Concepts and Categories

Lecture 21
Learning, Perception, and Memory Rely on Thinking

• Learning
 – Classical Conditioning
 • How can I predict some event?
 – Instrumental Conditioning
 • How can I control that event?

• Perception
 – What is out there? Where is it? What is it doing?

• Memory
 – What happened in the past?
“Every act of perception is an act of categorization”
Bruner (1957) [paraphrase]

• Fundamental Cognitive Process
 – Perceptual Identification...
 • Of Individual Object
 – Categorization...
 • As Belonging in Same Class as Other Objects

• Categorical Knowledge is Part of Semantic Memory
Categories and Concepts

• Enumeration
• Rule
• Attributes
 – Perceptual
 – Functional
 – Relational
Classical View of Categorization
Aristotle, *Categories* (in the *Organon*, 4th C. BCE)

Categories are Proper Sets

- **Defining Features**
 - Singly Necessary
 - Jointly Sufficient
Defining Features

• Geometrical Figures
 – Triangles
 • 2 Dimensions, 3 Sides, and 3 Angles
 – Quadrilaterals
 • 2 Dimensions, 4 Sides, and 4 Angles

• Animals
 – Birds
 • Vertebrate, Warm-Blooded, Feathers, Wings
 – Fish
 • Vertebrate, Cold-Blooded, Scales, Fins
Categories as Proper Sets
Aristotle, On Categories, etc.

- Defining Features
- Vertical Arrangement into Hierarchies
 - Perfect Nesting
 - Superordinate (Supersets)
 - Subordinate (Subsets)
Geometric Figures
Subcategories of Triangles

• Classified by Length of Sides
 – Equilateral
 – Isosceles
 – Scalene

• Classified by Internal Angles
 – Right
 – Oblique
 • Obtuse
 • Acute
Subcategories of Quadrilaterals

• Trapeziums

• Trapezoids

• Parallelograms
 – Rhomboids
 • Rhombuses
 – Rectangles
 • Squares
Biological Taxonomy
Linnaeus (1758)

- Kingdom
- Phylum
- Class
- Order
- Family
- Genus
- Species
- Subspecies

- Animalia
- Chordata
- Mammalia
- Primates
- Hominidae
- Homo
- Sapiens
- Sapiens

Pioneer 10
Categories as Proper Sets
Aristotle, *On Categories*, etc.

- Defining Features
- Vertical Arrangement into Hierarchies
- Horizontal Relations
 - “All or None”
 - Sharp Boundaries
Geometrical Figures

Point Line Plane Solid

Triangle
- Equilateral
- Isosceles
- Scalene

Quadrilateral (etc.)
- Trapezium
- Trapezoid
- Parallelogram

- Right
- Oblique

- Acute
- Obtuse

- Square
- Not-Square
Categories as Proper Sets
Aristotle, *On Categories*, etc.

- Defining Features
- Vertical Arrangement into Hierarchies
- Horizontal Relations “All or None”
- Homogeneous Internal Structure
 - All Instances Are Equally Good
 - All Share Same Set of Defining Features
Quadrilaterals

Wikipedia
Algorithms for Categorization

• Defining a Category
 – Determine Defining Features
 • Shared by All Members

• Categorize an Object
 – Analyze Features of Object
 • Perception
 – Retrieve Defining Features of Category
 • Memory
 – Match Object Features to Defining Features
 • If Match, Assign Object to Category
Problems with Classical View of Categories as Proper Sets

- **Disjunctive Categories**
 - Baseball Strike
 - Swing and Miss
 - Pitch in Strike Zone
 - Foul Ball
 - Called Strike
 - Jazz
 - Blues
 - Swing (Standards)
Problems with Classical View of Categories as Proper Sets

• Disjunctive Categories
• **Unclear Category Membership**
 – Is a Rug an Article of Furniture?
 – Is a Pickle a Vegetable?
Is a Tomato a Fruit or a Vegetable?

