/performance

predictability, several benchmarks have convenient parallelism properties that allow

a flexible range of variation of as much as ±98% of the target core design power.

The second part of this thesis covers thermal management techniques for several pro-

cessor design scenarios. I first propose an adaptive thermal management policy for

single-core processors based on simultaneous multithreading. This adaptive technique
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based on controlling priorities between two threads is shown to increase performance

for a thermally constrained core by on average 30%. I then further extend this to

the multicore processor paradigm, whereby spatial locality allows for robust policies

managing multiple hotspots across several cores. My final policy combines process

migration with DVFS for a 2.6X performance improvement.

iv



Acknowledgements

Throughout my years in this program I have received much assistance from many

whom I would like to offer my thanks. These people have helped me through revising

paper drafts, technical assistance, administrative work, and in many intangible ways.

First, I would like to thank all my past and current group members, including Ab-

hinav Agrawal, Abhishek Bhattacharjee, David Brooks, Eric Chi, Gilberto Contreras,

Gila Engel, Sibren Isaacman, Canturk Isci, Maria Kazandjieva, Manos Koukoumidis,

Vincent Lenders, Ting Liu, Hide Oki, Matt Plough, Chris Sadler, Yong Wang, Carole

Wu, Qiang Wu, Fen Xie, and Pei Zhang. Working alongside my labmates has truly

had an impact on this work, and I hope that my presence has also made an impression

on theirs as well.

With my above labmates I engaged in countless hours of technical discussions

to further my knowledge and development. On top of this though, I had to seek

outside experts throughout my various projects. Some of these helpful researchers

include Murali Annavaram, Woongki Baek, Ken Barr, Chris Bienia, Jayaram Bobba,

Jonathan Chang, Kaiyu Chen, Jeff Gonion, Steven Johnson, Ben Lee, Jian Li, Ying-

min Li, Eugene Otto, Sanjay Patel, David Penry, Ram Rangan, Vipin Sachdeva, Bob

Safranek, Kevin Skadron, Nathan Slingerland, and Neil Vachharajani. Furthermore,

a good number of such skilled researchers from other groups were also available to

me in person in our own office including Xuning Chen, Noel Eisley, Shougata Ghosh,

Kevin Ko, Bin Li, Vassos Soteriou, and Ilias Tagkopoulos. Through such friends I

not only received valuable technical assistance, but also engaged in insightful and

enjoyable conversations throughout our long days of work.

I would further like to thank my good friends Su Kim, Jennifer Oh, and Bernard

Wu. Their support and encouragement outside of the office has always helped me to

keep going.

I am indebted to the electrical engineering departmental staff well as the engi-

v



neering quad staff who have always been on duty to assist me in times of need. I

greatly appreciate the hours or days of administrative work done for my sake by

Sarah Braude, Linda Dreher, Anna Gerwel, Sarah Griffin, Jennifer Havens, Jo Kelly,

Tamara Thatcher, Stacey Weber, Karen Williams, and Meredith Weaver. In addi-

tion, the technical staff for engineering as well as the Office of Information Technology

have been a tremendous help in overcoming many technical obstacles. For this I thank

John Bittner, Gene Conover, Kevin Graham, Curt Hillegas, Dennis McRitchie, Jay

Plett, and Rita Saltz.

I would also like to thank the various entities that have funded my graduate work

in part over the years. This includes NSF, Intel, SRC, and GSRC for their direct

funding, as well as SIGARCH, IEEE TCCA, SIGDA for their helpful membership

benefits, publications, and travel grants.

I would especially like to thank my dissertation committee including David Au-

gust, George Cai, Sharad Malik, and Kai Li for their assistance with this thesis. Last

but not least, I would like thank a key member of my committee, my own advisor

Margaret Martonosi. Her patience and guidance that has carried me through these

challenging years in graduate school.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . 2

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . 7

2 Power Variation in Multicore Processors Running Parallel Applica-

tions 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Experiment Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Architectural Model . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Modeling Thread Synchronization and Coherence . . . . . . . 14

2.3 Consequences of the Memory Hierarchy . . . . . . . . . . . . . . . . . 15

2.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Basic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Formulations for Multiprogrammed Workloads . . . . . . . . . 21

vii



2.4.2 Underlying Themes . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Analysis and Results for Parallel Applications . . . . . . . . . . . . . 25

2.5.1 Extending the Basic Analysis with Amdahl’s Law . . . . . . . 25

2.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Mapping to Log-Normal Distributions . . . . . . . . . . . . . . . . . . 33

2.7 Temperature Properties of Parallel Applications . . . . . . . . . . . . 36

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Multithreading Thermal Control 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Adaptive Thermal Control . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Adaptive Control Algorithm Overview . . . . . . . . . . . . . 49

3.3.2 Adaptive Control Algorithm: Other Issues and Discussion . . 52

3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Adaptive Register Renaming . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Design Description . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Future Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Multicore Thermal Control 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



4.2 Thermal Control Taxonomy . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Thermal Control Taxonomy . . . . . . . . . . . . . . . . . . . 68

4.2.2 Stop-go vs. DVFS . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Distributed Policies vs. Global Control . . . . . . . . . . . . . 70

4.2.4 OS-based Migration Controllers . . . . . . . . . . . . . . . . . 71

4.3 Simulation Methodology and Setup . . . . . . . . . . . . . . . . . . . 73

4.3.1 Turandot and PowerTimer Processor Model . . . . . . . . . . 73

4.3.2 HotSpot Thermal Model . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Thermal/Timing Simulator for DTM . . . . . . . . . . . . . . 77

4.3.4 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Applying Formal Control to Thermal DVFS . . . . . . . . . . . . . . 80

4.4.1 Background: Closed-loop DVFS Control . . . . . . . . . . . . 81

4.4.2 Thermal Control Mechanism for DVFS . . . . . . . . . . . . . 82

4.5 Exploring Stop-go and DVFS in both Global and Distributed Policies 84

4.5.1 Stop-Go Policy Implementations . . . . . . . . . . . . . . . . . 84

4.5.2 Distributed versus Global Policy Implementations . . . . . . . 84

4.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Migration Policies for Thermal Control . . . . . . . . . . . . . . . . . 87

4.6.1 Counter-based Migration: Method . . . . . . . . . . . . . . . . 88

4.6.2 Counter-Based Migration: Results . . . . . . . . . . . . . . . . 89

4.6.3 Sensor-based Migration: Method . . . . . . . . . . . . . . . . 91

4.6.4 Sensor-based Migration: Results . . . . . . . . . . . . . . . . . 94

4.7 Results Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



5 Conclusions 101

5.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



Chapter 1

Introduction

1.1 Background

In the past decade, power consumption has become the foremost challenge in the

advancement of the microprocessor industry. Until now, Moore’s Law has observed a

doubling of the number of transistors per chip approximately every 1.5 years. Along

with this exponential increase in transistor count comes an exponential increase in

power density [6, 29]. Figure 1.1 depicts this progression among several major desktop

processors according to Intel’s roadmaps [65].

Power and energy consumption can hinder electronics in a number of ways. In

the mobile sector, increased energy usage reduces battery life. Recently in the server

markets, the direct energy price has become a significant cost factor for datacenters.

Another issue resulting from power consumption is that of on-chip temperature man-

agement. With the continual increases in power density, cooling costs rise accordingly.

Although cooling solutions such as fans or liquid cooling are the prime mechanism

for temperature management, more advanced cooling mechanisms represent further

costs as well as additional points of failure. In 1998, it was estimated that beyond

a certain threshold the cost of cooling for microprocessors increases by $1 for each
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Figure 1.1: Power density of Intel microprocessors across several generations. The
x-axis shows the progression of shrinking process technologies.

additional watt [78].

This thesis focuses largely on temperature management techniques. In other

words, not only do I present techniques for reducing total power, but I also ex-

plore the temperature-aware design space. Temperature-aware design involves taking

into account the spatial and transient characteristics of thermal effects. This raises a

number of issues not entirely visible when looking only at total power consumption

or power density.

1.2 Motivation and Problem Statement

To motivate the challenges in temperature-aware design, here I present measurements

taken from real hardware to demonstrate the range of thermal characteristics across

different benchmarks selected from the SPEC 2000 suite [33]. These were taken at

room temperature on a notebook utilizing a Pentium M Banias 1.5 GHz processor
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Figure 1.2: Dell notebook running Linux used for temperature measurements.

and running Red Hat Linux 7.3 with its kernel upgraded to version 2.6.11. Using the

Advanced Configuration and Power Interface (ACPI) I read the temperature off a

single thermal diode at the edge of the processor [1]. A picture of this setup is shown

in Figure 1.2.

I first compiled all benchmarks with base settings using gcc version 2.96 for C

programs and Intel Fortran Compiler version 9.0 for Fortran programs. Before run-

ning any benchmark the computer was allowed to sit idle briefly and confirm that

it had reached its steady-state idle temperature. Once each benchmark run was

launched, after one minute I polled the processor temperature repeatedly. Most

programs reach a relatively-stable steady-state temperature, and these per-program,

steady-state temperatures are shown in Table 1.1 (a). Not all benchmarks gravitate

towards a single-steady temperature, however, and Table 1.1 (b) lists the programs

where temperatures continually rise and fall throughout execution. As shown, pro-

cessor steady-state temperatures for such benchmarks can differ by as much as 12◦.
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(a) Temperatures of stable benchmarks.

benchmark category
steady-state

temperature (º C)

gzip SPECint 70

mcf SPECint 59

parser SPECint 67

twolf SPECint 67

mesa SPECfp 65

swim SPECfp 62

lucas SPECfp 63

sixtrack SPECfp 71

(b) Temperature ranges for benchmarks without a steady tem-
perature.

benchmark category
temperature range 

(º C)

bzip2 SPECint 67-72

ammp SPECfp 58-64

facerec SPECfp 65-71

fma3d SPECfp 61-67

Table 1.1: Measured processor temperatures on a Pentium M Banias notebook.

These real-system findings are consistent with simulation work by other sources.

For example, gzip and bzip2 are two of the hottest integer benchmarks [18] and

sixtrack is one of the hottest floating point benchmarks [32, 66]. Also, mcf is by far

the coolest due to its memory-bound execution. Both its overall IPC and temperature

are relatively kept low when a limited L2 cache is provided [51], as in this case where

the Banias processor provides only 1 MB.

Overall, these real-system measurements show first that applications have quite

distinct thermal profiles, and second, that the time-varying nature of applications and

workloads warrants truly dynamic approaches to thermal management such as those

I explore in Chapters 3 and 4. While this infrasructure cannot physically measure

the spatial thermal variations within a core, it can be surmised that CMPs running
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multiprogrammed combinations of these applications will show spatial variations at

the core-to-core level at least, and likely within the core as well. In fact, such spatial

variation of temperature has been strongly confirmed by infra-red emission microscopy

(IREM) measurements in industry [26].

The importance of power and thermal management has spawned much research on

power reduction through modified process technologies, design methodologies, pack-

ing technologies, cooling solutions, and architectural techniques. This thesis partic-

ularly examines microarchitectural techniques for power and thermal management.

Furthermore, in this area I focus on multicore processors, representing an even more

challenging design space than tested in the above physical measurements. In addition

to multicore processors, Chapter 3 focuses on multithreaded processors which utilize

simultaneous multithreading (SMT) [82]. In recent years, both multicore and mul-

tithreaded processors have become ubiquitous, thus representing a the fundamental

architectural paradigm for future microprocessors.

The following section describes prior work in the fields of power and thermal

management for multicore and multithreaded processors, while Section 1.4 provides

an overview of this thesis and its contributions.

1.3 Related Work

This section gives an overview of recent research in the fields of power and thermal

management. The intent is to give a summary of prior techniques and show how the

ideas presented in this thesis build upon and complete several of these areas. In each

of the later chapters, I also provide more detailed overviews of related work specific

to each chapter.

Even before multicore processors came into production, there was much prior

research on architectural techniques for reducing power in single-core processors.
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Wattch [10] and PowerTimer [8] are frameworks for using architectural simulators

for power estimation. Using Wattch, Brooks et al. examine several fundamental

dynamic thermal management techniques including global clock gating and dynamic

frequency scaling [9]. More advanced techniques for uniprocessor power management

include formal management of multiple-clock domains [86] and dynamic compilation

for frequency and voltage control [88]. One shortcoming of these past works however,

is that they have been targeted at only uniprocessors running single-threaded appli-

cations. Currently, however, the single-threaded single-processor paradigm no longer

represents the dominant processor architecture in most market sectors.

In this decade alone, this industry has seen the introduction of processors exhibit-

ing SMT, chip multiprocessing (CMP), as well as processors formed from a hybrid of

the two. Much research on power management has adapted accordingly, leading to

studies of the power and energy efficiencies of SMT and CMP. Kaxiras et al. compare

SMT to CMP for mobile phone workloads [42], while Sasanka et al. perform a similar

comparison for multimedia workloads [67]. Li et al. explored various design tradeoffs

for performance and power, as well as temperature, for various SMT and CMP de-

signs [51]. Most of these prior works, as well as the latter thrust of this thesis, focus

only on workloads consisting of single-threaded programs. Chapter 2 contributes to

this area by exploring parallel applications. Furthermore, although there have re-

cently been a few works on power management for parallel programs [4, 23, 48, 49],

the approach taken by my work in Chapter 2 significantly differs by exploring the

concept of process variation.

Going beyond power and performance tradeoffs as explored in many earlier works,

the second part of this thesis examines such issues from the perspective of thermal

management. As shown earlier, the concept of temperature introduces factors of

locality not entirely critical when optimizing merely for total power or energy. Fur-

thermore, the ideas in this thesis seek to take advantage of the natural partitioning
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and flexibility provided in SMT and CMP architectures. One work that reflects some

of these ideas is the Heat-and-run thread migration study [66]. In Chapter 4, I show

how to expand upon this by viewing other policies such as DVFS as axes to be used

in combination, rather than simply competing policies as assumed in prior works.

1.4 Thesis Overview and Contributions

This thesis is divided into two major divisions. The first part is Chapter 2, which

explores power consumption takes for parallel applications on multicore processors

with parameter variations. The second part, consisting of Chapters 3 and 4, covers a

number of techniques for thermal management.

Chapter 2 explores power management for parallel shared memory applications.

Furthermore, an additional design challenge is management of on-chip power varia-

tion, which is becoming increasingly significant in deep-submicron technologies. My

final results summarize a number of trade-offs with on-off policies with variation-

tolerant multicore processors running parallel applications. Due to non-ideal behav-

iors of scaling some parallel applications, the available tolerance of variation for some

applications can be as large as 8.5 W (±98% of the target per-core design power) on

a 32 nm processor consisting of 8 cores.

While Chapter 2 and onwards do not directly take temperatures into account,

Chapter 3 introduces thermal management techniques. Using multiprogrammed

workloads rather than parallel applications, I propose thermal management tech-

niques for single-core processors with simultaneous multithreading (SMT). While the

rest of the thesis explores only multicore architectures, Chapter 3 serves as a precur-

sor to show that similar techniques can be applied even on a single-core processor. I

show that by fine-grained control of instruction fetch priorities, the performance of a

thermally-stressed uniprocessor can still be increased by 30% while avoiding thermal
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emergencies.

Chapter 4 continues the thermal management thrust, and explores a significantly

more expansive design space for adaptive thermal management. Rather than a single-

core processor I examine thermal management for a four-core processor. A major

intent of this chapter is to show how various thermal management techniques work

in combination in a multicore environment, so I also model dynamic voltage and

frequency scaling (DVFS) combined with other techniques. I explore a fairly exhaus-

tive taxonomy of policies, and find that an overall hybrid policy of dynamic voltage

and frequency scaling with sensor-based migration provides the best performance

improvement of 2.6X in a heavily thermally stressed environment.
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Chapter 2

Power Variation in Multicore

Processors Running Parallel

Applications

2.1 Introduction

Chip multiprocessors are becoming a widespread basis for platforms in the server,

desktop, and mobile sectors. Thus, this chapter, as well as Chapter 4, focuses on

multicore designs. Often such processors are used for running several different single-

threaded applications simultaneously on one processor. This assumption is used in

most prior work, as well as in Chapters 3 and 4 of this thesis. However, it is expected

that the software that will run on computing devices will be primarily multithreaded

programs within a decade. Thus, this chapter emphasizes heavily on parallel appli-

cations.

This chapter formulates power-aware adaptive management techniques for parallel

applications running on multicore processors. Furthermore, one of our major contri-

butions is to take into account process variation, a pressing issue for deep submicron

9



technologies.

Process variations have become increasingly important as deep submicron tech-

nologies pose significant risks for wider spread in timing paths and variations in

leakage power. Within a few technology generations, it is expected that within-die

variations will become more significant than die-to-die variations [7], and manifest

in multicore chips as core-to-core variations [36, 37]. Architects must design these

chips with appropriate options to ensure reliability while still meeting appropriate

performance and power requirements. This involves fallback modes at the circuit,

architectural, and system level.

Some post-silicon circuit techniques can be applied to ensure valid timing, but

these entail non-trivial costs in terms of dynamic and leakage power. Our starting

parameter is Pexcess,N , the amount of excess power on a core resulting from inherent

leakage variation. It has been shown that such variations may be significant across

multiple cores in a chip multiprocessor [36].

Our work takes into account these power discrepancies to formulate policies for

post-silicon adaptivity to meet desired performance and power budgets. Modern plat-

forms often have overall goals or configurable power modes that focus on maximizing

the ratio of performance/watt rather than performance alone. In studying methods

toward this goal, our approach is to turn off cores that are particularly expensive

in terms of power consumption. For this it is necessary to establish the appropriate

optimal tradeoff points. We seek to quantify these cutoffs depending on the level

of variation and execution characteristics of the applications. By giving the system

knowledge of power variation traits through diagnostics, these bounds can be known

or calculated at system runtime and then used to properly tune performance and

power to sustain desired user demands.

