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Abstract

Background: Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily
through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology
development and usage can be hampered by the segregation of knowledge by domain that occurs due to
independent development and use of the ontologies. The ability to infer data associated with one ontology to data
associated with another ontology would prove useful in expanding information content and scope. We here focus on
relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian
Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO
functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have
focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures.

Results: We have designed and tested a set of algorithms that represents a novel methodology to define rules for
predicting gene function by examining the emergent structure and relationships between the gene functions and
phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple
phenotype terms to deduce if there are cases where they all arise from a single gene function.
We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse
Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules,
resulting in 4818 unique GO functional predictions for 1796 genes.

Conclusions: We show that our method is capable of inferring high-quality functional annotations from curated
phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of
unforeseen, biologically significant associations between gene function and phenotypes that would be overlooked by
a semantics-based approach. Future work will include the implementation of the described algorithms for a variety of
other model organism databases, taking full advantage of the abundance of available high quality curated data.
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Background
A hallmark of modern biomedical research is the gener-
ation of increasingly large amounts of scientific data. Bio-
medical ontologies have the potential to greatly accelerate
biomedical research by enhancing our ability to integrate
and access these data. A biomedical ontology is a resource
that represents a controlled set of terms for entities in a
particular biomedical domain and how those terms are
related to one another [1]. Biocurators are scientists who
review experimental data, primarily as reported in the
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biomedical literature, to create empirical connections be-
tween different aspects of biological data, that is to say,
annotations [2]; .e.g. biocurators annotate, or tag, biolo-
gical entities (e.g. proteins, functional RNAs) with ontol-
ogy terms (capturing all relevant metadata as well). One of
the most widely used modern bio-ontologies is the Gene
Ontology (GO), a resource that describes canonical gene
functions in a computable species-independent manner so
that they may be used for statistical analysis of gene sets
or for comparative genomic analysis [3,4]. Another bio-
ontology is the Mammalian Phenotype Ontology (MP) that
provides an independently curated set of terms and rela-
tionships describing non-canonical phenotypes, primarily
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in mouse models, and that is used to query the effects of
genetic mutations [5].
Genes and alleles (genetic variants) of genes are anno-

tated respectively for both function and phenotype within
Mouse Genome Informatics (MGI) system, a compre-
hensive resource for genomic research of the laboratory
mouse [6]. Within the MGI curation workflow, different
subsets of biocurators separately process papers identified
for function (GO) and phenotype (MP) curation. As a re-
sult, although papers may be selected for curation in
regards to both GO and MP, they are not processed simul-
taneously, leading to short-term temporal discrepancies in
overall curation coverage in MGI. Because scientific litera-
ture is published much faster than biocurators can read
and curate the papers, the development of methods to
computationally infer annotations from one source to
another would greatly add and enhance curation effi-
ciency [7].
Recent years have seen efforts to complement curated

annotation data sets with text mined and association-
rule mined predicted annotations. Broadly, text mining
approaches use natural language processing methods to
alleviate the backlog of papers awaiting curation, while
association-rule mining uses curated annotation sets to
predict new annotations and to assess the validity of
automated annotation methods [8-17]. It is worth noting
that several of these same approaches have been used to
improve and expand the ontology structure and relation-
ships as well [18-21]. These efforts have been used both
to predict additional annotations from curated annotations
in the same ontology and to predict across ontologies,
as we do here.
The prediction efforts mentioned above may include

lexical matching [8], semantic similarity measures [9-11],
ontology matching [18,19], and so-called ‘guilt-by-associ-
ation’ methods [12]; several efforts use a combination of
these approaches [13]. Some prediction methods are pri-
marily ontology based and others are annotation, or in-
stance, based. Our method uses an extension of ‘guilt-
by-association’ and is annotation based.
Lexical matching methods, including text mining and

text clustering, have been used to infer gene function
from phenotype and vice versa. Semantic matching is
facilitated by the use within the OBO community of equi-
valence axioms and logical definitions and by curated
inter-ontology links. Semantic similarity measures based
on ontology structure or information theory between
phenotype and GO have been used to predict additional
GO annotations. In a departure from semantic similarity
approaches, various groups have performed network ana-
lyses to align GO terms with protein association networks
to predict protein function [14-16].
Other efforts follow a more empirical approach such

as instance based ontology matching and other so-called
‘guilt-by-association’ methods: annotation co-occurrence
pairs, knowledge-based annotation inference based on,
for example, protein-protein interactions or pathway
term enrichment.
Our approach is strictly empirical and makes no as-

sumptions about lexical matching, semantics, or ontology
structure, except to infer annotations according to the
true-path rule. The rationale behind our approach is to
make a simplifying assumption that in some cases ‘inter-
esting’ biology could be missed by limiting the analysis to
include an alignment of ontology structure or by attempt-
ing to compare the ‘meaning’ of phenotype versus GO
terms. Using this simplified approach there is no under-
lying assumption that ‘similar’ areas of the MPO and the
GO should correlate. Instead, we examine the feasibility of
constructing rules based only on conjunctions and dis-
junctions of high-quality phenotype annotations made by
MGI curators to predict GO annotations. A crucial dif-
ference in our approach is that, where most empirical
methods group annotations based on gene entities, our
analysis is allele-specific, and therefore addresses the po-
tential that a given set of varied phenotypes may be the
result of a single underlying genetic perturbation. Addi-
tionally, mouse phenotypes can vary widely for different
alleles of the same gene on different strain backgrounds.
Indeed, this is the reason for the detailed study of spon-
taneous and targeted mutations in specific strains of the
laboratory mouse. Consider, for example, the phenotypes
of three alleles of the mouse Pax3 gene. One spontaneous
allele, Pax3Sp-d manifests phenotypes in many areas: em-
bryogenesis, integument, limbs/digits/tail, mortality/aging,
nervous system, pigmentation. This allele is present in
the mouse model for the human disease Waardenburg
Syndrome, Type 1; WS1 (OMIM:193500) [22,23]. An-
other targeted allele, Pax3tm1Mrc manifests a different
set of phenotypes: craniofacial, growth/size, mortality/
aging, muscle, nervous system, respiratory, skeleton,
tumorigenesis, vision/eye. This allele is present in the
mouse model for another human disease Rhabdomyosar-
coma 2; RMS2 (OMIM:268220) [24]. Yet another targeted
allele, Pax3tm2.1Joe [25], is present in a mouse in which no
abnormal phenotype is observed.
In this work, we describe an original method to pre-