Nix v. Hedden (1893)

- Tariff Act of 1883
 - Duty on Vegetables “In Natural State”
 - No Duty on Fruits
- Customs Collector for Port of New York
 - Declared Tomatoes to be Vegetables
- International Tomato Cartel
 - Sued, Took Case to US Supreme Court
- Justice Gray, for a Unanimous Court
Problems with Classical View of Categories as Proper Sets

- Disjunctive Categories
- Unclear Category Membership
- Difficult to Specify Defining Features
 - Required to Define Category
 - Required to Assign Category Membership

The Concept of GAME

(Wittgenstein (1953))
Problems with Classical View of Categories as Proper Sets

- Disjunctive Categories
- Unclear Category Membership
- Difficult to Specify Defining Features
- Imperfect Nesting
 - “Tangled Hierarchy”
Category Verification
Smith, Shoben, & Rips (1973)

Sparrow/Chicken
Dog/Pig

Response Latency (secs)

Bird/Mammal
Animal

Sparrow Chicken Dog Pig
Problems with Classical View of Categories as Proper Sets

- Disjunctive Categories
- Unclear Category Membership
- Difficult to Specify Defining Features
- Imperfect Nesting
- Variations in Typicality
 - Birds: Sparrow vs. Chicken
“Typicality” Ratings
Rosch (1975)

- **Furniture**
 - Chair, 1.10
 - Desk, 1.54
 - Rug, 5.0
 - Ashtray, 6.35

- **Vegetable**
 - Pea, 1.07
 - Corn, 1.55
 - **Tomato**, 2.23
 - Pickle, 4.57

- **Fruit**
 - Orange, 1.07
 - Cherry, 1.82
 - Pickle, 4.57
 - **Tomato**, 5.58

- **Bird**
 - Sparrow, 1.18
 - Owl, 2.96
 - Chicken, 4.02
 - Penguin, 4.53
“Typicality” Ratings
Armstrong, Gleitman, & Gleitman (1983)

<table>
<thead>
<tr>
<th>Even Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,</td>
<td>1.1</td>
</tr>
<tr>
<td>10,</td>
<td>1.7</td>
</tr>
<tr>
<td>18,</td>
<td>2.6</td>
</tr>
<tr>
<td>106,</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odd Number</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,</td>
<td>1.6</td>
</tr>
<tr>
<td>23,</td>
<td>2.4</td>
</tr>
<tr>
<td>501,</td>
<td>3.5</td>
</tr>
<tr>
<td>447,</td>
<td>3.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother,</td>
<td>1.7</td>
</tr>
<tr>
<td>Housewife,</td>
<td>2.4</td>
</tr>
<tr>
<td>Princess,</td>
<td>3.0</td>
</tr>
<tr>
<td>Policewoman,</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plane Geometry Figure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square,</td>
<td>1.3</td>
</tr>
<tr>
<td>Rectangle,</td>
<td>1.9</td>
</tr>
<tr>
<td>Circle,</td>
<td>2.1</td>
</tr>
<tr>
<td>Ellipse,</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Typicality Effects in Categorization

Smith, Rips, & Shoben (1974)

Typicality

Response Latency (msec)

High
Medium
Low

Typicality
Implications of Problems with Classical View of Categories

• These problems would not occur if categories were represented as proper sets
• Therefore, people must do something else when they induce concepts or deduce category membership
• Apparently, concepts are not structured like proper sets after all!
“Prototype” View: Categories as Fuzzy Sets
Rosch (1975)

• No Defining Features
 – Probabilistic Relationship
 • Central vs. Peripheral

• Family Resemblance

• Category Based on Similarity to Prototype
 – Many Features Central to Category Membership
 – Few Features Central to Membership in Contrasting Categories

• Permits Heterogeneity Within Category
 – Typicality Effects
Problems with the Classical View of Categories Solved by the Prototype View
Rosch & Mervis (1975); Rosch et al. (1976)

- Disjunctive Categories
- Unclear Category Membership
- Difficult to Specify Defining Features
- Imperfect Nesting
- Variations in Typicality
Alternative “Exemplar” View
Medin & Schaffer (1978)

• Abandons Features
 – No Defining or Characteristic Features

• Concept as List of Members
 – Salient Examples of Category

• Compare Object to List of Exemplars
 – Categorization Still Based on Similarity
Problems with Similarity
After Medin & Shoben (1988); see also Medin et al. (1993)
The Theory (Knowledge-Based) View
Murphy & Medin (1985); Murphy (2002)

Concept : Instance :: Theory : Data

• Instances Not Bound Together by Similarity
 – At Very Least, “Similarity” is Flexible
 – Categorization Explains Similarity Judgments

• Concepts Organized by Theory of Domain
 – “Explanatory Relationship” Between Concept, Instance

• Categorization Based on Knowledge, Not Similarity
Implications of Categorization

• **Logically**, Categories are Structured as Proper Sets
 – Represented by Defining Features
• **Psychologically**, Categories are Structured as “Fuzzy” Sets
 – Represented by Prototypes, Exemplars
 – Representations Differ by Expertise
• **Principles of Reasoning Do Not Necessarily Follow the Principles of Formal Logic**
 – Cannot be Discovered by Reason Alone