Modern devices now run a wide variety of applications, often concurrently, and

must efficiently operate depending on their tasks at hand. Thus, we first derive

10



an appropriate performance/power tradeoff point for the case of running multiple

programs simultaneously through multiprogramming. We then extend our analysis

to parallel programs, since multicore designs have become a major motivation factor

toward seeing widespread use of parallel applications in all sectors.

We propose that multicore-based systems can adapt readily to meet power-per-

formance requirements. Specifically, the core power ratings may be identified at the

time of system integration, and can even be reconfigured through system diagnostics

after power ratings change due to long-term depreciation effects. With knowledge of

these variations, the system can choose how to efficiently allocate cores to particular

tasks and put cores to sleep if potential additional performance is not power-efficient.

Our specific contributions are as follows:

• We derive an analytical formulation for estimating the amount of tolerable

power variation for multicore policies seeking to maximize performance/watt.

To account for parallel applications, we incorporate Amdahl’s Law in this for-

mulation.

• Using Turandot [60] as our simulation platform, we demonstrate these properties

using 8 applications from the SPLASH-2 [85] benchmark suite. For example, the

high parallel efficiency of raytrace, a graphical rendering benchmark, allows

it to increase in performance/power ratio by running on as many as 7 cores

although this maximum is easily offset by power variation beyond 0.28 W, or

about 3.5% of the target per-core design power.

The next section describes our experiment and simulation methodology, while Sec-

tion 2.3 examines our choice of memory hierarchy on parallel applications. Section

2.4 provides the foundations of our analytical model and without considering multi-

threaded interactions, while Section 2.5 extends our analysis and provides validation

for parallel programs. Section 2.6 extends our studies to possible variation distribu-
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tions, while Section 2.7 looks briefly at some basic temperature properties of parallel

applications. Finally, Section 2.8 covers related work and Section 2.9 summarizes.

2.2 Experiment Methodology

2.2.1 Architectural Model

We use an enhanced version of Turandot [60] and PowerTimer [8] to model perfor-

mance and power of an 8-core PowerPCTMprocessor. Our cycle-level simulator also in-

corporates HotSpot version 2.0 [35, 74] in order to model the temperature-dependence

of leakage power from various components. Our process and architectural parame-

ters are given in Table 2.1. Most of the core parameters are similar to those used in

recent studies on power management with simulated PowerPC cores [19, 22, 51, 53].

This reflects the recent industry trend of designing CMPs using cores with complexity

similar to those in earlier generations (while placing more cores together on a single

chip), instead of using wider and more complex cores.

We assume inherent core-to-core power variation across a chip multiprocessor.

This can be due to systematic variations which can cause dramatic differences in

leakage power across large areas of a chip. The discrepancies of power ratings across

these cores may be assumed to take a log-normal distribution [7]. Different power

ratings across the cores may also arise even in the context of other adaptive methods.

For instance, when target frequencies are not satisfied, a sufficient combination of

adaptive body bias (ABB) or adaptive VDD scaling may fix timing variations at the

expense of per-core power [80].

2.2.2 Simulation Setup

Our simulation platform is Parallel Turandot CMP (PTCMP), our cycle-level simula-

tor. Unlike its predecessor Turandot CMP [51], or its ancestor Turandot, PTCMP is
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Global Design Parameters
Process Technology 32nm
Target Supply Voltage 0.9 V
Clock Rate 2.4 GHz
Organization 8-core, shared L2 cache

Core Configuration
Reservation Stations Int queue (2x20), FP queue

(2x5), Mem queue (2x20)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BXU
Physical Registers 80 GPR, 72 FPR, 60 SPR, 32

CCR
Branch Predictor 16K-entry bimodal, gshare,

selector
Memory Hierarchy

L1 Dcache 32 KB, 2-way, 128 byte
blocks, 1-cycle latency, 15-
cycle snoop latency

L1 Icache 64 KB, 2-way, 128 byte
blocks, 1-cycle latency

L2 cache 8 MB, 4-way LRU, 128 byte
blocks, 9-cycle latency

Main Memory 80-cycle latency

Table 2.1: Design parameters for modeled 8-core CPU.

programmed with POSIX threads rather than process forking to achieve lightweight

synchronization and parallel speedup [20]. This infrastructure is an alternative to Za-

uber [53], which also avoids slowdown in the fork-based Turandot CMP, but by using

a non-cycle-accurate approximation. Our method maintains all necessary cycle-level

communication. PTCMP is able to test various combinations of CMP and SMT con-

figurations without core-count limits that have been vexing for some prior simulators

[51]. The maintained cycle-level communication not only aids with accurate modeling

of shared cache contention, but is also necessary for other enhancements described

below.

Like its predecessors, PTCMP also incorporates online calculations for power and

temperature through integration with PowerTimer and HotSpot.
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2.2.3 Benchmarks

We use 8 of the 12 benchmarks from the SPLASH-2 benchmark suite [85]. Al-

though we have actually conducted experiments with all 12 programs, three of the

benchmarks—ocean, fft and radix—are algorithmically restricted from running a

number of threads that is not a power of 2. To show clear tradeoffs across the number

of cores we have focused only on other benchmarks which do provide this flexibility.

Among the remaining 9 benchmarks, volrend’s runtimes are an order of magnitude

longer than that of other programs, so we have focused on the remaining 8.

Each benchmark was traced using the Amber tool on Mac OS X [3] from the

beginning to end of their complete algorithm executions. Amber can generate traces

for multithreaded applications, so we traced each benchmark for executions ranging

from 1 to 8 threads.

2.2.4 Modeling Thread Synchronization and Coherence

There are two main issues in our extensions to Turandot for parallel program sim-

ulation: synchronization and coherency. Fortunately, from an implementation per-

spective these can be dealt with independently. We implement modeled lock synchro-

nization (not to be confused with the implementation’s internal synchronization) and

a MESI cache coherence protocol [62] to maintain memory consistency across each

core’s local cache with respect to the shared L2 cache.

We use Amber’s thread synchronization tracing system in order to accurately

track the status of pthread-based mutexes and condition variables. Our trace-driven

simulator then models stalls for individual threads when such thread-communication

dependencies are detected.

For shared memory coherence we implement a MESI [62] cache-coherence protocol

to allow private copies of data in each core’s local data cache with respect to the shared

L2 cache. We have correspondingly extended PowerTimer to account for the energy
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cost of cache snoop traffic.

Although this simulation approach is capable of simulating parallel applications,

it remains entirely trace-driven. Thus, it can be assumed that it has some limitations

in terms of simulation accuracy compared to execution-driven methods. Although

we have not performed a complete validation study for this trace-driven technique,

one initial observation is that the various SPLASH-2 applications simulated on this

infrastructure have shown performance scaling properties similar to those observed

by Li et al. [47] using an entirely execution-driven simulation infrastructure. For a

more extensive study, one possible method for validation of the trace-driven approach

would be to link Turandot with an execution-driven parallel application simulator and

compare the simulation results of the hybrid approach against the fully trace-driven

approach.

2.3 Consequences of the Memory Hierarchy

The bulk of experiments in this chapter assume an 8 MB shared cache, which is

roughly an expected size for an 8-core processor built on 32 nm technology [39].

However, this was not done with any evidence that the applications under study

require such a large shared cache. In fact, using such a large shared storage most

likely avoids any capacity misses that would be common on the original systems for

which SPLASH-2 was designed.

Figures 2.1 through 2.8 shows the performance effect of smaller shared cache sizes

on barnes. As shown in each graph, the smallest test case is 128 kB, which is already

extremely unrealistic for an 8-core processor with local caches of nearly the same

size. Even in this case, for barnes and cholesky there is at most 5% performance

degradation as compared to the 8 MB cache, and less for other applications. This

result may reflect the datedness of SPLASH-2 applications, which were designed for
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Figure 2.1: Performance of barnes across different shared L2 cache sizes.

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 3 4 5 6 7 8

N  (number of active cores)

P
e

rf
o

rm
a

n
c

e
 R

e
la

ti
v

e
 t

o
 S

in
g

le
-C

o
re

128 KB
256 KB
512 KB
1 MB
2 MB
4 MB
8 MB

Figure 2.2: Performance of cholesky (including the long initialization phase) across
different shared L2 cache sizes.

shared-memory processors which did not have any large global shared storage.

Even though L2 cache sizes do not significantly affect the performance of these

benchmarks, smaller L2 caches result in a significant portion of leakage power savings.

Thus, it can be expected that the smaller L2 cache configurations may provide better

performance/watt ratings. An example of this tradeoff is shown with the example of
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Figure 2.3: Performance of fmm across different shared L2 cache sizes.
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Figure 2.4: Performance of lu across different shared L2 cache sizes.

barnes in Figure 2.9. In this example, the configurations with L2 caches of 2 MB or

less find the most power efficient runtime configuration to be at most 5 cores. With a

128 KB cache, the best performance/watt rating for barnes is reduced to the single-

node case of N = 1. This result may be expected for compute-intensive benchmarks

that do not require significant amounts of memory communication, as SPLASH-2 has
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Figure 2.5: Performance of radiosity across different shared L2 cache sizes.
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Figure 2.6: Performance of raytrace across different shared L2 cache sizes.

been written for. For such benchmarks, the extra cache capacity results mostly in

wasted leakage power.

One effect known to be possible in some scenarios at small L2 caches sizes was

super-linear speedup. Since the early days of shared virtual memory, this effect was

prominent due to additional nodes supplying more capacity [50]. This is certainly

18



0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

N  (number of active cores)

P
e

rf
o

rm
a

n
c

e
 R

e
la

ti
v

e
 t

o
 S

in
g

le
-C

o
re

128 KB
256 KB
512 KB
1 MB
2 MB
4 MB
8 MB

Figure 2.7: Performance of water-nsquared across different shared L2 cache sizes.
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Figure 2.8: Performance of water-spatial across different shared L2 cache sizes.

not the case in Figures 2.1 through 2.8. Such an effect would have manifested as

significant performance degradations in the single-node case with less performance

degradation at higher values of N . However, we obtain only similar small performance

degradations in all levels of parallelization.

The section has shown that, for these particular benchmarks, smaller cache sizes
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Figure 2.9: Performance/watt ratings for barnes across different shared L2 cache
sizes.

may be beneficial for power savings without adversely impacting performance. Al-

though the experiments in the remainder of this chapter all assume an 8 MB shared

cache, it should be remembered that the performance/watt results given in the various

sections could potentially be improved by assuming a smaller shared cache.

2.3.1 Metrics

As a primary metric, this chapter assumes the goal of maximizing the ratio of per-

formance per watt. At the very least, this requires some sort of performance rating.

For parallel applications, a practical performance rating is the speedup ratio relative

to the performance of a single node. This is then divided by the total power across

all cores and shared resources to obtain a performance/watt rating in units of W−1.
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2.4 Basic Analysis

2.4.1 Formulations for Multiprogrammed Workloads

We seek to maximize the throughput/energy ratio in spite of excess power on cores due

to process variation, defined as Pexcess,N . This excess power can arise due to inherent

leakage variation due to systematic variations in lithography. In a more complex

scenario this can arise as the after-effect of some post-circuit tuning. Specifically,

cores that do not meet timing requirements at the time of manufacture can be receive

ABB or VDD adjustments, but this may cause these cores to go beyond their specified

power limit [80].

ABB, when applied in forward mode, involves placing a positive bias between

the body and source. Thus, these two techniques may be best used in combination

to ensure timing requirements. This does not increase the dynamic switching power,

but increases leakage power significantly more than VDD adjustment [80]. Thus, these

techniques may be best used in combination to ensure timing requirements.

For a given timing adjustment the supply voltage must be scaled up roughly

linearly, resulting in an approximately linear increase in leakage power and quadratic

increase in dynamic power. For cores which already meet their timing requirements

with sufficient slack, we may also apply ABB in reverse (known as reverse body bias,

RBB) or lower VDD in order to save power. Even in a fortunate scenario where all

cores have some timing slack, the degree to which ABB or VDD adjustment can be

applied will differ across cores. This combined with inherent leakage variation results

in a set of cores on one die with possibly very different power characteristics.

For the purpose of managing these resultant power variations, the metric we aim

to maximize is the ratio of performance/watt, a current focus for modern server ap-

plications [45] and one of the primary concerns for mobile platforms. We have also

considered some more complex scenarios such as minimizing power for a fixed per-

21



formance deadline or maximizing performance for a fixed power budget. These other

analysis routes are interesting areas for future study, but for simplicity we have chosen

to focus on maximizing the performance/power ratio.

Our approach is to find the appropriate cutoff point such that a system may

decide to turn a power-hungry core off. There may often be a benefit to retaining an

extra power-hungry core, since more running cores can help amortize power cost of

dynamic and leakage power from shared resources such as the L2 cache. In addition

to the cache and communication buses, multicore processors typically have many

other elements shared among the cores. For example, in a multiple-socket system,

there may be inter-socket links. These can can be significantly power consuming, yet

required to constantly negotiate between all cores and thus are difficult to shut down.

The variable Pshar, used in various equations throughout this chapter, represents the

total power cost of such resources.

We wish to see the appropriate cutoff point for when this core offers enough

performance to make its wattage worthwhile, versus when we should put this core

into sleep mode and make do with the remaining resources. Our criteria for when a

core should be disabled can be stated in terms of an inequality relating the perfor-

mance/power ratio of N cores to N − 1 cores, as follows:

perfN
powerN&excess

≤
perfN−1

powerN−1
(2.1)

Here, perfN and powerN&excess represent the performance of power of the full processor

with all N cores used, including the core with excess power. The corresponding

perfN−1 and powerN−1 represent those values when the Nth core (sorted from lowest

to highest excess power) is turned off. We then expand the condition of Equation
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(2.1) as such:

Nperf1αN

NPcore + Pexcess,N + Pshar,N

≤
(N − 1)perf1αN−1

(N − 1)Pcore + Pshar,N−1
(2.2)

where N represents the number of active cores, Pcore denotes average core power, Pshar

denotes power shared among cores, such as power consumed by the L2 cache, and α

represents a speed factor to take resource contention into account. Various elements

such as Pshar are subscripted to indicate they have a specific value for different core

configurations, while others such as Pcore are taken as constant across different values

of N . In fact we assume only a single value of Pcore, since core power tends to vary

significantly less than cache and interconnect power.

The α parameter represents the slowdown caused by contention on shared re-

sources, a critical design element of CMPs. It is a factor typically less than 1. If

there is little shared cache or memory contention, it becomes likely that α ≈ 1 [51].

This property does not hold for memory-intensive benchmarks, so we use the much

weaker assumption that αN

αN−1

≈ 1, which says that the incremental contention from

an additional core is reasonably small for moderately sized N .

Solving for Pexcess,N under these conditions, this results in:

Pexcess,N ≥ (
N

N − 1
)Pshar,N−1 − Pshar,N (2.3)

This equation states our criterion in a relatively simple manner, by depending only

on the power cost of shared resources but not the baseline core power nor contention

factors. In essence, we plan to turn off any cores for which Equation (2.3) is true.

A key limitation of Equations (2.2) and (2.3) is that these do not take into account

interactions and bottlenecks between the different threads. For a multiprogrammed

workload consisting of single-threaded applications, this is a reasonable assumption.

In [21], we even demonstrated how this criterion usually holds for multiprogrammed
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workloads consisting of SPEC 2000 benchmarks.

If the condition of Equation (2.3) were to be checked and acted upon dynamically,

this would require knowing the value of Pexcess,N , which is calculated per core relative

to the average across all cores, and Pshar. Direct power measurement, such as used in

Intel’s Foxton technology [61], could be done individually on all cores and the shared

cache in order to provide the numerical input for these calculations.

While not readily apparent from Equation (2.3), a general characteristic of the

cutoff point is that it increases roughly linearly with respect to the power cost of

shared resources. This can be seen more clearly in the simplest case. When Pshar does

not vary significantly with respect to N , the expression in Equation (2.3) simplifies

down to:

Pexcess,N ≥
Pshar

N − 1
(2.4)

In this case, the amount of room for power variation increases linearly with Pshar.

Similarly, with N in the denominator, increasing the number of active cores takes

care of amortizing these costs and hence reduces room for large values of Pexcess,N .

2.4.2 Underlying Themes

Our formulated bounds focus only on CPU power, but system designers may wish

to include the full power cost of other resources including RAM, chipsets, memory-

buffering add-ons, and other essentials. Equation (2.4) describes the general trend

of how including all these elements generally serves to raise the cutoff point, due to

better amortizing shared costs. This is one way to confirm general intuition regarding

power efficiency of multicore designs.

On the flip side, Equation (2.4) also denotes an inverse relation between the

Pexcess,N cutoff and the number of cores for maximizing performance/watt. In the

future, if multicore designs can feasibly scale up to many more cores, this increases

24



the chance that one core may become no longer worthwhile to use in the goal of max-

imizing performance/power. Even so, modern mobile platforms are designed with

multiple power modes, and feasibly a highest power mode may seek to maximize per-

formance and still have use for the core in some situations, while a lower power mode

may aim to maximize performance/watt as has been the goal in our work.

The relations discussed in this section give an intuitive view of the tradeoffs in

turning off cores for power savings. Nonetheless, one limitation is that these do not

take into account the sequential bottlenecks of parallel applications. In the following

section we remedy this by extending the formulation with Amdahl’s Law.

