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Abstract
Understanding how dynamical responses of biological networks are constrained by under-

lying network topology is one of the fundamental goals of systems biology. Here we employ

monotone systems theory to formulate a theorem stating necessary conditions for non-

monotonic time-response of a biochemical network to a monotonic stimulus. We apply this

theorem to analyze the non-monotonic dynamics of the σB-regulated glyoxylate shunt gene

expression inMycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate

that the known network structure is inconsistent with observed dynamics. To resolve this

inconsistency we employ the formulated theorem, modeling simulations and optimization

along with follow-up dynamic experimental measurements. We show a requirement for

post-translational modulation of σB activity in order to reconcile the network dynamics with

its topology. The results of this analysis make testable experimental predictions and demon-

strate wider applicability of the developed methodology to a wide class of biological

systems.

Author Summary

Over the last several years mathematical modeling has become widely used to understand
how biochemical systems respond to perturbations. In particular, dynamics of the
response, i.e. the precise nature of how the responses changes with time, has become the
focus of multiple studies. However, to this date only a few general rules that relate the
dynamical responses with the structure of the underlying networks have been formulated.
To this end, we ask which properties of the network allow systems to have a non-mono-
tonic time-response (first increasing and then decreasing) to a monotonically increasing
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signal. We show that the networks displaying such responses must include indirect nega-
tive feedback or incoherent feedforward loop. Applying this result to the measured non-
monotonic expression for glyoxylate shunt genes inMycobacterium tuberculosis, a net-
work known to be important to mycobacterial virulence, we show that the currently postu-
lated network structure does not match the predictions of the theorem. Using a
combination of mathematical modeling and follow-up experimental test we predict a
novel incoherent loop in the network. This methodology has wide applications outside the
specific network studied in this work—the theorem may potentially simplify the analysis
of many biological systems.

Introduction
Uncovering how regulatory networks shape the dynamical properties of cellular responses to
external stimuli is one of the ultimate goals of system biology. Despite our successes in map-
ping and modeling gene regulatory networks for a wide variety of model systems, only a hand-
ful of generalizable rules relating network architecture to its dynamic performance have been
formulated. These rules are often called evolutionary design principles of biochemical networks
[1]. Developing new approaches to find these design principles should allow us to extend our
understanding of biological network dynamics from a few case studies to a wide variety of
model systems. Here we formulate one such approach and apply it to a network controlling the
response ofMycobacterium tuberculosis, the causative agent of tuberculosis (TB), to hypoxic
stress.

With almost one-third of the world population infected, TB remains a major public health
threat [2].M. tuberculosis survives stress conditions induced by host immunity by undergoing
major metabolic and physiological remodeling that leads to mycobacterial dormancy [3–6].
Understanding this adaptive response of the tubercle bacillus is central to our long-term ability
to control the pathogen. Transcriptional networks downstream of the alternative sigma factor
σE, are critical for this adaptive response. They are activated when bacteria infect host macro-
phages, and induce the production of virulence factors and host inflammatory responses [7,8].
Deletion of sigE leads to the strongest attenuation ofM. tuberculosismurine infection among
all accessory sigma factor mutant strains [7]. Induction of σE can be studied in vitro by expos-
ingM. tuberculosis cells to a wide range of stressors such as hypoxia and surface or oxidative
stress [7,8].

Due to its importance for cellular survival, σE is subjected to rather complex regulatory
mechanisms at both the transcriptional and post-translational levels. Transcription of sigE is
controlled by three different promoters (P1-3). P1 is responsible for basal expression of sigE
under normal physiological conditions. P2 is activated in the presence of MprA, part of the
MprAB two component system that can sense surface stress [9,10]. Interestingly, σE also acti-
vates the transcription of MprAB, forming a positive feedback loop. The last promoter (P3) is
transcribed by the σH-RNAP holoenzyme in response to oxidative stress. σE post-translational
regulation is primarily controlled by its anti-sigma factor, RseA. RseA binds to and sequesters
σE, preventing the formation of the active σE-RNAP holoenzyme. However, under stressful
conditions, PknB (a eukaryotic-like Ser/Thr protein kinase) will phosphorylate RseA, tagging it
for degradation by the ClpC1P2 proteases [10,11].