dict novel GO annotations for genes associated with
alleles that have existing MP annotations. We apply our
derived set of rules to a set of papers that have been
selected for curation for both MP and GO but that have,
as yet, been annotated only for MP, but not for GO,
within the MGI system. The algorithms draw inspiration
from set and graph theory as they attempt to mathemat-
ically analyze relationships between GO and MP term(s).
The approach used is as follows: First, gather relevant
data and align MP and GO terms based on co-curated
literature and shared alleles as our training set; Second,
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analyze the data such that rules can be made to predict
a GO term from MP term(s); And finally, Third, apply
the rules to a new set of papers/alleles that are currently
annotated for MP and selected for but not yet annotated
for GO. The goal of the work is to complement and
facilitate the work of biocurators.

Methods
Consolidation of datasets
Both MP and GO are used in MGI, an open source
resource that freely publishes its datasets. We collected
all data used in this study from the MGI ftp site (ftp://
ftp.informatics.jax.org/pub/reports/index.html, retrieved
10 June 2013). First, the set of literature that was anno-
tated for both GO and MP in MGI was gathered and
formatted; this set provided our training data set (3662
publications with both GO and MP annotations to the
same allele). Then, the set of literature selected for both
MP and GO, but annotated only for MP (63,028 publica-
tions) was collected from internal reports used by cura-
tors in their workflow; this set provided the test set for
our derived inference rules.

Data alignment and processing
A base set of MP-GO pairs was generated by matching the
set of all collected GO terms to the set of all collected MP
terms used to annotate the same allele (we use the allele
here as a proxy for full genotype) in the same study, know-
ledge of which is reflected by shared PubMedID (PMID)
and alleleID. The GO terms were filtered to select only
those terms from the biological process (BP) subontology,
and only those GO annotations with evidence as “inferred
from a mutant phenotype” (IMP). These selection criteria
provide a defined set of papers restricted formally to those
tagged for phenotype-based GO annotation for biological
process, provided a first level of quality control on the data-
set. There were found to be 81,245 MP-GO pairs sharing
PMID/alleleID, and 67,424 unique MP-GO pairs, indicating
that many of the MP-GO pairs occurred more than once.
The MP, GO and the PMID/alleleID data were modeled
as a network with PMID/alleleID nodes connecting
MP and GO nodes derived from the same study.
All network visualizations were created using Cytos-

cape v2.8 [26] and all calculations were performed using
Numerical Python (Python 2.7.3, NumPy 1.6.2, SciPy
0.10.1, Matplotlib 1.2) [27]. The network was modeled with
an adjacency-like matrix. The term “adjacency matrix” is
used loosely here, as the matrices presented in this work
are quite different than those traditionally used—the matri-
ces used here are rectangular matrices with the columns
representing the annotated terms and rows representing
PMID/alleleIDs. This approach is necessary since we wish
to track individual studies for which both MP and GO
annotations have been made. Two matrices were created,
one with all unique PMID/alleleIDs (3662 rows) by all
unique GO IDs (2472 columns); the other with all unique
PMID/alleleIDs by all unique MP IDs (4978 columns). The
network was found to be very sparse—that is, the number
of all possible edges far exceeded the number of actual
edges (graph density of approximately 6e-04).

Calculation and evaluation of statistical significance
After constructing our networks, we calculated the prob-
ability that a connection between an MP and GO node
was statistically significant rather than due to chance
alone. Some gene function-phenotype connections might
be supported by many shared annotations, implying that
there is some underlying connection between the gene
function and the mutant phenotype, while others might
be connected by only a few connections relative to the
number other connections and yet also be informative.
From a set of unique integers of size N representing

all the PMID/alleleID combinations, the probability that
a selection of n at random will include j or more ‘suc-
cesses’ – that is, a PMID/alleleID that is shared between
a particular MP-GO node pair, can be defined as a modifi-
cation of the cumulative binomial distribution (for values
of N large compared to n):

p Xn ≥ jð Þ ¼
Xn

i ¼ j
n
i

� � 1
N

� �i

1 −
1
N

� �n − i

:

ð1Þ
In our case, N= 3662, and n, the maximum number of

PMID/alleleID combinations between any MP-GO node
pair, is 250, so the condition of equation 1 is satisfied. Ap-
plying this definition, the total probability, ptot, that a par-
ticular MPi-GOj association is due to chance is given by:

ptot ¼ p S ⊆ PM MPið Þ½ � ð2Þ
where PM(MPi) or PM(GOj) returns the set of all
PMID/alleleID nodes that are connected to the MPi or
GOj nodes, respectively, and:

S ¼ PM MPið Þ∩PM GOj
� � ð3Þ

is the set of data confirmed PMID/alleleID connections be-
tween the MPi and the GOj nodes. The p-value was calcu-
lated in this way for each MP-GO pair found in the data
and sorted. The efficacy of the p-value was evaluated by
using each MP-GO connection as a prediction, or ‘rule’:
MPi→GOj —to wit: “if an annotation of a particular allele
has been made to the MP term MPi by curation of a
particular study then an IMP annotation corresponding to
that allele can be made to the GO term GOj.” The resulting
true and false positives (sensitivity and specificity) were
plotted on the receiver operating characteristic (ROC)
curve (Figure 1). As shown, the calculated p-value shows
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Figure 1 ROC curve. Evaluation of the efficacy of a rule: if MPi then
GOj, using the receiver operating characteristic. Figure 2 A graphical representation of the plus and minus rule.