2.5 Analysis and Results for Parallel Applications

2.5.1 Extending the Basic Analysis with Amdahl’s Law

Our analysis here uses much of the same methodology as in Section 2.4.1. A key

difference is that our speed factor is no longer αNN , which is effectively linear, but

rather dictated strongly by Amdahl’s Law for parallel computation. The vast topic

of parallel computation can certainly entail many complex versions of Amdahl’s Law

[30, 56, 71], but we choose the most basic form as sufficient for our analysis:

speedupN =
1

s + 1−s
N

(2.5)

where s represents the fraction of sequential/serial computation that cannot be par-

allelized, and likewise (1 − s) represents that fraction that can be parallelized. The

value of s is an important application characteristic in deciding optimal performance

tradeoffs. Using this, we perform an analysis similar to that used in Section 2.4.1.
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We evaluate Equation (2.1) and solve for Pexcess,N as follows:

1
s+ 1−s

N

perf1

NPcore + Pexcess,N + Pshar,N

≤

1
s+ 1−s

N−1

perf1

(N − 1)Pcore + Pshar,N−1
(2.6)

Pexcess,N ≥
s + 1−s

N−1

s + 1−s
N

[(N − 1)Pcore + Pshar,N−1] − NPcore − Pshar,N (2.7)

The above relation is more complex than the properties found in Section 2.4, but we

can use it to study several properties of parallel programs. Because this criterion relies

heavily on s, which is an empirical constant that varies not only from benchmark

to benchmark but even within different configurations for a single benchmark, it

cannot be used to accurately predict cutoff points. It does, however, have distinct

limit properties that give us much insight to the general power behavior of parallel

applications.

First, Equation (2.7) is actually a special case of its analog for the multiprogram

analysis. When s = 0, this represents that the application is completely parallelizable

with no penalty of dependencies or contention. Substituting s = 0 into the expression

and simplifying yields exactly Equation (2.3).

On the other hand, the case of s = 1 represents the worst case of limited parallel

speedup, where a program will not run any faster on multiple cores as compared to just

one. If we substitute in s = 1, the expression evaluates to Pexcess,N ≥ −Pcore, which

is always true and confirms that in such a specific situation reducing the execution

down to a single core will always increase the performance/power ratio. Thus, in

order to seek a Pexcess,N cutoff that is greater than zero, it helps if s � 1.

Next, always of interest in parallel programming problems are the limits of scaling

up to large values of N . Our goal is to maximize performance/watt, so a suboptimality

condition would result when turning off one of the cores would improve the perfor-

mance/watt ratio. Taking the limit for large N with a nonzero value of s results in
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Figure 2.10: Performance/watt ratios for barnes across varying N , and varying
Pexcess,N at N = 7.

the following suboptimality condition:

Pexcess,N ≥ Pshar,N−1 − Pshar,N − Pcore (2.8)

Since typically Pshar,N ≥ Pshar,N−1 this relation almost always also evaluates to a

negative cutoff value for Pexcess,N , meaning that the performance/power ratio only

decreases after going beyond some finite N . Intuitively, we would thus expect a plot

of this ratio vs increasing N to be a concave-down function that begins to decrease

after leveling off. Furthermore, if the performance/power ratio grows only slowly

before reaching this peak, we would expect a smaller allowable range for Pexcess,N , as

compared to the relation found in Section 2.4 where the ratio would continue growing

regardless of the size of N . The following results in Section 2.5.2 confirm these limit

behaviors.
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Figure 2.11: Performance/watt ratios for cholesky across varying N , and varying
Pexcess,N at N = 2.
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Figure 2.12: Performance/watt ratios for fmm across varying N , and varying Pexcess,N

at N = 5.

2.5.2 Experimental Results

Although we use full traces as described in Section 2.2, we analyze only the true

execution phase of each SPLASH-2 benchmark run for our timing and power mea-

surements. This phase begins after creation of all child threads and ends upon their
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Figure 2.13: Performance/watt ratios for lu across varying N , and varying Pexcess,N

at N = 8.
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Figure 2.14: Performance/watt ratios for radiosity across varying N , and varying
Pexcess,N at N = 8.

completion, but does not include any long initialization phases beforehand nor the

section of code at the end of each benchmark that generates a summary report.

Figures 2.10 through 2.17 give examples of varying performance/power ratios with

respect to N and Pexcess,N . In each case, the main curve spanning all core counts as-
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Figure 2.15: Performance/watt ratios for raytrace across varying N , and varying
Pexcess,N at N = 6.
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Figure 2.16: Performance/watt ratios for water-nsquared across varying N , and
varying Pexcess,N at N = 7.

sumes zero power excess on all cores. The two additional lines represent the change

in power efficiency for possible values of Pexcess,N at the otherwise optimal perfor-

mance/watt point. For example, in raytrace, we see a best configuration at N = 7,

with only a small allowable range of power variation. On the other hand, in cholesky,
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Figure 2.17: Performance/watt ratios for water-spatial across varying N , and vary-
ing Pexcess,N at N = 4.

we see good power efficiency occurring not beyond 2 cores. This is largely in part due

to this algorithm’s large serial portion [85].

The non-smooth patterns in the cholesky graph reveal other notable effects. In

particular, core configurations that are not set as a power of 2 each take an additional

performance reduction, consequently resulting in poorer performance/power. In fact,

most of our benchmarks were found to show some degree of performance preference

towards power-of-2 thread counts. This can be explained by non-ideal realities such

as cache alignment. Such additional factors affecting performance have a rather direct

effect on the performance/power ratio.

One notable result, that would not be predicted in the simplified analysis for

multiprogrammed workloads in Section 2.4, is that limitations are reached at a finite

number of cores, as formulated by our analysis in Section 2.5.1. Our results for

all parallel programs are summarized in Table 2.2. Individual s values used in our

calculations for various benchmarks are calculated from the best fit according to

speedups obtained through our simulations. However, for we have also tested some
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programs for limited thread counts on a real 8-way SMP system to confirm similar

respective parallel speedup characteristics. For example, fmm which is easier to observe

than some other benchmarks because it does not have a large initialization phase,

showed near linear speedups with one to three threads on Solaris.

There are a few interesting cases shown in Table 2.2. For one, lu’s characteristics

best fit a negative value of s, meaning it received super-linear speedup with respect to

N in some cases. This is unusual, although not impossible, as many complex effects

such as improved cache hit ratios can combine for such a result.

Second, radiosity and water-spatial have unusually high allowable Pexcess,N

ranges for their optimal core configurations. The reason for this seems to be due to an

interplay of effects that affect adjacent configurations extraordinarily negatively. For

example, radiosity shows some unexpected performance degradation when running

on five cores, which makes N = 6 a particularly better choice with a large Pexcess,6

range. Similarly, water-spatial shows unusually low performance/watt at three

cores, making N = 4 a very stable point for maximizing performance/watt.

Overall, these results confirm much of the intuitive limit behavior specified by

our analytical formulation. However, this formulation cannot accurately predict the

numerical value of the Pexcess,N cutoff at any given finite point. For example, although

raytrace matches shows an appropriate small Pexcess,N cutoff of 0.28 W (about 3.5%

of the target per-core design power) water-spatial shows an unexpectedly large

cutoff of 8.42 W (98% of the target per-core design power). These deviations from

the analytical prediction are due to many application-specific non-ideal factors. A

power-efficient multicore system design can take advantage of estimates based on the

limit behaviors we have formulated, but an interesting topic for future study would be

how a dynamic policy would adjust estimates to take into account application-specific

special cases. Such a policy would not only utilize direct measurement of core power,

as needed in the multiprogrammed case of Section 2.4, but also involve performance
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application s max N Pexcess,(maxN) cutoff
barnes 0.039 7 2.02 W
cholesky 0.254 2 4.85 W
fmm 0.066 5 1.41 W
lu -0.009 8 1.34 W
radiosity 0.083 6 6.04 W
raytrace 0.044 7 0.28 W
water-nsquared 0.025 8 2.03 W
water-spatial 0.019 4 8.42 W

Table 2.2: Experimental results for SPLASH-2 benchmarks, showing most power-
efficient N , cutoff for Pexcess,N at that configuration, and each benchmark’s corre-
sponding s value.

monitoring to track parallel efficiencies.

2.6 Mapping to Log-Normal Distributions

Although the Pexcess,N model is applicable to any distribution, one shortcoming is

that it gives little intuition as to the magnitude of core-to-core variations. Although

it provides a bound for a particular configuration, in order to make use of such a

model a user must be aware of how Pexcess,N changes when starting from a different

number of active cores.

Another more fundamental, possibly more intuitive, way of viewing variation is to

map these on to an actual variation profile. Because a distribution of inherent leakage

variation has been shown to be log-normal [7], we use samples of log-normal distri-

butions. However, because leakage power actually results from many other factors

including random and systematic variations in different processing technologies, this

result is not universal. The distribution may also become much more complicated

than simply log-normal when other techniques such as adaptive ABB or voltage scal-

ing are involved. Although not as generalizable as the Pexcess,N formulation, mapping

to these specific log-normal distributions can perhaps provide strong intuition.
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A log-normal distribution is a probabilistic distribution, so to fully view a wide

range of possibilities we would require Monte Carlo simulation. To simplify this

problem, although at the loss of generality, we assume simplified distributions formed

from integrating under a log-normal probability distribution. With this technique,

our main tuning parameter becomes σ/µ, which represents the steepness of the log-

normal distribution. σ represents the standard deviation while µ represents the mean

of the distribution. Since these quantities are only meant to serve as exponent values,

µ is set to 1. Figure 2.18 shows the performance/watt ratings for barnes across

log-normal distributions with varying σ/µ.

In order to obtain a discrete (sampled) log-normal distribution for each value of

σ/µ, rather than resorting to Monte Carlo simulation, we integrate underneath the

continuous Gaussian curve to obtain 8 points that evenly distribute the cumulative

distribution. This effectively causes points in the center of the discrete sample to

bundle close together (the middle of the bell curve having higher probability density)

while the outlier points near the beginning and the end are spaced further apart (with

lower probability densities requiring more length integrated underneath the curve in

order to evenly partition the cumulative distribution between points). In order to

convert this normal distribution into a log-normal distribution, each sample is then

exponentiated, using a base of e, to obtain the log-normal distribution assuming the

geometric mean to be exactly between the 4th and 5th cores. This means that the

4th and 5th cores will have effectively the least variation, while the 8th core will have

the largest power increase and the 1st core will have the largest power decrease.

We chose the various values of σ/µ to give a large range of leakage variation. For

perspective, a value of σ/µ = 0.010 forms a distribution where the 8th core is 2.5X

as power-consuming as the first core, while a value of σ/µ = 0.050 results in the 8th

core being 100X as power-consuming. In some results based on real test chips, Borkar

et al. showed a 30X deviation in leakage power across a set of hundreds of chips [7].
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Figure 2.18: Performance/watt ratings for barnes across log-normal distributions of
various σ/µ values.

These curves find that although a σ/µ setting of 0.002 is not sufficient to change

the best configuration away from N = 7, that is achieved at σ/µ = 0.005. At

σ/µ = 0.005, the best performance/watt ratio is found at N = 4, and this remains

the ideal configuration even for steeper log-normal distributions. The suboptimality

of many active cores is an expected result for steep distributions which have very

power-hungry tail-end cores.

This does not quite explain, however, why the best configuration does not worsen

to fewer cores than N = 4 even for steeper distributions. This turns out to be a

direct result of the shared L2 cache overhead power. The greater values of σ/µ result

in relatively low-power cores (compared to the mean core power set between the 4th

and 5th cores), and the performance improvement provided by each of these bottom

four cores improves the performance/watt ratio.
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2.7 Temperature Properties of Parallel Applica-

tions

Although this chapter uses performance and power as our key metrics, aggregate

power does not necessarily translate directly into aggregate temperature. By contrast,

Chapters 3 and onward of this thesis motivate and demonstrate simulations focusing

on temperature control rather than power management. To compare and foreshadow

how temperature connects with the experiments in this chapter, in this section we

examine some thermal properties of the 8 parallel applications. Because a thermal

simulator, HotSpot [35, 74], is incorporated into our simulation infrastructure, we are

able to gauge the thermal properties of parallel applications from our simulations. In

earlier work by Huang et al., HotSpot 2.0 was validated against a thermal test chip

[35]. When tied to the PowerPC architecture simulation, HotSpot has been used for

various experiments in dynamic power management [19, 22, 51, 53]. These studies

have required HotSpot’s steady-state temperature approximation as well as transient

temperature calculations. In this section, we use only the steady-state temperature

option.

Unlike Section 2.6, in this section we do not map a distribution of variations

onto the various cores, nor do we assume various Pexcess,N values on the last core as

done in earlier sections. All simulations in this section represent zero built-in core-

to-core power variation, and thus form an overview of the inherent application-level

thermal behavior alone. These inter-thread thermal distributions provide a base for

comparison to the inter-application thermal distributions demonstrated through real

measurements in Chapter 1 and exploited in Chapters 3 and 4.

Table 2.3 lists the various peak temperatures obtained using the steady-state

temperature approximation of HotSpot [74] for all eight applications running our test

processor. Across the entire chip, the peak temperature spot was found to be at the
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application “hot core”
hotspot
temperature

“hot core
#2” hotspot
temperature

“cold core”
hotspot
temperature

barnes 91.97 ◦C 91.80 ◦C 91.17 ◦C
cholesky 88.05 ◦C 81.78 ◦C 81.64 ◦C
fmm 85.02 ◦C 84.58 ◦C 84.07 ◦C
lu 91.86 ◦C 82.51 ◦C 82.43 ◦C
radiosity 89.06 ◦C 85.94 ◦C 85.43 ◦C
raytrace 86.92 ◦C 82.26 ◦C 82.15 ◦C
water-nsquared 85.90 ◦C 84.80 ◦C 84.56 ◦C
water-spatial 86.48 ◦C 85.15 ◦C 85.14 ◦C

Table 2.3: Temperatures of key hotspots when running all 8 threads for various
benchmarks. The “hot core” temperature is the hottest location on the entire chip,
while “hot core #2” shows the hotspot temperature of the second-hottest core, while
the “cold core” temperature is the hotspot temperature of the least hot core.

fixed-point execution unit (FXU) register file on one of the cores. Several of these

sampled temperatures are shown in Table 2.3. As a whole, this subset of temperature

values represents only the small hotspots of the chip, whereas larger areas, such as

the L2 cache, may be more than 15 ◦C lower than the FXU register file temperatures.

The “hot core” hotspot temperature for each benchmark was found to always

appear on the core used for the initialization phase of each benchmark. On some of

our benchmarks with a relatively long initialization, such as lu, this can result in a

huge difference between the hottest core and the second-hottest core. Despite this

asymmetry, since all of the remaining seven cores are not used for initialization, the

difference between the second-hottest core and the least warm core is strikingly small.

Across all eight benchmarks, this difference is never more than 1◦.

This brief thermal experiment does confirm that there are different thermal prop-

erties among different parallel applications. However, another observation is that

the inter-core thermal variations may not be significant within any one application.

SPLASH-2 applications are are not known to have significant heterogeneous activ-

ity, and other parallel applications may show similar properties. For this reason, in
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Chapters 3 and 4 we focus on multiprogrammed workloads, instead of parallel appli-

cations, which show much thermal variation within and are thus a prime candidate

for adaptive management.

2.8 Related Work

Much prior work has examined power and performance characteristics of multicore

architectures when running multiprogrammed workloads [18, 27, 42, 44, 51, 53, 66] as

well as parallel applications [4, 23, 41, 48, 49]. To the best of our knowledge, however,

ours is the first and at this time still the only to examine parallel applications in the

context of process variation.

Although the majority of past research on variation tolerance has been at the

circuit and device levels, recently a number of architectural approaches have been

proposed. These include variation-tolerant register files [54], execution-units [55],

[2, 58], and pipeline organizations [25, 83]. Furthermore, Humenay et al. propose a

model for variations in multicore architectures [36, 37] while Chandra et al. provide

a methodology for modeling variations during system-level power analysis [12].

2.9 Summary

Our work presents a foundation for power-performance optimization in the face of

process variation challenges. We have formulated a simple analytical condition re-

lating the shared power costs to predict an optimal cutoff point for turning off extra

cores. Using PTCMP to model an 8-core processor, we have analyzed power variance

bounds for 8 of the SPLASH-2 benchmarks. Parallel applications such as these have

become increasingly relevant as software in the server, desktop, and mobile sectors

all move toward more common use of multithreaded applications. In augmenting our

equations with Amdahl’s Law, we use the parameter s to represent each application’s
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fraction of sequential execution, and have formulated a model to predict limit prop-

erty trends across several parameters and demonstrated these accordingly with the

SPLASH-2 benchmarks. For further intuition, we map our simulation results onto

possible log-normal distributions, explore the impact of the memory hierarchy, and

present an overview of the temperature properties of these applications.

The purpose for finding these appropriate tradeoff points comes from a system

design perspective. If a system is aware of its inter-component dynamic and leak-

age power excesses, it can make variation-aware decisions for allocating cores in a

power-efficient manner. In an age when portable devices may execute different types

of applications, such techniques are necessary to provide appropriate tradeoffs in

performance and power in spite of different application characteristics and process

variations.
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Chapter 3

Multithreading Thermal Control

3.1 Introduction

In the previous chapter we formulated various bounds for power management policies

with the goal of maximizing performance/watt. Through this abstract approach

we developed some intuition on the tradeoffs between performance and power for a

particular scenario. A drawback of this detached approach, however, is that it does

not give any direct sense of how power output gives rise to thermal effects. Because

the thermal state of a system is dependent on a number of more complex time-

dependent and space-dependent factors, simulating temperature is entirely another

level of microarchitectural modeling. In this chapter, and the remainder of this thesis,

we examine temperature-aware policies. These techniques for dynamic management

remain aware of the tradeoffs between performance and power, but also dynamically

respond to temperatures that change with time.