Recently, the transcriptional dynamics of σE and several of its regulon members following
hypoxic stress have been quantified, and the networks controlling production of two critical
central metabolism genes, icl1 (Rv0467, glyoxylate shunt) and gltA1 (Rv1131, methylcitrate
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cycle), have been characterized [12]. These genes are implicated in the growth-phase-depen-
dent metabolic adaptation ofM. tuberculosis [13] and are essential for growth and persistence
of tubercle bacilli in infection models [14–16]. The glyoxylate shunt is especially important
because it allowsM. tuberculosis to efficiently metabolize fatty acids; indeed, it has been sug-
gested that fatty acids may be the major source of carbon and energy for tubercle bacilli in
chronically infected lung tissue [16]. For icl1 (Fig 1A), transcription requires both σB, an alter-
native sigma factor transcribed under σE control, and a σB-regulated transcription factor,
named lrpI (Rv0465c, local regulatory protein of icl1) [12]. This network motif–coherent feed-
forward loop–is a common motif of bacterial regulatory networks that is known to produce
delays in responses to step-up inputs, to filter transient stimuli, and to increase network sensi-
tivity [1,17]. Notably, in the case of icl1, the resulting activation dynamics is different from that
is seen for other coherent feedforward loops. Following gradual depletion of oxygen over the
course of 3 days, which leads to σE activation, icl1 is transiently induced on day 4, and then
decreases to pre-induction levels by day 5 (Fig 1B). A similar transient surge in icl1 has also
been observed in vivo [12].

In this paper, we develop a methodology to uncover the mechanism of non-monotonic
response following the monotonic dynamics of a stimulus, and apply it to the transient surge in
icl1 dynamics. We first formulate a general theorem based on monotone systems theory that
gives a necessary condition for this observation. Then we employ a combination of modeling,
parameter optimization, and experimental tests to uncover missing interactions in the icl1 reg-
ulatory network and to make new experimentally testable predictions.

Results

Monotone systems theory predicts inconsistency between known
network structure and observed dynamics
Amajor challenge in the quantitative analysis of biological systems is their tendency to be
highly complex and non-linear, complicating analysis of system behavior. Therefore, there is a
substantial need for methods that can make it possible to constrain potential network

Fig 1. Non-monotonic induction of icl1. (A) Structure of icl1 transcriptional regulation network. The central
metabolism gene icl1 was previously thought to be solely controlled by a simple feedforward network under
hypoxic conditions. Arrows represent positive transcriptional regulation. (B) Expression measurements for
icl1 and the accessory sigma factor sigEmRNA (data from [12]). Three independent experiments were
performed, and the means (error bars are ± standard deviations) are reported, normalized to the mean value
of the first data point. While sigE copy number is increasing, icl1 peaks at day 3 and decreases after that.
(*p�0.05).

doi:10.1371/journal.pcbi.1004741.g001

Non-monotonic Response Dynamics of Glyoxylate Shunt Genes inM. tb.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004741 February 22, 2016 3 / 22



topologies based on the observed dynamics without knowledge of the underlying parameters.
Here we develop a generalized theorem that gives a necessary condition for non-monotonic
system dynamics, given a monotonic input signal. In this section, we semi-intuitively describe
the concept and main results. A comprehensive formulation and the proof of the theorem are
found in the S1 Text.

A function is defined as monotonic if it is increasing or decreasing over a given domain.
That is, for a monotonically increasing function, for all t1 � t0, f(t1)� f(t0). For monotonically
decreasing functions, the sign of the inequality is flipped, i.e. f(t1)� f(t0). If the function is
defined by a dynamical system, in the sense that it is a component of a solution of a set of ordi-
nary differential equations, we set to identify general properties of the dynamical system that
ensure monotonic increase/decrease of its components over time. In the context of biological
networks, the components usually represent concentrations of biological species (e.g. mRNA,
proteins, metabolites, etc.). The dynamical system consists of biochemical kinetics equations
for these species:

d
dt

X1ðtÞ ¼ F1ðX1ðtÞ;X2ðtÞ; . . . ;XnðtÞ; uðtÞÞ ð1Þ

d
dt

X2ðtÞ ¼ F2ðX1ðtÞ;X2ðtÞ; . . . ;XnðtÞ; uðtÞÞ

..