The highlighted nodes represent the ‘successes’ identified by the
corresponding rule. a, The plus rule-a pattern whereby if MP1 and
MP2, then GO1. b, The minus rule-another pattern whereby if MP1
and not MP2, then GO1.
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sufficient discriminatory power (AUC= 0.733) to discrimin-
ate MP-GO pairs that are more likely to correctly predict a
GO node from a given MP term. An alternative scenario
was also addressed, where possible MP terms were pre-
dicted from alleles with GO annotations (but no MP
annotations); it was found that this prediction route does
not carry as much predictive value (AUC = .686), further
validating our approach to predict GO from MP annota-
tions. We therefore used the calculated p-values as our
measure of statistical significance for the GO function
prediction from the simple rule.

Generalized patterns lead to extended rules
While the calculation of the p-value is useful in discover-
ing which MP-GO pairs have stronger connections when
run against the training sets, we found that even those
with the lowest probabilities of being due to chance re-
turned many false positives. Therefore, the need arose to
either better identify the true positives of an MP-GO pair,
or to better exclude the false positives: that is, to improve
the discriminatory power of our rules.
Two types of generalized patterns arose from the

network, which we chose to identify as the + (plus) rule
and the - (minus) rule. The plus-rule can be qualitatively
described as inspecting the connections of an MP-GO
pair and examining if there is another MP node that is
connected to the true positives of the pair, but excludes
all of the false positives (PMID/alleleID nodes that are
connected to MP, but not to GO) (Figure 2a). We can
define the plus-rule: MP1 AND MP2→GO1 —to wit: “if
an annotation of a particular allele has been made to the
MP term MP1 and to the MP term MP2 by curation of a
single particular study then an IMP annotation
corresponding to that allele can be made to the GO term
GO1.” The conditional statement for finding an MP1
and MP2 that follow the pattern of the plus-rule is as
follows:

PM MP1ð Þ∩PM MP2ð Þ∩PM GO1ð Þ ¼¼ PM MP1ð Þ∩PM MP2ð Þ
ð4Þ

The minus-rule takes the somewhat opposite approach
from the plus-rule; that is, instead of discerning if the
intersection of two MP nodes can define the successes,
the minus-rule examines if the set difference of two MP
nodes can define the successes (Figure 2b). Similarly, we
can define the minus-rule: MP1 AND NOT MP2→GO1

—to wit: “if an annotation of a particular allele has been
made to the MP term MP1 but not to the MP term MP2
by curation of a particular study then an IMP annotation
corresponding to that allele can be made to the GO
term GO1.” The statement used to find an MP1 and
MP2 that follow the pattern of the minus-rule is as
follows:

PM MP1ð Þ∩PM GO1ð Þð Þn PM MP2ð Þ ¼¼ PM MP1ð Þn PM MP2ð Þ
ð5Þ

The network was then searched for collections of MP
and GO nodes that followed the aforementioned patterns,
with 3105 instances of the plus-rule pattern and 234
instances of the minus-rule pattern. Detailed examples of
both rules are illustrated in Figure 3. However, the need to
differentiate between those rules that were more likely to
give results to be due to chance versus those that were less
likely was still present. Utilizing the demonstrated efficacy
of the cumulative binomial distribution as applied to the



Figure 3 Example of rule instances. The highlighted nodes represent the ‘successes’ identified by the corresponding rule. a, Plus rule instance.
b, Minus rule instance.
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undirected graph (equation 1), the p-values for the plus
and minus-rules were calculated respectively:

Sþ ¼ PM MP1ð Þ∩PM MP2ð Þ ð6Þ

pþ ¼ p Sþ⊆PM MP1ð Þ½ � � p Sþ⊆PM MP2ð Þ½ �
� p Sþ⊆PM GO1ð Þ½ � ð7Þ

S‐ ¼ PM MP1ð ÞnPM MP2ð Þ ð8Þ

p‐ ¼ p S‐⊆PM MP1ð Þ½ � � p S‐⊆PM GO1ð Þ½ �
� p S‐

c⊆PM MP2ð Þ½ � ð9Þ

where S in each case is the set of ‘successes’ and Sc

is the set complement. As the network is sparse, the
p-values are expected to be small. Arising from the
basic plus and minus-rule patterns, three other rule pat-
terns were defined, descriptively designated as plus-
plus (++) (Figure 4a), minus-minus (–) (Figure 4b) and
plus-minus (+-) (Figure 4c). The mathematical statements
used to find rules from three additional rule patterns re-
spectively are as follows:

PM GOð Þ∩PM MP1ð Þ∩ PM MP2ð Þ∪PM MP3ð Þð Þ
¼¼ PM MP1ð Þ∩ PM MP2ð Þ∪PM MP3ð Þð Þ ð10Þ

PM GOð Þ∩PM MP1ð Þn PM MP2ð Þ∪PM MP3ð Þð Þ
¼¼ PM MP1ð Þn PM MP2ð Þ∪PM MP3ð Þð Þ ð11Þ

PM MP1ð Þ∩PM MP2ð Þ∩PM GOð Þð Þn PM MP3ð Þ
¼¼ PM MP1ð Þ∩PM MP2ð Þð Þn PM MP3ð Þ ð12Þ

The statements used to calculate the p-values for these
rule patterns are expounded in the appendix. The net-
work was again searched for arrangements of nodes that
followed the three other patterns, with 3143, 328, and
634 instances of the plus-plus-rule, minus-minus-rule
and plus-minus-rule respectively. While the composite



Figure 4 A graphical representation of the three rules emerging from the plus and minus rules. The highlighted nodes represent the
‘successes’ identified by the corresponding rule. a, The plus-plus rule-if MP1 and MP2 or MP3, then GO1. b, The minus-minus rule-if MP1 and not either
MP2 or MP3, then GO1. c, The plus-minus rule-if MP1 and MP2 and not MP3, then GO1.
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plus- and minus-rules can be combined iteratively in
theory, there seems to be a point where the statements
used to calculate the probabilities for large combinations
of nodes become too large to be feasibly evaluated, and
where they have the potential of straying further from
biological reality. Therefore, we limited our analysis to
these five rules as examples. All rule instances are com-
piled in Additional file 1.