In past studies, a number of adaptive control methods have been proposed for tem-

perature management in uniprocessors. These include global management techniques

such as dynamic voltage and frequency scaling (DVFS) and global clock gating, as well

as more localized techniques such as fetch/dispatch throttling and register-file throt-
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tling [9, 29, 72]. While such techniques have been shown to greatly aid thermal man-

agement, recurring challenges involve optimizing the necessary power/performance

tradeoffs, ensuring sustained performance, and particularly dealing with hot spots—

small sections of a chip attaining temperatures significantly higher than the chip’s

overall temperature.

When examining thermal issues it is important to explore the problem in the con-

text of prominent architectural paradigms; thus we explore this issue in simultaneous-

multithreaded (SMT) processors. SMT is an architectural paradigm that involves

issuing instructions such that multiple threads on a single core closely share resources

[82]. Various implementations of SMT are now available in several commercial pro-

cessors [16, 38, 79]. SMT cores seek greater performance by densely packing issue

slots and hence can be cause for thermal stress. Our work explores the idea of taking

advantage of SMT’s added flexibility due to the availability of multiple threads. As

a localized technique, we propose that selectively fetching among different programs

can allow thermal hot spots to be better controlled and prevented. In our experiment

we show that adaptive thread management can tightly control temperature, which

has implications for better thermal management and overall reliability [76]. Also, as

a localized microarchitectural mechanism, application and design of such adaptive

control can work independently or in conjunction with global thermal management

techniques such as DVFS.

Our specific contributions are as follows:

• We characterize several benchmarks based on their respective hot spot behav-

iors. We find that for our processor configuration, each program’s hot spot

behavior can be characterized largely by its integer register file intensity and

floating point register file intensity.

• We propose and evaluate an online adaptive fetch algorithm to take advantage of

these heterogeneous characteristics when threads are mixed through SMT. We
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find that when operating in the thermally limited region, our algorithm reduces

the occurrence of thermal emergencies, increasing performance by an average of

30% and reducing the ED2 product on the order of 40%. Furthermore, this is a

local temperature management policy which targets hot spots and can be used

in combination, rather than in competition, with global thermal management

such as DVFS.

• We repeat these experiments with a similar adaptive algorithm based on selec-

tive register naming instead of instruction fetching. For this alternate mech-

anism, which operates at a later stage in the pipeline, we find correlated but

comparatively smaller performance improvements: roughly 70% as effective.

The remainder of this chapter is structured as follows. Section 3.2 presents our

simulation infrastructure and methodology. In Section 3.3 we explain our adaptive

fetch policy and show our experimental results in terms of measured performance

effects and energy savings. In Section 3.4 we perform similar experiments from an

adaptive register renaming perspective and compare to the corresponding fetch throt-

tling or adaptive fetch results. Section 3.5 discusses related work, while Section 3.7

summarizes our results.

3.2 Methodology

3.2.1 Simulation Framework

We model a detailed out-of-order CPU resembling a single-core portion of the IBM

POWER4TMprocessor with SMT support. Our simulation framework is based on the

IBM Turandot simulator [60], which is a predecessor to the simulation framework used

in Chapter 2. Dynamic power calculations are provided by PowerTimer, an add-on for

Turandot that provides detailed power measurements based on macroblock formations
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Global Design Parameters
Process Technology 0.18µ
Supply Voltage 1.2 V
Clock Rate 1.4 GHz
Organization single-core

Core Configuration
SMT Support 2 threads
Dispatch Rate up to 5 instructions per cycle
Reservation Stations Mem/Int queues (2x20), FP queue (2x5)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BRU
Physical Registers 120 GPR, 90 FPR
Branch Predictor 16K-entry bimodal, 16K-entry gshare,

16K-entry selector
Memory Hierarchy

L1 Dcache 32 KB, 2-way, 128 byte blocks,
1-cycle latency

L1 Icache 64 KB, 2-way, 128 byte blocks,
1-cycle latency

L2 I/Dcache 2 MB, 4-way LRU, 128 byte blocks,
9-cycle latency

Main Memory 77-cycle latency
Dynamic Control Parameters

Temperature Sampling Interval 10,000 cycles
Event-counter Sample Window 1,000,000 cycles

Table 3.1: Design parameters for modeled CPU.

derived from low-level RTL power simulations [8]. Integrated with this is the HotSpot

2.0 [35, 74] temperature modeling tool to provide spatial thermal analysis. Unlike the

simulator used in Chapter 2, this infrastructure does not require modeling of multiple

cores. This model has, however, been extended for SMT support [52].

We model a single-core processor with SMT support on 0.18µ technology. This

design level is known to already create significant hot spot effects, a problem which

becomes even more prominent at smaller feature sizes. Our design parameters are

shown in Table 3.1. Although PowerTimer is directly parameterized based on these

options, HotSpot naturally requires additional input to describe the processor’s spatial

layout. This floorplan is shown in Figure 3.1.
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Figure 3.1: Floorplan input to HotSpot 2.0, as also used by Li et al. [51].

Since PowerTimer does not model leakage current by default, an added modifi-

cation is to model leakage through an area-based empirical equation [34]. Thus, the

leakage power of each structure is calculated only by its area and time-dependent

temperature. Although more diverse and accurate leakage models do exist [11], this

equation is sufficient to model the temperature dependence and quickly derive leakage

estimates for all processor structures.

3.2.2 Benchmarks

We analyze workloads based on ten benchmarks obtained from the SPEC 2000 bench-

mark suite. We have chosen five programs from the integer-based SPECint portion

and the other five are from SPECfp, as depicted in Table 3.2.

For outcomes of mixing different programs through simultaneous multithreading

it has been shown that the end performance effects can be predicted somewhat based

on characteristics of the individual applications [51, 75, 81]. Thus, we also charac-

terize our individual test programs before deciding upon which combinations to mix

through multithreading. While hot spots can be unmanageable if their locations vary

unpredictably with time, various simulation results [18, 27, 51, 74] have indicated
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Name Benchmark suite Function
FXU-reg FPU-reg
intensive intensive

188.ammp SPECfp computational
chemistry

N Y

173.applu SPECfp computational fluid
dynamics/physics

N Y

191.fma3d SPECfp mechanical re-
sponse simulation

Y Y

178.galgel SPECfp computational fluid
dynamics

Y Y

176.gcc SPECint C language com-
piler

Y N

164.gzip SPECint compression N N
181.mcf SPECint mass transporta-

tion scheduling
Y N

177.mesa SPECfp 3-D graphics li-
brary

Y N

197.parser SPECint word processing N N
300.twolf SPECint lithography place-

ment and routing
Y N

Table 3.2: SPEC 2000 benchmarks as selected for this experiment, listed alphabeti-
cally.

that for particular processor designs hot spots predictably tend to occur in a handful

of locations.

In our design, we find that almost universally the hottest portion of the chip

is either the fixed-point execution (FXU) register file or the floating point (FPU)

register file. Thus, each of the benchmarks are measured in terms of their thermal

intensity for these two chip locations. This measurement is done in advance by

executing the programs without thermal control and examining the steady-state and

final temperatures on these units. Programs that showed steady-state temperatures

above 93◦C on units have been marked as such in the two rightmost columns of Table

3.2. For our dynamic policy, later described in Section 3.3.1, it shall be necessary

to know the heating characteristics of the running programs. For this, we observe

a direct correlation between each program’s register file heating characteristics and
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Workload Thermal heterogeneity Reason

ammp-gzip significant Floating point benchmark mixed with
an integer benchmark.

ammp-mcf significant Floating point benchmark mixed with
an integer benchmark.

applu-parser moderate Can exploit parser’s extremely low IPC
to cool either hot spot.

applu-twolf significant Floating point benchmark mixed with
an integer benchmark.

fma3d-galgel small Both benchmarks are high-intensity on
both register files.

fma3d-twolf small Both benchmarks are integer-intensive.
galgel-mesa moderate Both benchmarks are integer-intensive,

but mesa is greater.
gcc-mesa small Two integer benchmarks.
gcc-parser moderate Two integer benchmarks, but parser’s

slowness needs management.
gzip-mcf small Two integer benchmarks.

Table 3.3: Multithreaded benchmark mixes. Pairs with a higher degree of thermal
heterogeneity show greater promise in benefitting from SMT-specific adaptive thermal
management.

the number of register file accesses recorded, and we are able to universally use this

observed ratio in our dynamic policy when applied to any workload.

We then use this data in deciding how to appropriately create a set of ten SMT-

based workloads. First, we would like to mix programs which show opposite thermal

behaviors since these give the greatest potential for adaptive thermal control. These

include mixing integer intensive programs with floating-point intensive programs. For

the other end of the spectrum, we also include several test cases which lack thermal

heterogeneity, such as pairs of floating point benchmarks and pairs or integer-only

benchmarks. In such scenarios we might not expect a significant benefit from thread-

sensitive thermal control, but it is important to show that our algorithm can at least

be ensured not to be detrimental in these cases. A list of these chosen workloads and

their corresponding qualitative characterizations can be found in Table 3.3.
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In order to simulate only representative portions of these programs, we use Sim-

Point [64, 70] with sampling intervals of 100 million instructions in order to obtain all

relevant traces executed in our experiments. To simulate relevant temperature behav-

ior on such a short time interval, we choose an operating point and thermal threshold

such that thermal triggers come into play approximately 60% of the time for most

our test workloads. This may also be described as a “duty cycle” [66] of about 40%,

although our throttling techniques do not cater strictly to the duty cycle definition:

During throttled cycles, execution may still continue outside of the fetch and rename

stages. (Later on, in Chapter 4, we explore core-wide throttling techniques where the

strict definition of duty cycle becomes more applicable.) As shown by our data later

in this chapter, the time spent in thermal emergency mode naturally decreases when

applying our adaptive policies.

3.2.3 Metrics

As one measure of the performance impact of our technique, we use the criterion of

weighted speedup as described by Snavely and Tullsen [75] shown below.

Weighted Speedup =
∑ IPCSMT [i]

IPCnormal[i]

This is intended to be a fair comparison between two executions and prevents

biasing the metric on policies that execute unusual portions of high-ILP or low-ILP

threads. Note that the IPCSMT [i] is only a portion of the multithreaded system’s

total IPC.

In these experiments the IPCnormal[i] denominator is measured under thermally

limited conditions. To be specific, all executions start with temperature profiles where

both register files are just barely below the thermal threshold of 85◦C. Under these

conditions we find that a number of workloads are thermally throttled about 60% of
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the time, and this affects the denominator in the above equation. This method is

largely different from other works [18, 75, 81], where weighted speedup is measured

assuming the baseline single-threaded executions are not thermally constrained in any

way.

For the purpose of this study, the IPC measurements are all done in thermally

constrained mode. This is appropriate since we seek to analyze behavior particularly

in the thermally limited region. Weighted speedup is meant to qualify as a fair

raw performance metric, similar to how IPC alone is sometimes used in uniprocessor

comparisons. While the weighted metric is arguably more qualified for our purposes

(examining performance improvement in SMT processors), for most of our results the

overall workload IPC is also strongly correlated to weighted speedup anyway.

Even with both the IPC and weighted speedup metrics showing positive results,

however, thread prioritizing policies can generate situations that are “unfair” to some

threads. To quantify this drawback, we also directly present the ratios of thread

retirement on a per-thread basis for each of our tested workloads.

In order to appropriately measure performance from a power-aware perspective,

for our second main metric we use the established energy·delay-squared product

(ED2). This now widely used metric realistically takes into account tradeoffs be-

tween power and energy in the context of DVFS, where scaling the voltage can have

a cubic effect on power reduction. Since our proposed adaptive policy is a local mech-

anism, it can still be combined with global power reduction techniques such as DVFS,

thus making ED2 a relevant metric for comparison. Since we are measuring work-

loads that complete with different instruction counts and instruction mix ratios on

different parameterizations, we must normalize the ED2 metric to a per instruction

basis. We use the following formula to calculate this metric from the IPC and energy

per instruction, EPI.

ED2 =
EPI

IPC2 ∗ clock frequency2
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We use IPC, per-thread throughput, and ED2 as primary means to examine the

performance of our policies. However, there are certainly other possible metrics. For

example, for interactive applications, it would be interesting to see how the user-

perceived latency is affected by our policies. Although the work in this chapter does

not delve into all possible delay metrics, we believe that the measurements on core

instruction throughput and thread fairness provide a reasonable proxy for how other

metrics would be expected to scale.

3.3 Adaptive Thermal Control

3.3.1 Adaptive Control Algorithm Overview

Our adaptive control is based on the input of temperature sensors that exist in many

modern commercial processors. Although the exact placement of the POWER5TMprocessor’s

24 available sensors is unknown [16], it is reasonable to assume that at least two of

these would be allocated to the register file locations which are primary potential

hot spots. We use 85◦ C as the threshold temperature for enacting thermal control.

As modern commercial microprocessors tend to list maximum allowable operating

temperatures in the range of 70 to 90◦ C [17] we feel this is a reasonable choice. Uti-

lizing the dynamically profiled thread behavior information, our decision algorithm

for adaptive thread selection is implemented on top of this as follows:

For the actual adaptive technique of dynamic thermal management, we modify

the default round-robin SMT fetch policy originally implemented for Turandot in

[52]. Our modifications target thermal control logically by avoiding integer-intensive

benchmarks when the FXU register file’s temperature appears more likely to reach

the temperature threshold, and likewise to reduce the execution rate of floating point

intensive benchmarks when the FPU register file goes above its threshold. In order for

the processor to identify whether running programs are integer-intensive or floating
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point intensive, we need some kind of profiling mechanism to determine the properties

of running programs. One method for this is to dynamically sample hardware event

counters. As mentioned in Section 3.2.2, our goal, using this profiled information,

is to exploit a direct correlation between register file accesses and the long-term

steady state register file temperature. Powell et al. also use counter information

as such to predict heating behavior for key resources [66], and recent work by Lee

and Skadron has shown that hardware performance counters can be reliably used to

predict temperature effects on real systems [46].

Figure 3.2 (a) shows a high-level view of the decision policies for thermally adaptive

multithreading. When the processor is not in thermal arrest mode, the difference

between the thermal threshold and the integer register file’s temperature is calculated.

At the same time, from profiling we obtain the average number of integer register

file accesses per fetched instruction for each of the two threads. Using a calibrated

threshold—in terms of PowerTimer’s internal access counters—we decide whether the

integer register file is in danger of approaching our specified maximum temperature

(85◦). We also do all of the above for the floating point register file and compare to

see which unit is potentially in danger. The steps necessary to calculate and decide

this are depicted graphically in Figure 3.2 (b). Our adaptive policy then takes effect.

Its goal is to choose instructions from the thread that are either likely to cool or less

quickly heat the hotter of the two register files. Once the potentially hotter of the two

units is identified, the decision as to which thread to pick from is decided by choosing

the thread measured to be less intensive on the integer register file—or floating point

register file, if applicable—based on the thread’s dynamically profiled measure of

register file accesses per issued instruction. This second stage of the decision process

is depicted in Figure 3.2 (c). These calculations are done only once per temperature

measurement cycle, and thus may be precalculated with delay in such a way that it

does not affect the fetch logic’s critical path.
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(a) High-level view of the decision process for adaptive SMT.
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(b) Portion of our algorithm that determines which unit is in thermal
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(c) Decision algorithm for which thread is selected if
the integer (or floating-point) register file is judged to
be in danger.

Figure 3.2: Flow chart depicting an overview of the adaptive SMT algorithm, and
two block diagrams demonstrating the calculation and decisions, which also reflect
the added components used in a hardware design.

51



Fetch priority adjustment is in many ways an extension of basic fetch throttling

on a uniprocessor. Also known as toggling, throttling involves simply disabling in-

struction fetch whenever a section of the processor surpasses the specified thermal

threshold [9]. Once this mechanism has been triggered, ideally the processor would

quickly cool down until it goes below the thermal threshold and can continue normal

operation. Fetch throttling thus forms the comparison baseline for our measurements.

In actuality, our fetch priority adjustment system is not an alternative but rather runs

in combination with fetch throttling. Since thermal stability cannot be ensured if in-

structions are always issued—as is the case when all available threads are thermally

intensive—it is necessary for our design to have a backup policy to fall back on in

order to guarantee prevention of thermal violations. Figure 3.3 shows a sample of the

effects of thermal management under our proposed algorithm from a time-dependent

perspective. In the baseline fetch throttling example of Figure 3.3 (a) one hot spot

can remain the primary performance hindrance, while with our adaptive algorithm

in Figure 3.3 (b) instructions from each thread can be issued such that the two key

hot spot temperatures remain close.

3.3.2 Adaptive Control Algorithm: Other Issues and Discus-

sion

To avoid unpredictable cases of thread starvation, we allocate a portion of cycles

where the default fetch policy holds regardless. For our policy labeled “moderate”,

the first two cycles out of every four cycles default to the standard alternation among

threads (round-robin) policy. This ensures a degree of thread fairness fairly close to

the original policy, but at the potential expense of poorer thermal management. Our

“aggressive” policy allocates only the first two out of every sixteen cycles for defaulting

to the round-robin policy, pushing a stronger tradeoff between thread fairness and

thermal management. While our current fallback policy is round-robin, for future

52



84.90
84.91
84.92
84.93
84.94
84.95
84.96
84.97
84.98
84.99
85.00
85.01

0 20 40 60 80 100 120 140
Time (ms)

Te
m

pe
ra

tu
re

 (°
C) FXU registers

FPU registers

(a) Baseline fetch throttling thermal control.
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(b) Temperature-aware thread fetch policy.