.

d
dt

XnðtÞ ¼ FnðX1ðtÞ;X2ðtÞ; . . . ;XnðtÞ; uðtÞÞ

Here Xi(t) are time-dependent concentrations of relevant chemical species and Fi is the net flux
into a given concentration pool, i.e. net sum of all the rates of reactions producing specie i
minus all the rates of reactions that consume it. The function u(t) is a known time-dependent
input into this biochemical system, such as an externally supplied chemical ligand or stressor.
Usually, it will only directly affect one or a few network nodes. For generality we allow multiple
nodes to be directly affected by u(t); these would be called the 'input variables’. On the other
hand, the last node Xn(t) is arbitrarily designated as the 'output variable’. For brevity, we can
represent this dynamical system in the vector-notation as

d
dt

X tð Þ ¼ F XðtÞ; uðtÞð Þ ð2Þ

where X and F are vectors with components Xi and Fi respectively.
We may represent this dynamical system as a graph consisting of (n+1) nodes and directed

edges connecting some of the nodes (such as the network diagram on Fig 1A). The nodes corre-
spond to the input function u(t) and all chemical species Xi(t) (i = 1. . .n). The edges corre-
spond to biochemical interactions: the input node corresponding to u(t) is connected to all
input variables, i.e. all variables for which @Fi/@u 6¼ 0. Analogously, the node corresponding
to concentration Xk will be connected by a directed edge from Xl if @Fk/@Xl 6¼ 0. If the increase
in the concentration of species l increases the production flux for concentration of k (i.e., @Fk/
@Xl� 0), then we draw an edge with an arrow (#) or assigned parity +1. Biologically, this corre-
sponds to “activation”. Conversely, if j inhibits/represses species i (i.e., @Fi/@Xj � 0), then we
will draw an edge with blunt arrow (┴) or assigned parity −1. Biologically, this corresponds to
repression. Similarly, the parity can be assigned to the edges from u(t) to input variables based
on the sign of @Fi/@u. For simplicity, we restrict our attention to systems in which the signs of
partial derivatives @Fi/@u and @Fi/@Xj are the same over the entire domain in which functions
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Xj(t) and u(t) take their values. Note that self-loops, i.e. edges that connect nodes to itself, are
not included in such representation; thus the sign of @Fi/@Xi is irrelevant. Fig 2 illustrates such
graph for a particular system.

Directed paths, i.e. sets of consecutive edges, of such graph describe how signal u(t) propa-
gates through the dynamical system. If all the directed paths to the output variable node Xn(t)
go through a node Xi(t), then perturbations to these node that make it insensitive to the signal
(e.g. gene knockout that sets Xi(t)) would also imply that Xn(t) is insensitive to the signal. For
example, in Fig 2 all directed paths from signal to nodes X6,X7,X9,X10 and X11 go through X5.
For each directed path in the graph consisting of multiple edges we can define a combined par-
ity corresponding to a product of individual parities of edges from which each path consists.
For example, on Fig 2 the directed paths from X1 to X4 to X5 and from X1 to X3 to X5 are posi-
tive whereas the directed path from X2 to X4 to X8 is negative. Note that directed paths can
include full circles around indirect feedback loops, e.g. from X5 to X6 to X7 to X6 to X9.

With these definitions and notation in mind we are ready to formulate a general theorem
that states a sufficient condition for the system output Xn(t) to be a monotonic function of
time. For convenience, two alternative (but mathematically equivalent) formulations of the the-
orem are given–one for the case in which the input signal u(t) is known and another one for
which internal node Xi(t) serves as a proxy for some unknown signal.

Theorem. For a dynamical system given by Eq (2) which is initially in steady state (i.e.
F(X(0);u(0)) = 0) the response of the output Xn(t) will monotonically increase (or decrease) in
time response to changes in the input u(t) if:

1. The input function u(t) is monotonically increasing in time and all the directed paths
from input node u(t) to the output node Xn(t) have the same parity. Furthermore, mono-
tonically increasing u(t) will trigger monotonic increase of Xn(t) if parity is positive or will
trigger monotonic decrease if parity is negative.

or

2. All the directed paths from the input nodes to the output node pass through an internal
node Xi(t) with monotonically increasing or decreasing dynamics and all the directed