Evaluation of extended rules
All rules were applied to the literature set of PMID/
alleleIDs that are annotated to MP term(s) but not
yet annotated to a GO term to predict which GO term
would be annotated to the PMID/alleleID (set may be
found in Additional file 2). Validation of predictions was
performed by the selection of a set of 20 papers for each
rule that represented a range of the p-values. The papers
were read by a GO scientific curator and the curatorial
predictions for functional GO annotation were examined
in the context of our rule structures. Companion software
for the prediction of GO annotations is provided as
Additional file 3.

Results and discussion
Evaluation of predicted rules
Many of the rules and annotation predictions are immedi-
ately intuitive in nature. Table 1 shows a selection of rules
of each type (Plus, Minus, …) along with p-values and a
preliminary assessment of whether the rule is biologically
‘obvious’ (O) or ‘subtle/surprising’ (S). The inclusion of
depth of GO terms as a proxy for specificity provided
no additional information. The average depths for various
rule sets are: ‘plus’ 7.25; ‘minus’ 7.28; ‘plus-plus’ 7.30;



Table 1 Selection of proposed rules

Assessment

Rule type Rule number Phenotype terms included or excluded in rule Implied GO term p-value O = obvious

Plus-rule MP1+ MP2+ GO S = subtle

Plus-rule 0 impaired ovarian folliculogenesis absent mature ovarian follicles ovarian follicle development 1.47E-36 O

Plus-rule 5 absent Peyer's patches abnormal spleen morphology lymph node development 6.82E-30 S

Plus-rule 21 abnormal direction of heart looping situs inversus determination of left/right symmetry 1.53E-23 O

Minus-rule MP1+ MP2- GO

Minus-rule 5 abnormal sperm flagellum
morphology

asthenozoospermia fertilization 2.70E-26 S

Minus-rule 6 abnormal incus morphology abnormal temporal bone
morphology

middle ear morphogenesis 1.45E-25 O

Minus-rule 227 failure of vascular branching embryonic growth retardation regulation of angiogenesis 2.49E-10 S

Plus-Plus-rule MP1+ MP2+ MP3+ GO

Plus-Plus-rule 109 increased kidney apoptosis dilated renal tubules increased kidney cell
proliferation

negative regulation of
apoptotic process

1.83E-20 O

Plus-Plus-rule 1188 enlarged liver hepatic necrosis increased glycogen level glycogen metabolic process 1.95E-14 S

Plus Minus-rule MP1+ MP2+ MP3- GO

Plus Minus-rule 0 globozoospermia male infertility absent acrosome spermatogenesis 4.21E-39 O

Plus Minus-rule 309 abnormal sperm principal
piece morphology

male infertility abnormal sperm axoneme
morphology

spermatid development 5.38E-16 O

Minus-Minus-rule MP1+ MP2- MP3- GO

Minus-Minus-rule 0 absent mature ovarian
follicles

postnatal growth retardation abnormal female reproductive
system morphology

ovarian follicle development 1.10E-31 O

Minus-Minus-rule 8 abnormal lysosome
morphology

decreased embryo size abnormal neuron
morphology

lysosome organization 1.91E-29 O
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‘plus-minus’ 7.15; ‘minus-minus’ 7.60. The reviewed anno-
tations showed no trend according to GO depth.
For example, the first Plus-rule #0: If a study shows

that an allele has both phenotypes “impaired ovarian fol-
liculogenesis” [MP:0001129] and “absent mature ovarian
follicles” [MP:0001132], that allele is predicted be cu-
rated to function annotation “ovarian follicle development”
[GO:0001541]. This rule has a very low p-value of 1.47E-36
and is assessed as ‘obvious.’ As another example, consider
Plus-rule #21: If a PMID/alleleID has both the MP terms
“abnormal direction of heart looping” [MP:0004252] and
“situs inversus” [MP:0002766], then it should be annotated
to the GO term “determination of left/right symmetry”
[GO:0007368]. Both phenotypes are almost always asso-
ciated with a defect in the biological process of “de-
termination of left/right symmetry”, and it makes sense
that the occurrence of both phenotypes simultaneously
would more strongly indicate a defect in the aforemen-
tioned process.
Perhaps the more interesting results of our analysis

are in the identification of plus-rule statements that are
Table 2 Validation of annotations derived from plus-rules