Figure 3.3: Transient hot spot temperatures for fma3d-twolf workload under our
baseline and adaptive policy. Although only representative of a short time interval,
the control policy shown in (b) is capable of tuning temperature on a very fine-grain
level.

work we hope to extend our framework to use more real world-applicable fetch policies

including ICOUNT [82]. Such designs, which were originally aimed for aggressive

performance, may become more severely penalized under thermally limited conditions

and hence would likely benefit more from our temperature-aware policies.

For identifying the heat behavior of each thread, we sample its execution through
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performance counters at runtime. Our current dynamic profiling utilizes event counts

starting back 100 temperature measurement cycles (1,000,000 CPU cycles) through

the point in time of the most recent temperature sample. Being two orders of magni-

tude larger than the temperature measurement cycle, we ensure that profiling hard-

ware interferes very little with the main pipeline.

We do not model sensor error, although sensor delay is modeled: temperature is

recalculated only every 10,000 cycles. At the given clock rate this amounts to about

6 µs of sensor delay. Thus, any hardware necessary for recalculating the temperature

and feeding it to the control logic cannot be expected to affect the critical path of

the pipeline, as the result is precalculated and fed in with appropriate delay. We

find under this model that it usually takes between one and three measurement cy-

cles (10,000 to 30,000 CPU cycles) to fall back below the thermal threshold after

each thermal threshold breach is detected. Despite thermal emergencies occurring

often throughout execution, there is no additional delay penalty for enacting ther-

mal control. Compared to DVFS, this is a key advantage of pure microarchitectural

techniques, as demonstrated by Brooks et al. [9].

Heo et al. [34] have shown that designs enacting thermal control on a sufficiently

fine-grain interval pose an advantage for tightly controlling temperatures, although

they can be more costly in terms of other design factors. However, it seems feasible

that this mechanism could be moved to the operating system level, as Powell et al.

have demonstrated that thermal fluctuations happen on a sufficiently coarse grain

time interval adequate to be managed by the OS [66]. Hybrid techniques involv-

ing both the microarchitecture and OS are also a possible implementation. To be

specific, prioritized fetching and renaming can be performed by the microarchitec-

ture, while numerical specifications of those process priorities can be dictated by the

OS depending on thermal conditions. In Chapter 4, we explore some related hybrid

approaches.
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For implementing the control algorithm in real hardware, event counters are neces-

sary to measure (in total as well as on a per-thread basis) integer register file accesses

per cycle, floating point accesses per cycle, and number of instructions fetched per

cycle. In addition, calculation hardware is needed including adders, a division unit,

and necessary decision logic. Note that although our algorithm as depicted in Figure

3.2 shows as many as eight dividers, in reality only a single shared divider is necessary

since speed of calculation is not critical. Since these calculations would be invoked

only once for every temperature measurement cycle, the energy overhead is negli-

gible. For perspective, modern DVFS solutions employ PID-based hardware which

involves even more additional gates but also has insignificant energy overhead while

not affecting the microprocessor pipeline’s critical path.

3.3.3 Experimental Results

In this section we examine the benefits of temperature-aware adaptive thread prior-

ity management. Table 3.4 lists performance and power metrics for all mixes under

the baseline control method. The weighted speedup for each of these mixes is small,

notably less than 1.0 in all cases. This signifies a cost associated with simultaneous

multithreading, and it is primarily due to operating in the thermally limited region.

It is this cost we seek to address. Although all mixes have weighted speedups greater

than 1.0 when operating below the thermally limited region, the increased tempera-

tures due to high instruction issue rates, however, make SMT actually detrimental to

performance in this region. For these executions the bottleneck hot spots are still the

integer and floating point register files where one or the other hovers at the thermal

threshold of 85◦C. The overall chip temperature as reflected by its large L2 cache

remains at approximately 52◦C, more than 30◦ less. The thread retire ratio gives

an overview of the fairness in each pair of programs. The first percentage represents

the fraction of retired instructions that belong to the first program, and the second
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mix IPC thread retire
ratio

weighted
speedup

ED2

( J ·s2

instr3 )
throttle rate

ammp-gzip 0.820 57.8%/42.2% 0.830 2.83e-26 44.9%
ammp-mcf 0.410 66.7%/33.3% 0.659 2.23e-25 49.2%
applu-parser 0.527 63.5%/36.5% 0.549 9.87e-26 65.1%
applu-twolf 0.486 60.6%/39.4% 0.507 1.27e-25 65.2%
fma3d-galgel 0.583 43.4%/56.6% 0.375 7.48e-26 69.1%
fma3d-twolf 0.716 60.4%/39.6% 0.711 4.17e-26 51.9%
galgel-mesa 0.708 60.8%/39.2% 0.450 4.27e-26 66.8%
gcc-mesa 0.494 53.0%/47.0% 0.485 1.22e-25 67.6%
gcc-parser 0.485 62.0%/38.0% 0.543 1.30e-25 64.9%
gzip-mcf 0.304 57.1%/42.9% 0.593 5.25e-25 55.4%

Table 3.4: Baseline results for fetch toggling based DTM without adaptive thread
control.

percentage represents the corresponding fraction for the second program.

Improving on this baseline, Table 3.5 lists performance and power metrics for all

mixes under adaptive thread fetching for our moderate and aggressive-level policies.

Figure 3.4 pulls together the primary parameters as presented in Tables 3.4 and 3.5

and presents these results graphically. Note that in most cases where heterogeneously

behaved programs are mixed, we see a 30-40% IPC improvement with a similar in-

crease in weighted speedup. This performance improvement is directly caused by

a corresponding reduction in the amount of time the processor is throttled. This

can be directly seen by the throttle ratio given in the three tables. Next, the ED2

reduction is related to IPC parabolically and can be explained as follows. Dynamic

power increases proportionally with higher IPC, but this does not significantly reduce

EPI since the amount of work performed per instruction remains the same. Leakage

power, on the other hand, remains mostly unchanged since our overall chip temper-

ature remains largely unaffected, resulting in somewhat lower energy per instruction

as leakage in this model constitutes only about 25% of total power. Thus the key

factor causing a parabolically correlated decrease in ED2 reduction is the delay term

squared.
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Figure 3.4: Weighted speedup and ED2 for fetch-based dynamic thermal manage-
ment.

As expected, we find that our adaptive fetch technique offers the biggest improve-

ment in cases allowing a high degree of thermal variety in workload mixes. For other

cases such as gzip-mcf and gcc-mesa (integer only), we see there is actually a signif-

icant performance potential despite the constituent programs being similar in terms

of register file usage. The exploitable difference here is perhaps that although nei-
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(a) Moderate adaptive fetch management.

mix IPC thread retire
ratio

weighted
speedup

ED2

( J ·s2

instr3 )
throttle rate

ammp-gzip 0.806 58.9%/41.1% 0.814 2.97e-26 45.2%
ammp-mcf 0.427 68.1%/31.9% 0.674 1.98e-25 48.0%
applu-parser 0.545 61.8%/38.2% 0.570 8.99e-26 64.8%
applu-twolf 0.486 61.0%/39.0% 0.507 1.27e-25 65.3%
fma3d-galgel 0.572 41.4%/58.6% 0.364 7.90e-26 69.7%
fma3d-twolf 0.698 62.6%/37.4% 0.688 4.47e-26 49.1%
galgel-mesa 0.738 60.7%/39.3% 0.469 3.79e-26 64.9%
gcc-mesa 0.498 50.5%/49.5% 0.487 1.19e-25 67.1%
gcc-parser 0.490 60.4%/39.6% 0.549 1.25e-25 65.1%
gzip-mcf 0.314 59.0%/41.0% 0.601 4.77e-25 55.0%

(b) Agressive adaptive fetch management.

mix IPC thread retire
ratio

weighted
speedup

ED2

( J ·s2

instr3 )
throttle rate

ammp-gzip 0.720 70.3%/29.7% 0.707 4.05e-26 38.4%
ammp-mcf 0.498 78.4%/21.6% 0.679 1.23e-25 41.0%
applu-parser 0.892 47.5%/52.5% 0.966 2.19e-26 17.4%
applu-twolf 0.675 51.1%/48.9% 0.719 4.96e-26 63.4%
fma3d-galgel 0.611 40.8%/59.2% 0.387 6.52e-26 60.8%
fma3d-twolf 0.784 62.1%/37.9% 0.775 3.20e-26 48.2%
galgel-mesa 0.936 35.6%/64.4% 0.692 1.90e-26 31.3%
gcc-mesa 0.719 22.5%/77.5% 0.666 3.99e-26 39.9%
gcc-parser 0.787 32.8%/67.2% 0.912 3.12e-26 10.7%
gzip-mcf 0.436 72.3%/27.7% 0.725 1.83e-25 47.2%

Table 3.5: Complete data for workload behavior under our adaptive thread fetching
policy.

ther program uses floating point operations, these programs already possess much

imbalance in terms of their frequency of integer accesses. One workload, ammp-gzip,

shows a decrease in performance under our algorithm. This at first seems surprising

since it is a heterogeneous workload—containing one integer and one floating-point

benchmark—that should have potential for balancing. The cause is that the baseline

case using throttling happens to be already very balanced with starting and ending

temperatures for each register file remaining close to each other. This most likely

happens by chance; if larger or different execution traces for the two programs are
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selected, the temperatures could easily imbalance without adaptive thread manage-

ment.

The potential cost of our adaptive policy is reduced thread execution fairness as

compared to the basic round-robin policy. Overall, we find that the moderate adaptive

policy performs better than the baseline with an average of only 1% improvement

in terms of weighted speedup or IPC. Our aggressive policy performs significantly

better than the moderate policy showing an average of 30% improvement in terms

of weighted speedup. The ED2 product, largely correlated, averages 44% reduction

under the aggressive adaptive policy.

3.4 Adaptive Register Renaming

3.4.1 Design Description

Our second set of experiments is much like the first, except it involves adaptive

control at a later stage of the pipeline, namely the register renaming logic. Our

adaptive rename policy is exactly the same as explained earlier for adaptive fetch

control, except instead of being fetch-based it controls the priority at which a thread

receives the register renaming service. For deciding which thread to give renaming

priority to on each cycle, we use the same decision policy as depicted in Figure 3.2.

When the decision to rename registers for only a particular thread is decided on any

given cycle, the register rename hardware maps registers only for the selected thread,

effectively stalling services for the other thread. Likewise, instead of fetch throttling

serving as our baseline thermal control method, we compare against basic rename

throttling [51] instead. This involves simply disabling the rename logic when the

processor appears above its thermal threshold.

A difference, and possible benefit from the selective renaming technique, is that

it operates closer to the hot spot of interest, namely the register file. From Figure
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3.2 it can be seen that much of the profiling logic is required to gather information

from the register file hardware. In the case of adaptive fetching, this would require

communication between the register files and the fetch stage of the pipeline. An

adaptive renaming scheme, however, may require shorter and less intrusive global

wires as its operation is restricted to the register file stage of the pipeline.

One clear drawback, however, is that throttling at a later stage of the pipeline

allows instructions to enter the pipeline and consume resources. These extra instruc-

tions, still in the early stage of the pipeline, may still consume power even as their

operations cannot progress further in the pipeline while being throttled at the regis-

ter renaming stage. Furthermore, if the instruction window is filled with instructions

that remain there, this can limit the capacity for the non-throttled thread to con-

tinue fetching. Whether or not these factors are significant may depend largely on

how power-consuming the pipeline front-end is, and whether the instruction window

is capacity-limited most of the time.

3.4.2 Experimental Results

Our baseline results regarding rename throttling without adaptive register renaming

are shown in Table 3.6. We find the efficacy of this alternative thermal management

technique to be on the same order of efficacy as fetch throttling, a result consistent

with recent work by Li et al. [51].

We enact the adaptive register renaming strategy described in Section 3.4.1. As

with our other fetch-based experiments, note that this is not an alternative to basic

register rename throttling but rather is operating on top of the parent policy so as

to ensure thermal stability. Table 3.7 shows all corresponding data for the adaptive

renaming experiments, and likewise for comparison Figure 3.5 brings together the

main results of Tables 3.6 and 3.7 to compare graphically. The pattern of measurable

performance improvement in terms of ED2 is much the same as is found from our
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mix IPC thread retire
ratio

weighted
speedup

ED2

( J ·s2

instr3 )
throttle rate

ammp-gzip 0.760 57.7%/42.3% 0.770 3.56e-26 48.6%
ammp-mcf 0.402 66.6%/33.4% 0.647 2.41e-25 49.6%
applu-parser 0.467 63.2%/36.8% 0.488 1.44e-25 69.2%
applu-twolf 0.425 60.3%/39.7% 0.444 1.92e-25 69.6%
fma3d-galgel 0.484 43.1%/56.9% 0.311 1.32e-25 74.8%
fma3d-twolf 0.655 60.3%/39.7% 0.651 5.46e-26 53.4%
galgel-mesa 0.612 60.8%/39.2% 0.389 6.64e-26 71.2%
gcc-mesa 0.492 53.0%/47.0% 0.483 1.28e-25 67.8%
gcc-parser 0.486 61.8%/38.2% 0.544 1.32e-25 65.1%
gzip-mcf 0.302 57.1%/42.9% 0.588 5.49e-25 55.7%

Table 3.6: Baseline results for rename-throttling based DTM without adaptive thread-
specific renaming.

fetch-based experiments. That is, we see roughly the same pattern of performance

gains in certain workloads. As mentioned earlier, a drawback expected from throttling

at the rename stage is that the register renamer is a later stage of the pipeline, thus

unlike fetch management it gives more potential for unwanted instructions to enter

the pipeline and consume resources while throttled. Despite this possible downside,

the potential for thermal control at this pipeline stage in addition to the fetch stage

appears quite viable.

3.5 Related Work

A number of works have examined the power and energy properties of SMT without

regard to spatial temperature analysis [42, 52, 67, 68]. Many of these studies tend

to explore SMT in comparison to multicore processors. Several other works extend

beyond these and examine the thermal properties of SMT [18, 51, 66]. In addition

to characterizing SMT’s thermal behavior, a number of thermal management tech-

niques for SMT processors have been proposed and studied. For instance, Li et al. [51]

experiment with dynamic voltage scaling and localized throttling techniques. How-
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Figure 3.5: Weighted speedup and ED2 for register renaming-based dynamic thermal
management.

ever, all their tested techniques are applicable to superscalar processors and other

paradigms as well; hence, they do not explore SMT-specific constructions. Powell

et al. [66] explore SMT thermal management in the context of hybrid SMT-CMP

systems and they propose scheduling schemes for optimal scheduling on thermally
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(a) Moderate adaptive register renaming.

mix IPC thread retire
ratio

weighted
speedup

ED2

( J ·s2

instr3 )
throttle rate

ammp-gzip 0.751 58.4%/41.6% 0.759 3.69e-26 50.0%
ammp-mcf 0.401 67.0%/33.0% 0.643 2.42e-25 49.5%
applu-parser 0.477 62.7%/37.3% 0.500 1.35e-25 68.1%
applu-twolf 0.419 61.3%/38.7% 0.437 2.00e-25 69.6%
fma3d-galgel 0.491 40.5%/59.5% 0.311 1.27e-25 74.5%
fma3d-twolf 0.645 61.3%/38.7% 0.639 5.71e-26 53.6%
galgel-mesa 0.610 61.8%/38.2% 0.385 6.71e-26 70.9%
gcc-mesa 0.558 47.7%/52.3% 0.543 8.83e-26 63.9%
gcc-parser 0.703 56.8%/43.2% 0.792 4.55e-26 53.3%
gzip-mcf 0.304 57.5%/42.5% 0.589 5.38e-25 55.7%

(b) Aggressive adaptive register renaming.

mix IPC thread retire
ratio

weighted
speedup

ED2

( J ·s2

instr3 )
throttle rate

ammp-gzip 0.736 62.5%/37.5% 0.737 3.88e-26 40.5%
ammp-mcf 0.423 70.9%/29.1% 0.643 2.05e-25 48.1%
applu-parser 0.786 46.1%/53.9% 0.856 3.19e-26 33.4%
applu-twolf 0.461 61.7%/38.3% 0.481 1.51e-25 69.5%
fma3d-galgel 0.526 31.9%/68.1% 0.315 1.04e-25 68.4%
fma3d-twolf 0.663 64.9%/35.1% 0.649 5.24e-26 53.3%
galgel-mesa 0.733 45.9%/54.1% 0.511 3.92e-26 48.7%
gcc-mesa 0.733 23.4%/76.6% 0.680 3.88e-26 37.7%
gcc-parser 0.788 32.7%/67.3% 0.914 3.18e-26 8.7%
gzip-mcf 0.346 62.1%/37.9% 0.641 3.68e-25 52.2%

Table 3.7: Complete data for workload behavior under our adaptive register renaming
policy.

constrained designs. However, their design intervenes only through the operating

system and they do not explore more fine-grain techniques that could enable direct

thermal management without requiring context switches.

El-Assawy et al. propose SMT-specific extensions targeting another reality of

physics for modern processors—the inductive noise problem [24]. Similar to our rea-

soning, they see SMT providing an opportunity to exploit program diversity in order

to counteract with adaptive control.

Hasan et al. [32] propose a mechanism that strongly relates to the design in
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this chapter. They envision a scenario whereby a malicious thread may cause a

microarchitectural Denial of Service (DoS) attack, and propose remedies for detecting

and mitigating the effects of such attacks. However, they do not examine how to

optimize SMT operation in terms of naturally occurring thermal stress. Our work

here explores this as a general problem to be addressed as processor designs are

bound to become more thermally stressed in the future and operate under thermally

constrained conditions. Our proposed framework manages to generalize protective

thermal arbitration to all programs, including programs that could potentially be

intended for malicious attacks.