Fig 2. Sample graphical representation of a dynamical system to illustrate the theorem. The input node
u(t) is a known input function. The dynamics of the dependent variables Xi(t) are given by equations of the
form of Eq 1. Arrows connect the nodes connect nodes with non-zero partial derivatives; pointed and blunt
arrows correspond to positive and negative partial derivatives respectively (see text for details).

doi:10.1371/journal.pcbi.1004741.g002
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paths from Xi(t) to the output node Xn(t) have the same parity. Furthermore, monotoni-
cally increasing (Xi(t) will result in monotonic increase of Xn(t) if parity is positive or will
result in monotonic decrease if parity is negative. On the other hand, monotonically
decreasing (Xi(t) will result in monotonic decrease of Xn(t) if parity is positive or in mono-
tonic increase if parity is negative.

We note that if u(t) is a monotonically decreasing function simple change of variables (e.g.
u! −u) will result in monotonically increasing input and the theorem can still be used.

For example, on Fig 2 the first formulation for the theorem allow us to conclude that mono-
tonically increasing input u(t) will ensure monotonic increase of, for instance, X4(t), since both
directed paths from u to X4 (via X1 or X2) have positive parity. By repeating this reasoning for
the remaining nodes, we can conclude that monotonic increase is ensured for X1,X2,X4,X5,X10

and X11, monotonic decrease is ensured for X3, but monotonicity cannot be guaranteed for X6,
X7,X8 and X9. On the other hand, if we do not know whether input signal u(t) is monotonic or
in case an additional negative path in the network from u(t) to X5 is added, we may still use the
second formulation to conclude that if X5(t) is monotonic so will be X10 and X11. Indeed, all
the paths to X10 and X11 from input u(t) pass through X5 and all the paths from X5 to X10 and
X11 have positive parity. The argument does not work for X9 due to a negative feedback loop
between X6 and X7 (a directed path that goes around this loop will have the opposite parity
from the path that does not).

One straightforward consequence of this theorem states that for any dynamical system in
which a certain output variable Xn(t) behaves non-monotonically as a function of time in
response to a monotonic signal, there must be at least two (undirected) paths between that
node and input node u(t) with different parities, i.e. one with an odd number and another with
an even number (or zero) of negative interactions. Such paths can only exist if the correspond-
ing graph exhibits incoherent feedforward loops and/or negative feedback loops. This property
can be very useful to identify that known biochemical network diagram is inconsistent with
measured dynamics as we illustrate below.

Applying the formulated results to the dynamics of icl1 transcription one can observe that
the non-monotonic induction of icl1 (Fig 1B) is inconsistent with the network diagram pro-
posed in Ref. [12] (Fig 1A) as the hypoxia signal only affects icl1 via sigE (all the directed paths
go through sigE), and there is no negative parity (inhibiting) path from sigE to icl1. Neverthe-
less, the monotonic increase in sigE results in non-monotonic dynamics of icl1. To further pin-
point the inconsistency, we have repeated the experiments of [12] and additionally measured
the mRNA dynamics of all the intermediate species. The results of these measurements are
shown in Fig 3A. By applying the monotonic systems theory to these new experimental results
we can pinpoint at least two missing negative loops in the previously proposed network archi-
tecture (Fig 1A). First, the monotonic increase in sigEmRNA leads to non-monotonic increase
in its direct target, sigB, which increases between days 0 and 4 and then decreases on day 5. We
note that the difference between sigBmRNA in days 4 and 5 is small and statistical significance
of the decrease is questionable (p~0.1). However if the decrease is real, there must be a negative
loop in the network that posttranscriptionally regulates activity of σE or activates transcrip-
tional repressor of sigB. However, regardless of this negative loop, another interaction is
required to explain the observed icl1 dynamics. We note that icl1 starts to decrease after peak-
ing at day 3 (day 3 value is larger than that of day 0 and day 5, p�0.05); therefore, there must
be at least one more negative loop acting downstream of sigB transcription. In fact, during the
first 4 days of hypoxia, the dynamics of sigB is monotonic whereas the dynamics of lrpI, its
transcriptional target, is not. Furthermore, all directed paths from the hypoxia signal to lrpI
pass through sigB. Therefore, the formulated theorem predicts either a negative feedforward
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loop between sigB and lrpI or alternative signaling paths from hypoxia to lrpI transcription
with a negative parity. In the subsequent sections we focused on uncovering this loop; our
approach and workflow is illustrated in S1 Fig.