Rule number Gene Phenotype terms included in rule

MP1+ MP2+

0 Foxl2 ovarian follicle development impaired ovari

1 Mbd4 determination of left/right
symmetry

abnormal left-
axis patterning

2 Ar spermatogenesis small testis

2 Ar spermatogenesis small testis

2 Ar spermatogenesis small testis

2 Hsp90aa1 spermatogenesis small testis

3 Psip1 anterior/posterior pattern
specification

thoracic verteb
transformation

4 Fen1 lung development pulmonary hyp

5 Rag2 lymph node development absent Peyer's

6 Tapt1 anterior/posterior pattern
specification

thoracic verteb
transformation

3072 Mir140 decreased body size decreased leng

3087 Fancm premature death abnormal ovar

3091 Flnb abnormal angiogenesis decreased bod

3096 Slc6a8 abnormal spatial learning decreased bod

3098 Tgfb1 abnormal extraembryonic
tissue morphology

decreased bod

3099 Sirt1 decreased embryo size ventricular sep

3100 Kcnq1 deafness decreased bod

3100 Slc12a7 deafness decreased bod

3101 Sall4 open neural tube premature dea

3103 Pkhd1 respiratory failure postnatal grow
not necessarily obvious, but make sense biologically. For
example, Plus-rule #5: If a PMID/alleleID has both the
MP terms “absent Peyer’s patches” [MP:0002831] and
“abnormal spleen morphology” [MP:0000689] that allele
is predicted to have function “lymph node development”
[GO:0048535] and is assessed as ‘subtle.’ Many of these
rule statements predict relationships that would not re-
sult from a purely semantic approach. Plus-plus-rule
#1188 predicts that if a PMID/alleleID has the MP terms
“enlarged liver” [MP:0000599] and either “hepatic necrosis”
[MP:0001654] or “increased glycogen levels” [MP:0005440],
then the allele should be annotated to the GO term “glyco-
gen metabolic process” [GO:0005977]. This is interesting
because while an “enlarged liver” may not be intuitively or
semantically linked to “glycogen metabolic processes”, the
liver is instrumental in the storing and metabolism of glyco-
gen, reflecting the overall physiology. This result illustrates
another potential use of our correlative analysis in that
a perturbation of glycogen metabolism might result in
an enlarged liver phenotype or that in an animal with an
enlarged liver, but no other phenotype reported, the
Implied GO term

GO p-value Valid?

an folliculogenesis absent mature ovarian
follicles

1.47E-36 yes

right situs inversus 6.13E-36 yes

decreased testis weight 3.47E-33 yes

decreased testis weight 3.47E-33 yes

decreased testis weight 3.47E-33 yes

decreased testis weight 3.47E-33 yes

ral abnormal rib morphology 3.76E-33 yes

oplasia decreased lung weight 2.48E-30 yes

patches abnormal spleen morphology 6.82E-30 yes

ral abnormal rib-sternum
attachment

3.01E-29 yes

th of long bones collagen fibril organization 2.36E-08 no

y morphology cell proliferation 4.05E-08 yes

y weight angiogenesis 5.29E-08 yes

y weight learning or memory 6.56E-08 yes

y size gastrulation with mouth
forming second

8.17E-08 no

tal defect neural tube closure 8.29E-08 yes

y weight neuromuscular process
controlling balance

1.06E-07 yes

y weight neuromuscular process
controlling balance

1.06E-07 no

th neural tube closure 1.09E-07 yes

th retardation lung development 1.31E-07 no
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underlying defect might be in glycogen metabolism. If
our method took into consideration the structure of the
ontology or a semantic link between terms, the liver
correlation would likely have been missed because there
is nothing in the ontology itself that states glycogen
metabolism and the liver are linked.

Evaluation of predicted annotations
The next step in our prediction pipeline is the applica-
tion of our rules to particular allele instances. As a result
of this work, 4818 unique potential annotations associ-
ated with 1796 genes have been predicted.
Table 3 Validation of annotations derived from minus-rules

Rule number Gene Phenotype Terms included in rule

MP1+ MP2-

0 Fn1 abnormal vitelline vascular remodeling complet
during o

1 Gja1 absent mature ovarian
follicles

postnata

1 Stra8 absent mature ovarian
follicles

postnata

2 Ppp1cc globozoospermia absent a

4 Tert thoracic vertebral
transformation

cervical

4 Kat2a thoracic vertebral
transformation

cervical

5 Krt19 abnormal sperm
flagellum morphology

asthenoz

5 Akap4 abnormal sperm
flagellum morphology

asthenoz

6 Emx2 abnormal incus morphology abnorma
morpho

7 Lmx1a head tossing circling

8 Bmp7 palatal shelves fail to
meet at midline

cleft sec

214 Sctr decreased urine
sodium level

decrease

217 Fbn1 abnormal intercostal
muscle morphology

respirato

218 Krt19 short sperm flagellum asthenoz

220 Rab38 abnormal pulmonary
acinus morphology

respirato

224 Ube2b abnormal double-strand
DNA break repair

small tes

227 Adam10 failure of vascular branching embryon
retardati

229 Casr decreased circulating
calcium level

postnata
retardati

230 Hes7 abnormal sacral
vertebrae morphology

complet
lethality

231 Bhlhe22 abnormal corticospinal
tract morphology

complet
lethality
Plus-rule #21, discussed above, is predicted to apply
to mouse gene Zic3 [MGI:106676] based on the paper
titled “Zic3 is required in the extracardiac perinodal
region of the lateral plate mesoderm for left-right pattern-
ing and heart development” [PMID:23184148]. The study
describes a variety of congenital defects primarily due to
defects in the development of embryonic left-right
patterning in Zic3tm1Bca mice [28]. Our prediction is
that since the paper has been used to make annota-
tions to the MP terms “abnormal direction of heart
looping” [MP:0004252] and “situs inversus” [MP:0002766],
then it would be annotated, or should be annotated,
to the GO term “determination of left/right symmetry”
Implied GO term

GO p-value Valid?