Since the initial publication of our work [21], the concepts of SMT-specific thermal

control have even been demonstrated on actual hardware. In a hybrid approach,

Kumar et al. demonstrate similar multithreaded thermal control in combination

with clock throttling on an actual Pentium 4 machine [43].

3.6 Future Extensions

For one possible future direction, it would be interesting to see if this method can

be extended beyond 2-context SMT to readily scale to greater numbers of threads.

While the logic for comparing two threads based on a critical resource’s temperature

could be extended to manage more than two threads, it is not clear how to fairly and

practically partition many threads in terms of allowed execution share. Similarly,

although the processor modeled in this chapter is an example of only a single-core

single-socket system, another open question would be how these policies may coor-

dinate and provide performance benefits in multicore multiple-socket systems where

each core features SMT. Another possibility for extending this work involves testing

how it may be implemented alongside complex fetch policies such as ICOUNT.
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3.7 Summary

This study proposes and tests a novel form of adaptive DTM specific to SMT proces-

sors. At adaptive thread fetching can predictably control temperature of hot spots

at a fine grain level. We have found thread priority management provides a weighted

speedup performance increase over our conventional fetch toggling technique by an

average of 30%, and ED2 reductions averaging 44% for our test cases. Our analogous

experiments dealing with adaptive renaming found strikingly similar results averaging

23% weighted speedup improvement and 35% ED2 reduction.

Our work demonstrates a heuristic algorithm for a simple case of two primary hot

spots on an SMT processor. Future process technologies bring greater thermal chal-

lenges including wider gaps between overall chip temperature and localized hotspots.

We expect this to worsen and create increased demand for smart thermal control

applicable to varied workloads. Such systems pose a challenge but a wider variety of

hot spots also brings potential for more advanced adaptive control methods.

Our proposed algorithm makes a clear tradeoff between baseline thread fairness

and sustaining performance. It is most applicable in systems which allow a wide

degree of thread priority and scheduling freedom. This would include systems such

as scientific computing environments where many huge workloads are queued up

without strict process priorities. One can also envision, for example, a thermally

constrained server system where one might find it more appropriate to fairly allocate

user time based on its thermal cost (power) rather than direct CPU-cycle cost. A

mechanism such as this one directly enables such an energy-guided quota. Instead

of requiring overly specific protections against malicious thermal attacks [32], our

technique serves as both a safeguard and a standard policy for resource sharing in a

thermally constrained environment.
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Chapter 4

Multicore Thermal Control

4.1 Introduction

The previous chapter demonstrates an adaptive technique using the flexibility of

multiple applications on a single-core processor. As we have emphasized, however,

multicore processors are becoming the dominant architectural paradigm in modern

times. While simultaneous multithreading provides flexibility in adaptive policies

based on available applications, multicore architectures additionally provide spatial

flexibility in the placement of those applications. In this chapter we organize the

design space for multicore thermal control and explore a range of thermal control

possibilities.

Although Chapter 2 also examined multicore processors, it did not examine these

platforms in the context of thermal management. This chapter looks at thermal prop-

erties of applications running on multicore processors and the corresponding thermal

management techniques. Unlike Chapter 2, however, here we do not experiment with

parallel applications, and instead focus primarily on multiprogrammed workloads.

One advantage of the multiprogramming scenario is that it manages to simplify our

analysis and policies. We implement feedback-control and migration, which can be
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successful because applications can execute largely independent of one another. Sec-

ond, many parallel applications, such as those examined in Chapter 2 exhibit fairly

uniform behavior among multiple threads, rather than creating chaotic power and

temperature variations. Workloads formed from several different applications, on the

other hand, represent a sufficient challenge for which adaptive management is most

applicable.

We begin our analysis by dividing the CMP thermal design space into a taxonomy

of orthogonal design choices. This taxonomy allows us to systematically and quanti-

tatively explore the thermal design space. In some parts of the space, we quantify the

benefits of useful combinations of previously-proposed approaches. In other parts of

the space, however, we propose novel thermal control techniques and quantify their

value. For example, one of the key novelties of the chapter lies in our use of formal

control theory techniques to propose, design, and evaluate a multi-loop control mech-

anism that allows the operating system and the processor hardware to collaborate on

a robust, stable, and effective thermal management policy. On the initial publication

of our work [22], our proposal was the first thermal management technique to exploit

multi-loop control.

The contributions of this chapter are as follows:

• Distributed DVFS provides considerable performance improvement under ther-

mal duress, on average improving throughput by 2.5X relative to our baseline.

While the design complexity cost of multiple clock domains is considerable, we

show that the performance potential is significant as well.

• When independent per-core DVFS controls are unavailable, we find that other

options perform well. In particular, a thread migration policy without per-core

DVFS can still improve performance by as much as 2X.

• These methods can be combined through our sensor-based migration policy

involving multi-loop control. The operating system engages in coarse-grained
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control and migration, while the hardware level engages in a finer-grained level

of formal control based on DVFS. We find that this method offers up to 2.6X

improvements over baseline.

Overall, this chapter offers insights on the combined leverage of DTM methods, on

the value of distributed DVFS for thermal management, and on the robustness and

feasibility of formal multi-loop control via OS-processor collaborations. Given the

importance of thermal design in current and future processors, these contributions

represent useful next steps for the field of thermal-aware architecture.

The remainder of this chapter is structured as follows. Section 4.2 presents our

taxonomy for thermal control. Section 4.3 describes our simulation environment and

experiment methodology to quantify the properties of these systems. Section 4.4

examines implementation issues for our control methods. Sections 4.5 through 4.7

show our experimental results. Section 4.8 discusses related work, and Section 4.9

summarizes this chapter.

4.2 Thermal Control Taxonomy

Since temperature is largely dependent on power output over time, general power-

reduction techniques are typically good first steps for temperature-aware design. In

addition to aggregate heat production, however, there can be significant temperature

variance across different regions of the die, and thus one also must worry about more

localized hot spots at particular portions of the chip.

4.2.1 Thermal Control Taxonomy

For controlling hot spots, one can either (a) reduce heat production, or (b) balance

heat production. Under this reasoning, our work seeks to classify DTM schemes in

a systematic manner so that we can characterize and quantify their design tradeoffs
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Stop-go DVFS Stop-go DVFS Stop-go DVFS

Global Stop-go Global DVFS

Stop-go + 

counter-based

migration

Global DVFS + 

counter-based

migration

Stop-go + 

sensor-based

migration

Global DVFS 

+ sensor-based 

migration

Distributed Dist. stop-go Dist. DVFS

Dist. stop-go + 

counter-based

migration

Dist. DVFS + 

counter-based

migration

Dist. stop-go + 

sensor-based

migration

Dist. DVFS + 

sensor-based

migration

No migration Counter-based migration Sensor-based migration

Table 4.1: Thermal control taxonomy, forming twelve possible thermal management
schemes.

taken both individually and in combinations.

Our taxonomy is depicted in Table 4.1. We regard our policy decisions as a set of

orthogonal axes. One axis refers to the type of low-level control employed. Among the

choices we explore are that of a stop-go policy (turn off a core or the whole chip when

thermal management indicates the temperature should be reduced) and DVFS (apply

voltage-frequency scaling to reduce temperature). Our second axis is that of deciding

whether to use a global controller for all cores, or whether to use distributed per-core

approaches. Per-core decisions may require more complex hardware, but in turn will

let the system respond more individually to the needs of different applications running

on each core. Our final axis regards a process migration policy, which acts on a more

coarse-grain time scale. Options here are to never migrate threads (the base case)

or to migrate threads in response to either thermal-sensor readings, or counter-based

thermal proxies. We explore these twelve options in different combinations in the

sections that follow. Inevitably, there are always further axes one might consider.

(For example, simultaneous multithreading and heterogeneous cores are two other

axes which impact thermal issues.) Nonetheless, we feel that this taxonomy helps

guide us through many interesting and useful combinations of thermal design features

for CMPs.
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4.2.2 Stop-go vs. DVFS

One of the most basic forms of dynamic thermal management is known as global clock

gating [9] or “stop-go”. This involves freezing all dynamic operations and turning off

clock signals to freeze progress until the thermal emergency is over. When dynamic

operations are frozen, processor state including registers, branch predictor tables, and

local caches are maintained, so much less dynamic power is wasted during the wait

period. Thus stop-go is more like a suspend or sleep switch rather than an off-switch.

Our stop-go mechanism is a coarse-grain operation signaled by the processor and

carried out by the operating system. Once a thermal sensor reaches the designated

threshold, a thermal trap is signaled and processes are frozen for 30 milliseconds.

After lowering the temperature a few degrees through stalling, the processor can

resume. We choose this interval to be coarse-grain in part because it reflects the slow

heating and cooling time constants of thermal variations (milliseconds [28]), and in

part because it leads to a relatively simpler implementation.

The DVFS policy involves more of a continuous adaptive scheme. By enabling

a continuous range of frequency and voltage combinations we can predictively use

these to reduce power consumption. Thus our DVFS policy is not as simple as the

stop-go mechanism, but we leverage past control-theoretic work to systematically

obtain suitable parameters. We use a setpoint slightly below the thermal threshold

and use a PI controller to adaptively control the frequency and voltage levels to aim

towards this target threshold. Our DVFS mechanism has a higher design cost than

the rudimentary stop-go mechanism due to the complexity of implementing a flexible

phase-lock loop (PLL) and voltage scaling capabilities.

4.2.3 Distributed Policies vs. Global Control

While our first axis of classification in Table 4.1 focuses on the decision of stop-go vs

DVFS policies, our second axis designates the scale on which these policies are applied.

70



One possibility (“global”) is to implement a stop-go or DVFS policy regarding the

entire chip as a single unit. This has been the method used primarily in the first

generation of commercial multicore processors, due to its reduced design complexity.

In the case of DVFS, this avoids communication difficulties that would arise with

multiple clock domains. Furthermore, if all cores are likely to heat at the same rate,

a policy which cools all cores in sync could be sufficient.

While global control policies work well for workloads that heat the chip uniformly,

our real-system measurements from Chapter 1 that this uniformity is relatively un-

likely. “Performance asymmetry”—the likelihood of workloads showing very different

performance characteristics depending on the choice of applications—is a clear char-

acteristic of emerging multicore applications [5]. If a global policy is used, a single

hotspot on one of the cores could result to unnecessary stalling or slowdown on all

cores. The more cores on the chip, the more potential performance is lost due to the

single hotspot. Distributed policies, such as “Dist. DVFS” and “Dist. stop-go” as

labeled in Table 4.1, instead allow each core to independently handle its own thermal

management to a good extent. This chapter shows that for thermal purposes, choos-

ing a distributed policy may be well worth the necessary added design complexity.

4.2.4 OS-based Migration Controllers

The final axis we consider regards the migration policy. Migration can help balance

heat production across all cores. All the previously-mentioned policies—and combi-

nations of them—can still have remaining thermal imbalances which can be further

remedied through migration. Consider for example a common case: in a 2-core system

managed by a DVFS policy, the integer register file could be the limiting hotspot on

one core, while the floating-point register file might be the limiter on the other core.

Judiciously migrating threads can allow the system to achieve better performance

than DVFS-based methods alone.
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Figure 4.1: Feedback control system involving inner loop for local control and outer
loop for coarse-grain migration decisions. The sets of four thick lines represent sets
of data from each core.

We consider migration policies managed by the operating system. Timer inter-

rupts from a typical OS happen on the order of a millisecond apart, and this is

actually more than enough to get sufficient potential from migration. Particularly in

our best cases of distributed DVFS combined with migrations, the hotspot “drift” is

much slower than a typical temperature gradient in the more thermally-chaotic stop-

go policy. Given this time scale, when migration is used on top of control-theoretic

DVFS, we can model our overall system as a two-loop structure as shown in Figure

4.1. The inner loop is the DVFS policy, while the outer loop is the migration policy.

The migration policy depends to a great extent on data gathered by the PI controller

in the inner loop.

We study two migration mechanisms in this chapter. The first one is based on
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performance counters used to determine the resource intensities of various threads.

We draw some of these ideas from earlier works [19, 66], which describe concepts of

mixing complementary resources based on profiled information. Our second mecha-

nism is known as sensor-based migration. The purpose of this mechanism is to avoid

reliance on performance counter proxy data which may be too abstract at times. Al-

though both migration mechanisms, as well as all DTM policies in our study, rely on

thermal sensors to make proper decisions at the correct times, the difference between

the counter-based and sensor-based migration policies is that the latter uses sensors

over time to track thermal properties of all processes. An elegant property of the

sensor-based approach is that it depends directly on data gathered from the inner

control loop as depicted in Figure 4.1.

4.3 Simulation Methodology and Setup

This section details our architectural, power estimation, and temperature modeling

infrastructure. Figure 4.2 shows the overall flow. This section describes each of

the illustrated levels of modeling, our modifications for thermal control, our test

benchmarks, and metrics used.

4.3.1 Turandot and PowerTimer Processor Model

Using Turandot [60] we model a 4-core processor as detailed in Table 4.2. Most

internal core parameters are similar to those used in our earlier work [19] and a study

by Li et al. [51], although for example, we use a larger (4 MB) L2 cache. The overall

configuration of each core of this processor may be thought of as a generation beyond

the single-core SMT processor used in Chapter 3. While having many of the same

functional units as the SMT processor, each core is modeled with a faster clock rate

(3.6 GHz instead of 1.8 GHz) and a floorplan of smaller proportions (explained further
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Figure 4.2: Power trace-based simulation method involving interdependence between
Turandot, PowerTimer, leakage modeling, HotSpot, and thermal management poli-
cies.

in Section 4.3.2).

PowerTimer [8] is a parameterizable power estimation tool which operates in con-

junction with Turandot. Its hierarchical power models are derived through empirical

circuit-level simulations and calibrated according to technology parameters. Compo-

nent power across simulation intervals is then calculated by scaling according to the

counts of various architectural events. As shown in Figure 4.2, we use Turandot and

PowerTimer to generate power traces to be used as inputs to our thermal simulator.

Using SimPoint [70], we simulate representative traces of 500 million instructions

from each program. These produce long (hundreds of milliseconds) output traces of

power behavior containing data samples every 100,000 cycles (28 µs).

74



Global Design Parameters
Process Technology 90 nm
Supply Voltage 1.0 V
Clock Rate 3.6 GHz
Organization 4-core + shared L2 cache

Core Configuration
Reservation Stations Mem/Int queue (2x20), FP queue (2x5)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BXU
Physical Registers 120 GPR, 108 FPR, 90 SPR
Branch Predictor 16K-entry bimodal, 16K-entry gshare,

16K-entry selector
Memory Hierarchy

L1 Dcache 32 KB, 2-way, 128 byte blocks,
1-cycle latency

L1 Icache 64 KB, 2-way, 128 byte blocks,
1-cycle latency

L2 cache 4 MB, 4-way LRU, 128 byte blocks,
9-cycle latency

Main Memory 100-cycle latency
DVFS Parameters

Transition penalty 10 µs
Minimum freq scale 20% (720 MHz)
Minimum transition 2% of range

Migration Parameters
Migration penalty 100 µs

Table 4.2: Design parameters for modeled CPU and its four cores.

Leakage power is becoming a significant component of total power, especially with

more aggressively-scaled technologies. We cannot rely on PowerTimer, however, for

leakage values since these numbers are dependent on temperature, whose calcula-

tion comes later in our toolflow. Therefore, we describe our leakage power modeling

approach below, as part of the thermal/timing approach.

4.3.2 HotSpot Thermal Model

As a component of our thermal/timing simulator, we use HotSpot version 2.0 [35, 74]

which uses parameters that have been calibrated against a real chip as well as a
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Figure 4.3: High-level floorplan input to HotSpot 2.0 showing our 4-core CMP and a
close-up view of the core components.

power-trace-driven simulation capability. HotSpot calculates temperatures by mod-

eling physical traits in a thermal system using a method analogous to calculating

voltages in a circuit made up of resistors and capacitors. Required inputs to our ther-

mal simulator include a floorplan designating the locations and adjacencies of various

processor components. The model also includes the heatsink, fan (convection), and

thermal interface material.

We use a floorplan similar to that used in a study by Li et al. [51], except we

have extended our layout for 4 cores and reduced the core size accordingly. Each of

these cores has its various components necessary for an out-of-order pipeline and the

four cores are connected through a shared L2 cache and interconnect. Our overall

floorplan, alongside a detailed floorplan of the core, is shown in Figure 4.3. Compared

to the core floorplan used in Chapter 3, this core floorplan has been shrunk in the

horizontal direction while still maintaining the same basic organization of functional

units.
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HotSpot supports calculating transient temperatures as well as estimating steady-

state temperatures. A number of past works [18, 27, 31, 74] have focused on steady-

state. One advantage of steady-state temperatures is the ability to estimate long

term temperatures from only a short simulation interval. Our experiments in adaptive

control, however, require our simulator to know how temperatures change across time.

Hence we focus on transient temperatures.

4.3.3 Thermal/Timing Simulator for DTM

As depicted in Figure 4.2, our thermal/timing simulator tests our thermal manage-

ment policies in order to collect timing, power, and temperature data for any of our

multiprogrammed workloads. The thermal/timing simulator uses power traces as

inputs to its thermal control simulations. The simulator uses these recorded power

values, controls the rate of progression through the trace, and scales power values in

response to thermal control decisions. With DVFS, for example, it adjusts the time

and energy calculations for that core (or for the whole chip) to account for the new

voltage/frequency setting. Because DVFS dynamically changes the length of a cycle,

and because in some of our methods each core may be operating with a different cycle

time, the thermal/timing simulator framework tracks progress in terms of “absolute

time” rather than cycles.