ClgR affects network dynamics
The analysis above predicted existence of a negative loop that controls transcription of lrpI
gene. However, no such loop could be found among known network interactions. One possible
way to identify such a loop would be to find a transcriptional repressor of lrpI in the σB or σE

regulons. We therefore examined these regulons for candidate genes with a DNA binding
domain and transcriptional regulator function. One such gene is clgR (Rv2745c), which
encodes a transcription factor regulated by the MprAB-σE signaling system in response to vari-
ous stressors, including redox stress, heat shock, and hypoxia [18–20]. ClgR has been reported
to induce multiple chaperones and proteases [11,21], including the Clp protease system, which
can degrade misfolded proteins and is critical for mycobacterial survival under stress condi-
tions [19]. Since our recent work [9] uncovered a complex network modulating its activity
under cell envelope stress, we decided to examine its effect on gene expression in hypoxia.

Fig 3. Gene expressionmeasurements reveal a negative regulation of icl1 through clgR. (A,B)
Expression measurements for icl1, lrpI and the accessory sigma factor sigBmRNA for wild-type (A) and clgR
knockout strain (B). (C,D) To simplify the model, the dynamics of sigB and clgR under hypoxia were
interpolated for wild-type (C) and for clgR knockout strain (D) with a generalized pulse function and served as
inputs into the model (See Methods for details). (*p�0.05).

doi:10.1371/journal.pcbi.1004741.g003
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To this end, we used RT-qPCR to measure the dynamics of clgR expression in wild-type
cells and examine the expression of sigB, icl1 and lrpI in a clgR deletion mutant (ΔclgR) strain.
Deletion of clgR resulted in a sigB expression pattern that is similar to wild-type but displays
about 50% reduction in peak expression (compare Fig 3A and 3B). This is not surprising given
that the ClgR-induced protease Clp is responsible for a degradation of the specific anti-σE fac-
tor, RseA [11]. Therefore, the genetic deletion of clgR reduces sigB transcription by breaking a
positive feedback loop that controls σE activity. In contrast, expression peaks for icl1 and lrpI
are increased and shifted to day 4 (Fig 3). We note that in the ΔclgR strain non-monotonic
induction of lrpI follows non-monotonic induction of sigB and, therefore, the negative loop
controlling lrpI transcription may no longer be active. The simplest way to reconcile these
results is to hypothesize repression of lrpI by ClgR (Fig 4A). Even though ClgR has only been
shown to positively regulate its gene products, numerous examples exist of a transcription

Fig 4. Investigation of repression by ClgR hypothesis. (A) Hypothetical network topology in which ClgR
directly downregulated lrpI transcription. (B) The predicted dynamics of icl1 (solid blue line) is in good
agreement with experimental observations (blue squares). On the other hand, lrpI expression for model (solid
orange line) represented in Panel (A) was significantly lower than observed (orange triangles). (C)
Hypothetical network that includes additional autoregulation of LrpI in order to explain a non-linear gain. (D)
The predicted dynamics (orange and blue solid lines) by the model corresponding to the network topology in
panel C shows good agreement with experimental measurements (unfilled triangles and blue squares,
respectively). However, the model predicted significantly more attenuation in the lrpImutant (dashed curve)
than that of observed in lrpI premature codon strain (filled orange triangles).

doi:10.1371/journal.pcbi.1004741.g004
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factor that can act both as activator and repressor of transcription (e.g., the Bacillus subtilis
master sporulation regulator, Spo0A, which activates about 40 genes and inhibits 81 genes
[22]).