e embryonic lethality
rganogenesis

angiogenesis 2.86E-41 yes

l growth retardation ovarian follicle
development

8.95E-32 yes

l growth retardation ovarian follicle
development

8.95E-32 yes

crosome spermatogenesis 8.65E-28 yes

vertebral transformation anterior/posterior
pattern specification

2.45E-26 yes

vertebral transformation anterior/posterior
pattern specification

2.45E-26 yes

oospermia fertilization 2.70E-26 no

oospermia fertilization 2.70E-26 no

l temporal bone
logy

middle ear morphogenesis 1.45E-25 yes

auditory receptor cell
stereocilium organization

1.02E-24 no

ondary palate thyroid gland development 1.37E-23 no

d body weight negative regulation of
blood pressure

3.25E-11 no

ry failure somitogenesis 5.27E-11 no

oospermia cilium morphogenesis 5.46E-11 yes

ry distress lung development 5.84E-11 no

tis synapsis 1.33E-10 yes

ic growth
on

regulation of angiogenesis 2.49E-10 no

l growth
on

calcium ion transport 4.98E-10 no

e neonatal embryonic skeletal
system development

5.26E-10 yes

e neonatal adult walking behavior 5.26E-10 no
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[GO:0007368]. In this case, curatorial review confirmed
that the rule held true.
Tables 2, 3, 4, 5, and 6 show the curator’s evaluation of

the annotations derived from the Plus, Minus, Plus-plus,
Minus-minus, Plus-minus-rules respectively for the 20
papers that were reviewed for each rule type.
In 16 out of 20 cases, the Plus-rule generated an anno-

tation that was considered correct by the curator. In all
cases, the incorrect inferences were associated with
poorer p-values (Table 2), validating its utility as a score
to measure confidence level. In one negative case shown
Table 4 Validation of annotations derived from plus-plus-rule

Rule number Gene Phenotype terms included in rule

MP1+ MP2+

0 Foxl2 absent mature
ovarian follicles

impaired ovarian
folliculogenesis

0 Fads2 absent mature
ovarian follicles

impaired ovarian
folliculogenesis

0 Kiss1 absent mature
ovarian follicles

impaired ovarian
folliculogenesis

6 Mapk6 decreased lung
weight

small lung

17 Kiss1r decreased uterus
weight

decreased ovary
weight

17 Esr1 decreased uterus
weight

decreased
ovary weight

22 Ndrg2 sacral vertebral
transformation

lumbar vertebral
transformation

27 Gmcl1 abnormal acrosome
morphology

abnormal sperm
flagellum morphology

28 Gdf6 abnormal middle ear
ossicle morphology

abnormal middle
ear morphology

48 Gucy2d abnormal olfactory
system physiology

abnormal odor
adaptation

83 Tnfrsf11b abnormal middle ear
ossicle morphology

abnormal middle
ear morphology

109 Bag6 increased kidney
apoptosis

dilated renal tubules

150 Mns1 kinked sperm
flagellum

oligozoospermia

719 Pou1f1 abnormal cerebellar
foliation

tremors

763 Prdm9 abnormal double-strand
DNA break repair

abnormal ovary
morphology

812 Camk4 increased bone
mineral density

decreased osteoclast
cell number

814 Ddr2 decreased circulating
testosterone level

absent corpus luteum

816 Bmper curly tail short tail

1373 Sec61a1 enlarged liver increased circulating
triglyceride level

1709 Ctsc decreased circulating
interleukin-6 level

decreased susceptibilit
to endotoxin shock
here, Plus-rule 3072: “decreased body size” plus “decreased
length of long bones” phenotypes implies “collagen fibril
organization,” the curator specifically noted that a curator
could not make this annotation based on the paper since
the authors did not look at the collagen fibrils directly
although they did show that the cartilage in the developing
bone is affected Another interesting negative case is the
application of Plus-rule #3100: “deafness” plus “decreased
body weight” phenotypes implies “neuromuscular process
controlling balance” to two different genes. For Kcnq1,
based on the paper [PMID:15498462], the annotation
s

Implied GO term

MP3+ GO p-value Valid?

decreased uterus weight ovarian follicle
development

4.15E-37 yes

decreased uterus weight ovarian follicle
development

4.15E-37 yes

decreased uterus weight ovarian follicle
development

4.15E-37 yes

pulmonary hypoplasia lung development 9.35E-31 yes

decreased uterus weight ovarian follicle
development

1.11E-27 yes

decreased uterus weight ovarian follicle
development

1.11E-27 no

sacral vertebral
transformation

anterior/posterior
pattern specification

3.92E-27 yes

arrest of spermiogenesis acrosome assembly 2.48E-24 yes

abnormal stapes
morphology

middle ear
morphogenesis

7.47E-24 yes

abnormal olfactory
system physiology

sensory perception
of smell

4.15E-22 yes

abnormal incus
morphology

middle ear
morphogenesis

6.33E-21 yes

increased kidney cell
proliferation

negative regulation
of apoptotic process

1.83E-20 yes

hairpin sperm flagellum spermatid development 4.96E-20 yes

abnormal cerebellar
granule layer

neuron migration 5.59E-16 yes

decreased oocyte
number

double-strand
break repair

8.50E-16 yes

failure of tooth eruption ossification 1.27E-15 no

Leydig cell hypoplasia spermatogenesis 1.31E-15 yes

abnormal rib-vertebral
column attachment

skeletal system
morphogenesis

1.33E-15 yes

increased glycogen level glycogen metabolic
process

6.61E-14 no

y decreased circulating
interleukin-6 level

response to
lipopolysaccharide

4.38E-13 no



Table 5 Validation of annotations derived from plus-minus-rules

Rule number Gene Phenotype terms included in rule Implied GO term

MP1+ MP2+ MP3- GO p-value Valid?