When a power trace for a particular benchmark is completed before the end of the

simulation, that trace is restarted at the beginning and this process is continued until

total of 0.5 seconds of silicon time has elapsed. For calculating leakage dynamically,

we use the temperatures reported by HotSpot as input to a leakage model based on

an empirical equation from [34].

In order to model shared structures such as the L2 cache with this trace-based

method, the single-threaded simulations with Turandot actually are capacity-limited

to use only one quarter of the L2 cache, while retaining pessimistic power costs of
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the full-size cache. This likely overestimates cache power, but the cache is never a

hotspot. Another pessimistic approximation result of our methods is that for a DVFS

mechanism. A memory-bound application can exploit CPU-memory slack [87], which

our traces will not show. Thus, it is likely to gain more energy savings from DVFS

compared to performance loss than a CPU bound application.

Overall, the benefits of this coarse-grain power trace method are (i) that it sim-

ulates dynamic thermal variations and (ii) that it allows us to apply our control

methods on the long time scales appropriate for observing temperature changes. Af-

ter initial publication of our work, a variation of our coarse-grained approach was

used by Chaparro et al. [14]. They also showed that at the cost of having to generate

several times as many traces, it is possible to better model the performance effects

of frequency scaling. It may also be possible to address other issues, such as cache

capacity modeling, with more complex tracing techniques.

4.3.4 Workloads

Our simulated workloads are formed by selecting among 22 benchmarks including

eleven SPECint benchmarks and eleven SPECfp benchmarks to mix into designated

four-process workloads as shown in Table 4.3. As was the case in Chapter 3, each

benchmark’s type is especially relevant to our study on overheating specific resources.

Integer benchmarks are most likely to have their prime hotspot in the integer register

file unit and its associated logic while floating point benchmarks are likely to stress

the floating point register unit. Thus, we list the corresponding benchmark suite

categories for all elements of each workload.

The type of benchmark alone—whether integer or floating point—does not com-

pletely categorize its resource intensities. Integer benchmarks in the SPEC suite have

varying degrees of IPC. Furthermore, all floating point benchmarks make use of in-

teger registers to some extent. Some floating point benchmarks even have higher
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Workload name Benchmarks
Properties (integer / 

floating point)

workload1 gcc, gzip, mcf, vpr Int, Int, Int, Int

workload2 crafty, eon, parser, perlbmk Int, Int, Int, Int

workload3 bzip2, gzip, twolf, swim Int, Int, Int, FP

workload4 crafty, perlbmk, vpr, mgrid Int, Int, Int, FP

workload5 gcc, parser, applu, mesa Int, Int, FP, FP

workload6 bzip2, eon, art, facerec Int, Int, FP, FP

workload7 gzip, twolf, ammp, lucas Int, Int, FP, FP

workload8 parser, vpr, fma3d, sixtrack Int, Int, FP, FP

workload9 gcc, applu, mgrid, swim Int, FP, FP, FP

workload10 mcf, ammp, art, mesa Int, FP, FP, FP

workload11 ammp, facerec, fma3d, swim FP, FP, FP, FP

workload12 art, lucas, mgrid, sixtrack FP, FP, FP, FP

Table 4.3: Four-process workloads of interest and respective mix types of SPEC
benchmarks.

integer register intensities than various integer benchmarks, as seen in Chapter 3.

Nonetheless, the general categorization is a helpful guide in understanding how such

workloads might behave subject to varying forms of thermal control.

4.3.5 Metrics

Our goal in these thermal control applications is to maximize performance subject

to a fixed temperature constraint, in our case not allowing any part of the chip to

go above 84.2◦ C. Although this threshold was arbitrarily chosen since it matched

one of our well-tuned controllers, it is also possible to use any other threshold and

adapt the control policies accordingly. Under this constraint, one of the most natural

performance metrics is the raw instruction throughput for each workload (Billions of

instructions per second, or BIPS).

While BIPS is a good basic performance metric, it can, however, be difficult to

interpret in multiprogrammed workloads. This is because fairly running a low-IPC

application can lead to worse-appearing performance than unfairly skewing execution

toward the high-IPC applications in the workload. For this reason, we also provide
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results on each run’s achieved percentage of “duty cycle”. Duty cycle describes the

ratio of time that useful work is being done, relative to the total time including work

period and the rest (stop) period [66]. For example, if a processor is in a globally-

stalled mode four times as often as it runs in active mode, it has a duty cycle of

20%.

While duty cycle is very straightforward for stop-go situations, we also adapt it

to DVFS as well. Although the processor may attempt to do useful work at each

cycle, the varying frequencies in DVFS approaches change the effective duty cycle.

For this reason, we use an adjusted duty cycle metric as follows. When summing up

the total duty cycle, we scale the contributions accordingly by the dynamic frequency.

For example, if all cores run at 30% of maximum speed for an entire execution this

amounts to a duty cycle of 30%. If all cores run half the time at 30% speed and the

other half of the time at 40%, this results in a duty cycle of 35%. This adjusted duty

cycle is a good indicator of the ratio of the total work done relative to the total possible

work that could be done if all cores were run at their maximum clock frequency not

subject to any thermal constraint. Under this reasoning, overhead delays (such as

that for adjusting the PLL under a DVFS policy) or for the context switch penalty

under a migration policy are not counted as useful total work and thus also lower the

adjusted duty cycle.

4.4 Applying Formal Control to Thermal DVFS

The DVFS portion of our thermal-management mechanisms use a control theoretic

approach to determine appropriate voltage and frequency settings. Here we present

some background information required to understand this approach, before introduc-

ing the other policies and our comparative results.
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4.4.1 Background: Closed-loop DVFS Control

When designing our DVFS controller we apply closed-loop control theory. Formal

feedback control has recently found numerous applications in architecture and systems

[73, 77, 86, 87, 88]. Our work is novel, however, in composing together these formal

control methods along with other control techniques in a multi-loop system.

Closed-loop control is a robust means to control complex systems so that the

controlled value rapidly converges to the desired target output value. In our case,

the measured variables are the thermal sensor values at various hotspots, and the

output actuator is the mechanism to scale the voltage and frequency. This control

loop is represented in the inner loop of Figure 4.1. Some of the arrows in a typical

closed-loop diagram have been drawn as several arrows in Figure 4.1. This reflects

that multiple temperatures are fed into a single PI controller. Since an individual

controller governs an entire core or processor, it typically selects the hottest of the

input temperatures.

The standard PI controller equation, written in its Laplace form, is as follows.

G(s) = Kp +
Ki

s

As shown, the two components are the proportional and integral terms. The propor-

tional component defined by Kp reflects the basic gain of the controller responding

to error, while the integral term containing Ki is there to compensate for any offsets

and reduce the settling time. (A proportional-integral-derivative (PID) controller is

another option, but we found that the derivative term has little benefit for this type

of thermal control.)

MATLAB tests similar to those applied by Skadron et al. [73] allow us to deter-

mine settling time and stability for typical thermal fluctuations. We use constants

of Kp = 0.0107 and Ki = 248.5 in all of our tests. Owing to the robustness of PI
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systems and the inherent stability of the thermal system under study, these constants

can actually deviate significantly while still achieving the intended goals. In fact, our

proportional constant is set two orders of magnitude smaller than the configuration

used by Skadron et al. [73], in order to maintain control with smoother transitions.

Another issue is that of the system’s sensor delay. Fortunately, the primary delay

(thermal sensors) is quite small [16] compared to the time scales on which tempera-

ture varies.

A benefit of formal feedback control is the ability to prove stability. On a root

locus plot, the stability criterion is that all the poles (the frequencies at which the

characteristic function blows up to infinity) must lie to the left of the y-axis in the

Laplace space. We verified this for our controller using MATLAB.

4.4.2 Thermal Control Mechanism for DVFS

The mathematical description given above proposes a controller that can be applied

continuously, not limited by physical constraints. In our actual experiment this con-

troller must be given appropriate limits and be discretized in time. In order to convert

the Laplace transform into its corresponding discrete-time z-transform, we use the

MATLAB function c2d, specifying a time interval of 28 µs to match the frequency

of our thermal measurements. We then arrange the transform to directly specify our

discrete online equation:

u[n] = u[n − 1] − 0.0107e[n] + 0.003796e[n − 1]

The error function e[n] is simply the difference between the measured temperature and

the target temperature. The target temperature is just below the thermal threshold.

Through this, the system maximizes performance subject to the allowable tempera-

ture constraints. Convenient aspects of this controller are that despite involving an
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integral term, it is relatively simple to implement in hardware as it depends only on

the previous controller output, previous error value, and current error value.

On a real system, PI controllers are subject to certain limits which stray from a

purely linear design. One of the most basic limits is that of clipping on the output.

The output, which is the specified frequency scaling factor, cannot extend to infinity

since the cores cannot run beyond their maximum frequency as limited by the speed

of transistor gates. When a core or processor is not in thermal danger but rather

acting in a cool period, the controller will output its maximum value which reports a

frequency scaling factor of 1.0. On the lower end, we restrict the minimum frequency

scaling factor to 0.2. In the discrete model described in the above equation, this can

be implemented fairly simply in hardware.

Another non-ideal characteristic of real PI controllers is that of integral windup,

which describes when the integrator component continually integrates only because

the input error remains present for an extended period due to physical limits. For

instance, when a core is above its target temperature, the controller will try to cool

it by lowering the frequency. However, chip components cannot cool any faster than

the physical limitations allow. If integral windup occurs, when the condition is finally

satisfied it can take a long time for the controller to “wind down”. Fortunately,

our discrete implementation with clipping quickly takes care of this. The simple

discrete implementation in the above equation combined with clipping prevents a

hidden integral component from building up.

Finally, in real systems, voltage changes are not instantaneous. A penalty of 10µs

is assumed for each frequency and voltage change.
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4.5 Exploring Stop-go and DVFS in both Global

and Distributed Policies

This section covers a portion of the policy combinations in our spectrum. In partic-

ular, we examine issues of using stop-go and DVFS, and we also consider whether

to apply each mechanism in a local or distributed fashion. Section 4.6 then explores

migration policies largely with the intention of comparing to the original policy com-

binations in this section.

4.5.1 Stop-Go Policy Implementations

Compared to the formal control approaches used for DVFS management as described

in the preceding section, our stop-go mechanism is quite simple. Each core is run at

full blast as long as it does not exceed a particular thermal trippoint. Thermal sensors

at the two register file units on each core sense the hotspot temperatures. When one

is found to be just below the thermal threshold of 84.2◦ C, a thermal interrupt is

issued. The core which caused this interrupt is then stalled for 30 ms. At this point,

the hotspot will have cooled below the threshold and the core can continue running.

4.5.2 Distributed versus Global Policy Implementations

In the distributed policies, stop-go and DVFS techniques are applied to individual

cores. Each DVFS controller takes in at least two inputs since it watches two hotspots,

but the mathematical implementation goes by whichever sensor reports to be hotter.

In the distributed cases, each core operates independently, without any coordination

with other cores. For the cases of global stop-go and global DVFS, a single decision is

made for all the cores on the chip. Thus, there is effectively only a single PI controller

which calculates based on the hottest of all sensors across all cores.
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BIPS duty cycle
relative

throughput

Stop-go 2.79 19.77% 0.62

Dist. stop-go 4.53 32.57% 1.00

Global DVFS 9.36 66.49% 2.07

Dist. DVFS 11.36 81.02% 2.51

Table 4.4: Average instruction throughput, effective duty cycle, and performance
relative to dist. stop-go across all workloads for various policies.

4.5.3 Experimental Results

Results for all twelve workloads are shown in Figure 4.4. We report results relative

to a baseline policy of distributed stop-go. Global stop-go has the worst performance

of the twelve. Its duty cycle is less than 20% and for this reason, we focus our

attention on the other eleven possibilities for the remainder of the chapter. Although

our baseline characteristics are heavily dependent on our processor configuration and

cooling system model, we have examined other scenarios. For example, we found

that raising the temperature threshold to 100◦ C increased the duty cycles of these

results and others presented in our chapter by 10 to 15%. Nonetheless, the relative

performance tradeoffs remain as presented.

We present instruction throughput for the three non-migratory configurations—

global stop-go, synchronous DVFS, and distributed DVFS—all normalized to the

distributed stop-go results. As seen in the graph, the distributed DVFS policy does

the best overall, on average more than double the instruction throughput of the

distributed stop-go policy and four times that of global stop-go. The largest gain

is due to voltage scaling. In addition, however, the distributed DVFS policy still

gives significantly better throughput than the global. Tabulated results showing the

average throughput and duty cycle for these policies are given in Table 4.4.

The overall improvement by distributed DVFS over a distributed stop-go policy

is a performance improvement of 2.5X. The duty cycle numbers also reflect these
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Figure 4.4: Normalized instruction throughput of all workloads relative to baseline
distributed stop-go policy.

improvements. In particular the active time reported for distributed stop-go is about

30% while distributed DVFS achieves more than 80%. We also have performed other

experiments confirming the validity of our duty cycle metric. We ran simulations with

unrestricted maximum temperatures, and found that the proportion of the achieved

BIPS relative to the non-controlled case was accurately predicted by the measured

duty cycle.

The benefits seen here are consistent with past work which has shown much ben-

efit from DVFS policies as opposed to primitive throttling policies [9, 51]. Likewise,

allowing multiple voltage levels is greatly beneficial for power [40] and hence ther-

mal control. The drawback of these design choices is of course mainly in design

complexity. There are certainly challenges in implementing proper coordination and

communication among several cores running at different frequencies. Furthermore,

to enable multiple voltage levels, each core would need separate voltage regulators
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which implies additional costs in terms of area and complexity. As our results show,

however, for high-performance processors under thermal stress, the design costs of

the distributed DVFS are reasonably rewarded by the clear benefits of improved per-

formance.

4.6 Migration Policies for Thermal Control

The third axis in our spectrum of thermal control options is determined by whether

or not to use migration and the choice of migration mechanism used. We explore

migration mechanisms implemented via OS control for two main reasons. First, ben-

efits from migration policies happen on a relatively long time scale if migration is

implemented in combination with policies that work on a finer-grain time scale such

as stop-go and DVFS. Second, process control and context switches are traditionally

something for which the operating system has final jurisdiction. Thus our migration

mechanisms are called upon no more than once every 10 milliseconds, which is the

typical timer interrupt setting for a Linux kernel. Both of our migration mechanisms,

counter-based and sensor-based, are affected by the DVFS or other policies previously

explored and thus a feedback relation exists when both DVFS and a migration policy

are implemented. In this relation, the operating system needs to keep track of timing

data for all processes. Although not explored in our experiments which are restricted

to four-program workloads, in any system there can easily be a greater number of

processes than cores.

When the OS decides to migrate threads for the purpose of thermal control, the

relevant tracking information is flushed and stored and in our simulations, each core

involved takes a penalty of 100 µs. Once this is completed, the overriding thermal

policy is the primary mechanism of thermal protection, until 10 milliseconds have

passed and the involved threads become eligible for migration again. The actual
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decision algorithms for which threads to migrate are described in more detail below.

4.6.1 Counter-based Migration: Method

We examine first a performance counter-based migration policy, which is the simpler

of the two discussed. The counters are used here to estimate the thermal intensity of

a particular resource. For example, for the integer register file, performance counters

are used to keep track of the number of accesses for individual threads. The per-

formance counter information used here includes cycle counts, the number of integer

register file accesses, the number of floating point register accesses, and instructions

executed. Much of the reasoning for our mechanism is borrowed from the work by

Powell et al. [66], which proposes mixing resource heat intensities with SMT. With

no frequency scaling, we are interested in the ratio of register file accesses per cycle.

When frequency scaling is used, it becomes necessary to know the number of accesses

per adjusted cycle instead.

Our overall algorithm is shown in pseudocode in Figure 4.5. Every thread’s various

performance counters are recorded throughout execution. This way the operating

system is aware of the various resource intensities of all running programs. Migration

decisions are actuated when the local thermal control of at least two individual cores

signals that their critical hotspots have changed. If this happens more often than

10 ms, extra requests are simply ignored since there is little reason to enact a thermal

migration on such a short time scale. When it is time to test for eligible migrations, the

cores with the most critical hotspot imbalance are considered first. Hotspot imbalance

is defined as the difference in temperature between the core’s critical hotspot and the

temperature of the core’s second hottest distinct hotspot. In order of most need for

migration, the decision algorithm searches for a suitable candidate. Each decision

is done by seeing which thread would be most able to reduce heating of the critical

hotspot on each core. In some cases, the best candidate for a thread to migrate will

88



(1) remaining processes = processes[];

(2) sort(cores[], most hotspot imbalance)

where hotspot imbalance =

critical hotspot.temperature -

secondary hotspot.temperature for core[i];

(3) foreach (cores[1..n]) { // find best matchings

matching process = least intense(remaining processes,

cores[i].critical hotspot);

cores[i].assigned process = matching process;

remaining processes -= matching process;

}
(4) foreach (cores[1..n]) { // migrate if beneficial

if (cores[i].current process != cores[i].assigned process)

migrate(cores[i].assigned process, cores[i]);

}

Figure 4.5: Algorithm pseudocode for thread-to-core matching for migration deci-
sions, both for counter-based and sensor-based migration.

be itself, in which case a migration is not done. A set of migrations can be as simple

as a single swap, or as complex as a four-way rotation.