LrpI autoregulation can create non-linear amplification in lrpI dynamics
To test whether ClgR-mediated repression of lrpI (Fig 4A) can explain the observed dynamics,
we first tested this hypothesis by constructing a mathematical model of the network. Given the
complexity of clgR regulation [9] we included its transcriptional profile as an input to a model
by taking the measured data and using an interpolation function to generate a continuous
function that follows the observed dynamics (Fig 3C). A similar strategy was used for sigB
expression (in both wild-type and ΔclgR strains)–another input to the network (Fig 3C). These
inputs were used in a deterministic, ordinary differential equations model describing the
dynamics of σB, ClgR, Icl1 and LrpI protein concentrations and algebraic equations for their
respective mRNAs (we assumed the degradation is fast and concentrations are in quasi-steady
state). We then performed multidimensional parameter optimization to determine whether the
measured dynamics of mRNA can be matched by those produced by the model. It is important
to note that while we used parameter optimization as a feasibility check for various network
structures, we understand that the data presented is not sufficient to restrict the parameters.

Our simulation results (Fig 4B) showed that the proposed network topology can match the
observed data for icl1 but not for lrpI. The failure of this model is due to a non-linear gain
between lrpI and sigB in the data. Indeed, between days 0 and 3 sigBmRNA increases about
2-fold whereas lrpImRNA increases over 3-fold. Given that sigma factors bind the core RNA
polymerase as a monomer and function non-cooperatively, this result cannot be due to sigB
mRNA increase. In fact, in steady state we expect σB protein concentration to scale linearly
with sigBmRNA and the transcriptional activity of σ-factors is usually expected to scale sub-
linearly (hyperbolic, Michaelis-Menten-like expression) with their concentration [23]. There-
fore, we would expect that, in steady-state, fold-change of σB -activated mRNA would be lower
then fold-change of sigBmRNA. Repression by ClgR would further suppress the fold-increase
of lrpI. The arguments can be formalized and generalized to transient gains as well (see Meth-
ods for a rigorous mathematical proof as an application of the corollary of the formulated theo-
rem in S1 Text). Additionally, we demonstrated that even with large variations in the sigB and
clgR input curves, lrpI always has a sub-linear amplification (S2 Fig). To resolve this discrep-
ancy, we need a non-linear amplification in the transfer function between sigB and lrpI. For
example, this amplification can be explained if lrpI positively regulated its own transcription
(Fig 4C). Indeed, incorporating these interactions into our model leads to a good agreement
between model predictions and experiments for both wild-type and ΔclgR strain (Fig 4D).

Experimental results rule out lrpI autoregulation
To experimentally test autoregulation of lrpI, we used an lrpI knock-out mutant, in which the
lrpI open reading frame is interrupted by a transposon insertion. While the strain does not pro-
duce functional LrpI protein, it is still possible to quantify the expression of the truncated lrpI
mRNA by using primers and probes mapping to lrpI sequences located upstream of the trans-
poson insertion. In contrast to model predictions, the measured lrpI expression in ΔlrpI was
not statistically significantly different compared to wild type for all time points (Fig 4D). This
result rules out lrpI autoregulation. Therefore, another factor must be responsible for the non-
linear amplification between sigB and lrpImRNA. We then investigated an alternative hypoth-
esis, in which post-translational regulation of σB may lead to a non-linear relationship between
sigB expression and σB activity.
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Post-translational modulation of σB may explain observed dynamics
To test the hypothesis that σB activity is post-translationally regulated, we decided to examine
the dynamics of another target. To this end we selected another gene in the σB regulon, ideR
(Rv2711), to serve as a reporter for σB activity. IdeR is a global transcription factor that helps to
maintain iron homeostasis and is essential for mycobacterial virulence [24]. Since no other
transcriptional inputs have been found (Fig 5A), we assume that ideRmRNA represents a sur-
rogate of σB activity [25]. We therefore used RT-qPCR to quantify how ideR expression
dynamically changes under hypoxia. Notably, the measured ideR dynamics is similar to that of
lrpI in two important aspects: (i) the fold increase of ideRmRNA between days 0 and 3 exceeds
that of sigBmRNA in the same period (ideR has more than 3-fold increase; sigB has less than
2-fold increase); (ii) ideR peaks at day 3 and decreases at day 4 despite the increase in sigB tran-
scription (Fig 5). These results indicate that σB activity is post-translationally regulated and the
missing negative loop must involve post-translational regulation steps.

Degradation of σB by Clp may be responsible for σB activity modulation
Analyzing alternative ways for post-translational downregulation of sigma-factor activity, we
identified two theoretical possibilities. One is the downregulation of activity by sequestration of
an active form (e.g. by an anti-sigma factor), another is the downregulation of protein level via
proteolytic degradation. Since we expect the negative loop to involve ClgR, we hypothesized that
ClgR-activated induction of anti-σB or protease degrading σB can lead to the observed dynamics.