0 M1ap globozoospermia male infertility absent acrosome spermatogenesis 4.21E-39 yes

0 Ing2 globozoospermia male infertility absent acrosome spermatogenesis 4.21E-39 yes

1 Cdk16 abnormal sperm
flagellum morphology

male infertility teratozoospermia cilium morphogenesis 1.71E-28 yes

8 Adipor2 abnormal glucose
homeostasis

decreased circulating
insulin level

increased insulin
sensitivity

positive regulation
of insulin secretion

1.49E-24 yes

10 Steap3 polychromatophilia decreased hemoglobin
content

anisocytosis skeletal system
morphogenesis

4.46E-24 no

13 Ptges3 abnormal production
of surfactant

atelectasis cyanosis lung alveolus
development

8.94E-24 yes

19 Mbl1 increased IgG2a level increased IgG1 level abnormal T cell
physiology

negative regulation
of B cell proliferation

5.82E-23 no

47 Kat2a decreased body size exencephaly domed cranium neural tube closure 3.40E-20 yes

77 Siglec1 decreased tumor necrosis
factor secretion

decreased interleukin-6
secretion

abnormal macrophage
physiology

cellular response to
lipopolysaccharide

2.95E-19 yes

96 Chga dilated heart left ventricle heart left ventricle
hypertrophy

absent caveolae heart morphogenesis 1.56E-18 no

118 Mark3 improved glucose
tolerance

decreased circulating
insulin level

abnormal glucose
homeostasis

response to insulin 3.83E-18 no

124 Gpr64 kinked sperm flagellum teratozoospermia hairpin sperm flagellum fertilization 5.57E-18 no

139 Pick1 abnormal acrosome
morphology

asthenozoospermia absent acrosome spermatogenesis 8.55E-18 yes

153 Col2a1 abnormal long bone
metaphysis morphology

abnormal long bone
epiphyseal plate
proliferative zone

protruding tongue bone morphogenesis 1.35E-17 yes

167 Odf1 male infertility impaired acrosome
reaction

impaired fertilization acrosome reaction 1.91E-17 yes

177 Cftr absent estrous cycle small ovary increased follicle
stimulating
hormone level

spermatogenesis 2.26E-17 no

262 Zfpm1 abnormal common
myeloid progenitor
cell morphology

extramedullary
hematopoiesis

decreased B cell
number

T cell differentiation 1.81E-16 no

309 Gpx4 abnormal sperm
principal piece
morphology

male infertility abnormal sperm
axoneme morphology

spermatid development 5.38E-16 yes

331 Pank1 increased body weight hepatic steatosis abnormal abdominal
fat pad morphology

lipid metabolic process 7.25E-16 yes

391 Cd36 increased circulating
triglyceride level

abnormal glucose
homeostasis

insulin resistance glycogen metabolic
process

2.72E-15 no
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could be made; while for Slc12a7, based on the paper
[PMID:11976689], it could not.
In the case of the Minus-rule, only 10 of the 20 pre-

dicted annotations were correct. In the case of the Minus-
rule, better p-value scores gave more reliable predictions
(Table 3). The Plus-plus (16 correct of 20) and Minus-
minus (7 correct of 20) rules displayed similar behavior to
the plus and minus-rules respectively (Tables 4 and 5),
while the Plus-minus-rule (12 correct of 20) unsurpris-
ingly seemed at almost act as an intermediate between the
Plus and Minus-rules (Table 6).
Testing the validation of the various rules showed that,
in general, the Plus-rule statements are more reliable that
the minus-rule statements in generating valid annotations.
This is not surprising for two reasons: (1) combined phe-
notypes often give ‘additive’ evidence to support the GO
annotation and (2) the ‘closed world’ assumption limits
the predictive power of the absence of annotation. The
value of ‘additive’ evidence is mentioned above for Plus-
rule #0, “absent mature ovarian follicles” [MP:0001132]
plus “impaired ovarian folliculogenesis” [MP:0001129]
additively support that a gene product would be directly



Table 6 Validation of annotations derived from minus-minus-rules

Rule number Gene Phenotype terms included in rule Implied GO term

MP1+ MP2+ MP3- GO p-value Valid?