4.6.2 Counter-Based Migration: Results

Figure 4.6 (a) shows the effects and intentions of several migrations on a single core

using parser-vpr-fma3d-sixtrack as an example. Initially, vpr is running on this

core, but after 20 ms it is switched out so that a floating-point intensive benchmark,

sixtrack can migrate in and bring the two hotspots closer to balance. The next

migration occurs at time t = 40 ms, in which vpr returns to this core. This migration

does not appear necessary for the core by itself, but its cause can be better seen in

the context of the other three cores. Figures 4.6 (b) through (d) shows the hotspot

temperatures of the other four cores. As seen in Figure 4.6 (d), the fourth core began

to use sixtrack at t = 40 ms, which is why this benchmark was migrated away

from the first core. Figure 4.6 (b) also shows the second core balancing the two

hotspot temperatures, and even managing to bring the FPU register file to the hotter
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(b) Temperatures of hotspots on second core.
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(c) Temperatures of hotspots on third core.
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Figure 4.6: Temperatures of key hotspots across three migration periods for parser-
vpr-fma3d-sixtrack. At the base of each graph are blocks denoting which bench-
marks are present (migrated in) across sections of the time axis.

of the two hotspots at one point. On the third core, fma3d is never migrated away

throughout the entire 50 ms interval. The reason for this is that fma3d is reasonably

balanced with close levels of activity on both the integer and floating point register

files.

Our overall results from this counter-based migration policy are shown in Table

4.5. When used in conjunction with a distributed local stop-go policy, counter-based

migration provides a 2X performance improvement and sees about the same increase

in duty cycle. This means that in cases where DVFS is not available, stop-go can

be used for basic heat reduction, and migration provides better performance through

heat balancing. In Table 4.5 we have also included the frequency of migrations for
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BIPS duty cycle
relative

throughput

migrations/core

/second

speedup over 

non-migration

Stop-go, counter-based migration 5.34 37.93% 1.18 57.4 1.91

Dist. stop-go,counter-based migration 9.15 65.12% 2.02 51.9 2.02

Global DVFS, counter-based migration 9.88 70.05% 2.18 52.7 1.06

Dist. DVFS, counter-based migration 11.62 82.42% 2.57 46.5 1.02

Table 4.5: Average instruction throughput and duty cycle for performance counter-
based migration policies.

each policy combination. However, because migrations happen infrequently enough

for their direct performance cost to be small, there is not necessarily any direct

correlation between the overall performance of different policies and their frequencies

of migration. In the next section, we discuss our alternative policy that does not

depend on performance counters.

4.6.3 Sensor-based Migration: Method

The counter-based approach is appealing because it relies on easily-accessed hardware

counters of microarchitectural activities that have intuitive meaning to hardware and

software designers. Furthermore, their values can be directly attributed to threads

and code. They are not, however, a direct representation of thermal behaviors. In-

stead, they are at best a proxy.

Here we explore instead a second migration method based directly on reading

on-chip thermal sensors. With sensor-based policies, the mechanism is complicated

significantly by external factors. Although vertical heat conduction typically matters

more than lateral heat conduction [18, 27, 74], the lateral effects are not small enough

to ignore. Our sensor-based mechanism seeks to know the slopes of temperature

transitions, and these may depend on hotspots from a neighboring unit or core. For

example, a certain thread will appear to have different temperature gradients when

running on different cores due to different external factors, such as being located closer

to the edge of the chip. Furthermore, if a DVFS or stop-go policy is applied, the trend

91



sensing calculations must appropriately time-scale the measured temperature changes

to account for this. Depending on which core and at what time measurements are

taken, this could give different results. Because of these issues, our design requires

recording the scaling factors (as seen by the PI controller) and using the average to

scale the measured thermal trends appropriately.

Our algorithm for the sensor-based migration is more complex than the counter-

based policy. Although our decision algorithm is almost the same as that presented

in Figure 4.5, determining individual threads’ hotspot intensities through thermal

sensors is more complex than direct counter information. The apparent intensity on

various cores for a single thread will appear different as each core has different thermal

situations. For instance, a core next to the cache may have less thermal intensity due

to the cache’s relatively cool temperature. We therefore need to profile threads in

a systematic manner so that relative temperature gradients can be used to estimate

the thermal intensity of all possible thread-core combinations. The flow diagram in

Figure 4.7 describes our steps to accomplish this. There is a grid maintained by the

operating system so that the migration decision can be made to estimate a thread’s

hotspot behavior on a particular core. To estimate thread intensity, each core needs

to be run and dynamically tested with at least two threads, and each thread needs

to have recorded sensor data from running on at least one core.

A benefit from this approach is that much of the feedback information can be

recorded in the PI hardware which does arithmetic operations with the temperatures

on a time scale appropriate for recording the trends. As with counter-based migration,

for the distributed DVFS case, each recorded temperature trend must be scaled down

by a cubic relation according to the recorded frequency scaling factor.

Figure 4.8 demonstrates the flow of how the OS-managed data table can be filled

and retained. The example given depicts the workload gcc-gzip-mcf-vpr going from

a cold start all the way to the continuous thermally adaptive migration mode. After
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Figure 4.7: Flow chart demonstrating the steps taken upon an OS interrupt to decide
on sensor-based migrations.

BIPS duty cycle
relative

throughput

migrations/core

/second

speedup over 

non-migration

speedup over 

counter-based

migration

Stop-go, sensor-based migration 5.43 38.64% 1.20 59.1 1.95 1.02

Dist. stop-go, sensor-based migration 9.27 66.61% 2.05 44.3 2.05 1.01

Global DVFS, sensor-based migration 9.63 68.37% 2.13 41.3 1.03 0.97

Dist. DVFS, sensor-based migration 11.70 82.64% 2.59 36.6 1.03 1.01

Table 4.6: Average instruction throughput and duty cycle for sensor-based migration
policies.

each migration interval, the thermal data table is updated accordingly. We have

used different shades of gray to highlight which data entries are newly written at the

end of each migration interval. After two intervals, the profiled thermally data is

sufficient to always migrate using the algorithm given in Figure 4.5. Furthermore,

as the thermally adaptive migration continues, the thermal data table continues to

receive updates.
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Figure 4.8: gcc-gzip-mcf-vpr as an example of the startup process for profiling then
using thermal data for sensor-based migration.

4.6.4 Sensor-based Migration: Results

Tabulated results comparing the sensor-based migration policy with the non-migration

and counter-based migration policies are compared in Table 4.6. For more detail on

the most advanced policy combinations, we have plotted the individual workload per-

formances across migration policies in Figure 4.9 comparing the performance effects

of counter-based and sensor-based migration. Like counter-based migration, sensor-

based migration provides noticeable speedup on most workloads. In some cases,

such as the two all-integer workloads (gcc-gzip-mcf-vpr and crafty-eon-parser-

perlbmk), both policies fail to create significant performance improvement. For these

two workloads in particular, counter-based migration even slightly degrades perfor-

mance. On average, however, both migration schemes slightly improve the overall

performance when used in conjunction with distributed DVFS, and the hybrid policy

of sensor-based migration with distributed DVFS does slightly better overall.
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Figure 4.9: Individual gains/losses of various workloads due to either migration policy
in conjunction with distributed DVFS (best-performing practical policy of the original
four).

Our overall results show that both migration policies are beneficial and feasible.

Sensor-based migration mechanisms perform with an overall 2.1X speedup over the

baseline stop-go policy and an overall speedup of 2.6X with proportionally the same

increase in duty cycle when combined with distributed DVFS. On the other hand,

Figure 4.9 shows that neither migration policy succeeds in benefiting every possible

workload. This shortcoming can be explained by the fact that they are both doing

prediction algorithms to best estimate migration decisions. Errors due to the algo-

rithm assumptions can lead to decisions that not always optimal, but on average do

provide a significant performance benefit.

The options presented in this section and the previous section present designers

with several viable choices for a total thermal management policy. In simpler designs

such as global stop-go, migration makes up for much of the benefit that would be

95



Stop-go DVFS Stop-go DVFS Stop-go DVFS

Global 0.62X 2.1X 1.2X 2.2X 1.2X 2.1X

Distributed baseline 2.5X 2X 2.6X 2.1X 2.6X

No migration Counter-based migration Sensor-based migration

Table 4.7: Summary of all policy combinations and their respective multiplicative
increases in instruction throughput relative to distributed stop-go.

found in a system invoking DVFS. Furthermore, the migration controls are mostly OS-

controlled and hence can be reconsidered and reprogrammed after chip production.

4.7 Results Overview

Instead of viewing some conventional mechanisms as competing alternatives, this

chapter has explored a combination of orthogonal methods to determine where the

most gains are seen and which policies work best together. To summarize this here,

we recall our table from Section 4.2, and present a similar organization except filled

with the overall relative instruction throughput for all policy combinations in Table

4.7.

Our basic results fortify distributed DVFS as a strong foundation for thermal

control, reflecting on average more than 2.5X increase in throughput over our base

policy of distributed stop-go.

Both counter-based and thermal trend-based migration policies are able to sig-

nificantly increase performance through hotspot balancing, respectively reporting 2X

and 2.1X improvements of the baseline stop-go policy. When implementing migra-

tion on top of other policies we see diminishing returns but a net benefit on the most

aggressive distributed DVFS policy with a 2.6X speedup over baseline.

Duty-cycle measurements offer a good view of how close we have come to full-

speed execution. For example, while simple stop-go techniques result in duty cycles
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below 20%, the best multi-loop combination of migration and DVFS improves the

duty cycle to an average over 82%. Given the threat of thermal emergencies, 100%

duty cycle is not possible for these workloads under our experimental conditions, but

values in excess of 80% are quite close.

4.8 Related Work

Since reducing power density has the effect of reducing temperature, temperature-

aware approaches benefit much from the same techniques as in power-aware design.

One key difference is that temperature-aware approaches seek not necessarily to re-

duce the average temperature but also focus on the thermal constraints of individual

hot spots, as our work does. Other differences arise in the metrics that are most

relevant. Our work uses many of these techniques demonstrated in prior studies on

processor power, but applies these mechanisms directly to the problem of thermal

control.

With temperature control as a key limitation to processor performance, many

recent works in computer architecture focus on issues of thermal control [18, 19,

32, 35, 51, 52, 66, 74]. In particular, some of the more closely related works ex-

plore temperature-aware design issues in multithreaded architectures similar to ours.

For example, our prior work [18] explored temperature issues in simultaneous multi-

threaded (SMT) and multicore designs and found common characteristics of thermal

stress. We did not, however, delve into thermal control techniques to alleviate these

problems. Ghiasi and Grunwald examine thermal properties of dual core designs in

particular [27]. However, their work also focuses on steady-state temperatures for

fixed configurations rather than dynamic control. Li et al. examine general issues

of performance, power, and thermal characteristics of both multicore and SMT pro-

cessors [51]. Although they do explore a number of thermal management policies,
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they view these as competing alternatives rather than taking a broad approach like

ours that includes combinations of techniques. Li and Martinez attempt to explore

methods to model performance and power efficiency for multicore processors sub-

ject to thermal constraints [48], but they do not delve into the various options of

thermal management policies. Chaparro et al. have examined issues on designing

clustered processors and the potential for temperature improvement through clus-

tering methods [13, 15]. While covering many microarchitectural details for such

multicore designs, this work does not focus on the thermal control policy and uses a

routine core-hopping mechanism.

Related more to our study are some other works which focus more on the de-

sign of control policies for thermal management. For example, Shang et al. have

proposed adaptive mechanisms for thermal management by focusing primarily on in-

terconnect power control, but they use techniques of a primarily power-aware nature

rather than focusing on mitigating localized hotspots [69]. Powell et al. [66] describe

techniques for thread assignment and migration and the intuitive nature of migrating

computation appropriately to balance temperatures. Their work uses performance

counter-based information in a similar manner to our counter-based migration policy.

Although they compare their technique directly to stop-go and DVFS policies, they

do not consider the possibility of combining such techniques as we have done.

Since the initial publication of this work, there have been further studies extending

upon our covered design space. For example, Chaparro et al. have recently performed

a similar exploration of migratory and distributive thermal control with as many as

16 cores [14]. Their results show that much of the intuitive results in this chapter are

extensible to future technologies and greater numbers of cores.
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4.9 Summary

Our work in this chapter presents a framework and methodology for evaluating a

variety of thermal control options. Through simulation of architectural and thermal

models we have examined a range of thermal management options. We have char-

acterized all twelve policy combinations both in terms of instruction throughput and

effective duty cycle.

Our best performing thermal control combination includes both control-theoretic

distributed DVFS and a sensor-based migration policy. This design represents an

elegant two-loop system allowing the migration policy to utilize feedback informa-

tion from the core controllers. It also demonstrates the value of hardware-software

collaboration on the thermal problem. Hardware performs fine-grained adjustments

and ensures that thermal emergencies are avoided, while software uses migration to

perform heat balancing and seeks to optimize the workload’s performance.

Taken together, these studies create an overall picture regarding the issues and

benefits of various thermal control policies and their combinations. DVFS mecha-

nisms require added on-chip flexibility in the PLL and voltage modulation, but we

show them to be robust and effective. Our migration schemes are fairly lightweight

in implementation; they are designed to operate either with hardware performance

counters (available on essentially all current processors) or feedback-based core con-

trol.

Although we have examined our spectrum of thermal control policies as a mixture

among three axes, these are not the only possible dimensions. SMT and asymmetric

cores are two possible extensions. Another shortcoming of our algorithm is that it

is applicable mainly when interaction between the various threads is negligible. This

assumption certainly does not hold true in the case of running parallel applications,

which are becoming increasingly common nowadays. Future research will be needed

to explore these issues.
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Given the increasing challenges of thermal design in current and future processors,

creative combinations of effective DTM policies are likely to be the only way to truly

gain leverage on the problem. With that in mind, this chapter has offered a taxonomy

of DTM techniques and has used the taxonomy to propose and explore interesting and

novel DTM methods spanning from OS software down to control-theoretic hardware.
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Chapter 5

Conclusions

5.1 Concluding Remarks

This thesis explores techniques for power and thermal management in multithreaded

and multicore processors. The various contributions include novel concepts, methods,

and simulation frameworks for power and temperature control in current and future

microprocessor designs.

I have presented several experiments dealing with power management and dynamic

thermal management. A range of issues to deal with include the power effect of scaling

parallel applications, parameter variations, thermal control for multithreading, and

migration in multicore processors. Through thermal management with simultaneous

multithreading, I showed that the different power characteristics of different appli-

cations can be exploited in unison. For multicore processors, there is added spatial

flexibility which can be exploited through distributed policies and migration. These

concepts culminate in the holistic policy known as sensor-based migration, which mi-

grates processes according to decisions based on thermal properties measured directly

at runtime.

This thesis forms a comprehensive study of power and thermal management for
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multithreaded and multicore processors. Through various techniques, I have shown

that different environments, e.g. multithreaded vs multiprogrammed or SMT vs CMP,

may each require a different set of practical management policies. The successful

combined policies demonstrate that there is no single silver bullet for power and

thermal management. Among the case studies for various scenarios, in this thesis I

have provided:

• A model for estimating the trends in how parallel applications are affected by

power variation, and experiments showing how different applications match or

deviate from this model.

• A hardware-based thermal-control policy for simultaneous multithreading, show-

ing that performance imbalance may be exploited for thermal management even

at the single-core level.

• A fairly exhaustive taxonomy and corresponding quantitative study of multicore

thermal management, providing a holistic view of both basic techniques and

hybrid techniques.

As exemplified by the sensor-based migration with distributed voltage scaling, practi-

cal solutions for real processors will likely involve a range of techniques acting together.

5.2 Future Directions

Although the topics chosen for this thesis were carefully selected and focused on

throughout these years, each course of study was picked among many other potential

studies. Although I was not able to pursue every possible avenue, I hope that this

work may serve as a solid foundation for others to follow on with future research.

As with any research prototype, the thermal management techniques demon-

strated in this thesis may require much more development and testing before being
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ready for actual product deployment. Although fairly exhaustive by including global

and distributed policies for stop-go and DVFS in addition to migration policies, the

experimental framework does not consider some other power-aware design techniques

such as VDD gating and heterogeneous cores. Similarly, the SMT-based adaptive

thermal policy may be significantly more complex if integrated in conjunction with

an ICOUNT [82] fetch policy. Furthermore, it is uncertain how any of the proposed

algorithms can scale to much larger numbers of cores or more than two hotspots per

core. There are numerous possibilities for conducting more exhaustive studies.

The multicore power management technique for parallel applications can be fur-

ther extended and combined with other power management techniques. At this point,

due to the natural interactions between threads in parallel applications, it is not a

simple matter to apply a feedback control system as used in sensor-based migration

for thermal management. Nonetheless, through further study it may be possible to

formulate more holistic management techniques for parallel applications. These could

be used in combination with other localized power management techniques such as

DVFS or dynamic adaptive body biasing.

While the studies in this thesis have been limited to multiprogrammed environ-

ments or parallel applications using conventional thread-based shared-memory pro-

gramming with locks and barriers, these are not the only possible programming mod-

els. Power and thermal management techniques could be devised for systems using

transactional memory, thread-level speculation, or other parallel programming mod-

els that entail a high degree of speculative execution. These alternative platforms

would likely entail different power and thermal management tradeoffs depending on

the cost of speculative execution and the necessary interactions between threads. Just

as moving from single-core to the multiple-core assumption dramatically revamped

the thermal control taxonomy, it can be expected that different paradigms may open

up further possibilities for holistic thermal management.
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The successive chapters of this thesis have shown that refining each problem state-

ment and its corresponding assumptions has lead to new methods and experimental

outcomes. Similarly, incorporating new concepts—such as scaling these algorithms

to larger numbers of threads and cores, implementing feedback-based thermal con-

trol for parallel applications, and speculative multithreading—may create many more

possibilities for innovative thermal management.
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the Thermal Implications of Multi-Core Architectures. IEEE Transactions on

Parallel and Distributed Systems, Aug. 2007. To appear.
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