0 Esr1 absent mature
ovarian follicles

postnatal growth
retardation

abnormal female
reproductive system
morphology

ovarian follicle
development

1.10E-31 yes

0 Tex12 absent mature
ovarian follicles

postnatal growth
retardation

abnormal female
reproductive system
morphology

ovarian follicle
development

1.10E-31 no

0 Zglp1 absent mature
ovarian follicles

postnatal growth
retardation

abnormal female
reproductive system
morphology

ovarian follicle
development

1.10E-31 no

0 Syce3 absent mature
ovarian follicles

postnatal growth
retardation

abnormal female
reproductive system
morphology

ovarian follicle
development

1.10E-31 no

0 Gja1 absent mature
ovarian follicles

postnatal growth
retardation

abnormal female
reproductive system
morphology

ovarian follicle
development

1.10E-31 yes

1 Stra8 absent mature
ovarian follicles

postnatal growth
retardation

decreased compact
bone thickness

ovarian follicle
development

1.15E-31 yes

8 Idua abnormal lysosome
morphology

decreased
embryo size

abnormal neuron
morphology

lysosome organization 1.91E-29 yes

8 Sort1 abnormal lysosome
morphology

decreased
embryo size

abnormal neuron
morphology

lysosome organization 1.91E-29 yes

12 Zbtb20 abnormal hippocampus
development

complete neonatal
lethality

abnormal forebrain
development

hippocampus
development

5.56E-26 yes

15 Runx1 abnormal embryonic
hematopoiesis

complete embryonic
lethality during
organogenesis

anemia spongiotrophoblast
layer development

2.53E-22 no

15 Pdgfrb abnormal embryonic
hematopoiesis

complete embryonic
lethality during
organogenesis

anemia spongiotrophoblast
layer development

2.53E-22 no

119 Jak2 polychromatophilia partial postnatal
lethality

increased lactate
dehydrogenase level

erythrocyte differentiation 1.15E-11 no

120 Gjb2 abnormal mesenchyme
morphology

embryonic growth
retardation

internal hemorrhage neural tube closure 1.82E-11 no

129 T abnormal limb bud
morphology

complete perinatal
lethality

abnormal digit
morphology

anterior/posterior
pattern specification

2.93E-11 yes

140 Stk4 decreased spleen
white pulp amount

postnatal growth
retardation

arrested B cell
differentiation

lymph node development 3.39E-11 no

173 Mapk7 abnormal head
mesenchyme
morphology

abnormal blood
vessel morphology

abnormal heart
tube morphology

neural tube closure 6.48E-11 no

188 Rtel1 enlarged allantois no abnormal
phenotype detected

small otic vesicle gastrulation 1.67E-10 no

212 Smad4 abnormal proximal-distal
axis patterning

embryonic growth
arrest

failure to gastrulate proximal/distal pattern
formation

1.94E-10 no

219 Adam10 failure of vascular
branching

embryonic growth
retardation

enlarged pericardium regulation of angiogenesis 2.53E-10 no

228 Rapgef2 abnormal embryonic
hematopoiesis

complete embryonic
lethality during
organogenesis

abnormal liver morphology spongiotrophoblast
layer development

3.70E-10 no
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involved in the GO process “ovarian follicle development”
[GO:0001541]. The ‘closed world assumption’ is the as-
sumption that what is not currently known to be true is
assumed to be false. In our case, the Minus-rules rely on
the lack of phenotype annotation as if it the phenotype
was tested and found not to obtain.
We did a rather simple comparison of the predictive

power of our rules based on the reviewed annotation
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predictions. We calculated the Positive Predictive Value
from the true positives (TP) and false positives (FP) in
the reviewed annotation sets for each of the composite
rules: PPV = TP/(TP + FP). Figure 5 shows a comparison
of the PPV for various p-value cutoffs of the composite
rules for the reviewed annotation predictions. The PPV
for the first three composite rules is markedly better for
a given p-value than for the last two rules.
Our analysis shows that the Minus-rule statements are

not reliable at predicting specific GO annotations. How-
ever, these results are very interesting because although
the rules failed to accurately predict correct GO terms,
the general area of biology of the predictions was often
accurate. In several cases we found that the processes
predicted might lead to downstream phenotypic simi-
larities that would fit the phenotypes given in the rules.
For example, the terms that predicted the process of
‘fertilization’ (Minus-rule 5) were not entirely correct,
we noted, because the gene products identified did affect
sperm motility and would create defective sperm, but we
could not conclude from the papers [PMID:16015579;
PMID:12167408] that the predicted gene products
contributed to “fertilization” [GO:0009566] which in
GO is specifically defined as the union of the two
gametes. Likewise, the prediction of “regulation of angio-
genesis” [GO:0045765] would have been correct if the
prediction were “vasculogenesis” [GO:0001570], both
of which can lead to abnormal branching of blood vessels
(Minus-rule 227). These types of predictions may still
prove useful for curators in that they point to relevant
branches of biology for annotation consideration.
Our results show that the use of correlation modeling

can be used to infer biological knowledge about the pro-
cesses that underlie phenotypic expression. We show
that the use of the Plus-rule statements has the potential
Figure 5 Comparison of the Positive Predictive Value for various p-va
predictions. The PPV for the first three composite rules is markedly better
to accurately predict GO annotations, and that while the
Minus-rule generally predicts an incorrect specific term,
it often predicts a correct area of biology. Our results
show that curators can use our correlative rules to guide
manual curation however, individual instances should not
necessarily be annotated without the review of a biocurator.
The rules can be used to help curators decide about a
general subcategorization of GO terms from which to
choose when curating GO data based on mutant pheno-
types. The method could also be used when biocurators
are trying to identify literature that covers an area of
biology of interest. As the rules are further tested and
more papers are cocurated for phenotype and GO, the
rules will become further refined and accurate p-value
cutoffs for reliability can be determined.
Future work will use these methods to create and

test more complex rules based on this strategy. Our
methodology could be used in future work to help
predict the biological process that underlies a given
disease by correlating the disease-phenotypes with GO
biological processes. This methodological approach
can be adapted to any species with rich phenotypic
data. Lastly, we could similarly reverse the method to
use multiple GO terms to predict likely phenotypic
outcomes such as the disruption of specific pathways
and then test those predictions as potential new mouse
models of human disease.

Conclusions
Our correlative analysis for predicting GO annotations
can be used to assist biocurators in the curation of pa-
pers with no previous GO annotations while also giving
potential insight into complex phenotype-gene function
relationships. We believe this is the first attempt to pre-
dict a GO term from its composite relationship with MP
lue cutoffs of the composite rules for the reviewed annotation
for a given p-value than for the last two rules.
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terms independently of semantic analysis but rather
through a shared allele, and to apply that method to pre-
dict GO annotations to a set of papers that have not yet
been annotated for GO. Our method has the advantage
in that since it does not take semantic similarity into
account, it can potentially find correlations between phe-
notypes and biological processes that are not intuitively
obvious or that are not explicitly states in either ontol-
ogy. Of course we are in a good position to perform this
type of analysis since there are large independent efforts
in the MGI resource to annotate both phenotypes and
GO. The independent annotation serves as an internal
control in that the annotations that are in the current
corpus are essentially ‘blind’ with respect to one another.
Co-curation of phenotype and underlying biological pro-
cesses could potentially change our results dramatically
since a single curator could be swayed to search for a
semantic similarity in terms chosen from each ontology.
One interesting experiment would be to perform this
same analysis on a data set from another group in which
individual curators annotate to both ontologies. Since our
methodology is purely correlative and does not rely on
any other metric, it could potentially be used with other
data sets such a GO terms and disease ontologies, or even
in combination with several ontologies such as GO,
phenotype and expression. The five rules analyzed in this
work can be combined in various manners to create many
more possible derived rule structures—our results here
serve as a ‘proof of principal’ for this type of analysis and
pave the way for future iterations.
In practice, we have developed a script and methodology

that, given a gene/PubMed ID, will suggest a GO term(s)
to a curator if it meets the requirements of one of our rule
statements. We intend to integrate this immediate ap-
proach into the workflow of MGI curators and hope that
others will use our methodology to explore correlative al-
gorithms in the context of diverse data sets.
Additional files
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