Anti-sigma factors are ubiquitous across bacterial genera, and have been shown to be pres-
ent in a diverse array of species [26]. Many of the known sigma factors inM. tuberculosis have
corresponding anti-sigma factors; however, an anti-sigma factor corresponding to the myco-
bacterial σB has not yet been identified [27]. Nonetheless, we decided to consider the possibility
of a hypothetical anti-σB. While we were unable to definitively exclude the presence of a novel
anti-sigma factor B, the inability to fit the models of the various (rather complex) networks to
the experimental data (S3 Fig) coupled with the fact that has been no indication of an anti σB

factor in any mycobacterial species [7,27] led us to set aside this hypothesis.

Fig 5. Gene expressionmeasurements for ideR. In a well-characterized interaction, σB acts as the sole
transcriptional regulator of ideR. mRNA of ideR exhibits a non-monotonic response similar to that of lrpI,
suggesting that the non-monotonic dynamics are a result of a post-translational regulation of σB activity.
(*p�0.05).

doi:10.1371/journal.pcbi.1004741.g005
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As previously mentioned, ClgR is known to induce multiple essential protease systems in
M. tuberculosis, which regulate the activity of numerous proteins through selective degradation
[11,19,21]. Thus, we hypothesized that one of these protease systems, e.g. Clp, may modulate
post-translational σB activity by selectively degrading the sigma factor (Fig 6A). Incorporation
of these interactions into the model leads to simulated dynamics that are in good agreement
with the experimental data under a set of physiologically relevant parameters (Fig 6B and 6C;
S4 Fig). Indeed, this model is able to replicate the lrpI, ideR and icl1mRNA dynamics both in
wild type and ΔclgR strains. We further demonstrated that the qualitative output dynamics of
the model were very robust to variations in the sigB and clgR input curves (S5 Fig). These
results indicate that the introduction of the previously unknown interaction between Clp and
σB is sufficient to explain all observed dynamics in the icl1 network.

Discussion
The combination of traditional molecular genetics and novel high-throughput assays has gen-
erated a vast amount of information on the interactions that comprise biochemical networks
inside living cells. For example, transcriptional regulatory networks can be obtained from
gene-expression analyses such as qPCR, gene expression microarray technology, and RNA-seq,
while DNA-protein interactions can be studied by chromatin immunoprecipitation-based
(ChIP) measurements. However, regulatory networks are incomplete in even the best studied
model systems [28,29]. At the same time, as more dynamical information about the responses
of these networks to external perturbations is accumulated, mathematical models can use this
data to pinpoint the inconsistencies between observed gene expression dynamics and pre-
sumed network topology, and to predict missing interactions [30]. In this context, dynamical
systems theories that formulate necessary or sufficient conditions for a given network topology
to lead to certain dynamical behaviors are especially useful as these conditions are often inde-
pendent from detailed reaction mechanisms and kinetic parameters.

Much research exists on the characterization of dynamics of bio-molecular networks by
means of their topology. Among many such directions of work, one may mention: (1) the deep
theory worked out by Feinberg in the early 1970s based on the idea of deficiency [31], which has
been applied to many fields, including T-cell kinetic proofreading models [32] or receptor-ligand
pharmaceutical models [33], and is still the subject of a major research effort [34,35]; (2) the use
of graph-theoretic ideas based on Petri nets [36]; (3) the theories of cooperative and competitive
systems [37]; and (4) methods of commutative algebra and algebraic geometry [38,39].

Fig 6. Degradation of σB by Clp proteases hypothesis. (A) Hypothetical network topology in which ClgR-
induced Clp protease degrades σB. The resulting mathematical model shows good agreement between
predictions (solid lines) and measurements (squares and triangles) for both wild-type (B) and clgR-deletion
strain (C). Parameters used in the model correspond to S4 Table.

doi:10.1371/journal.pcbi.1004741.g006
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In this work, we formulated the necessary conditions for an output variable of a dynamical
system to non-monotonically vary in time with changing inputs. In simplified terms, a non-
monotonic response to monotonic stimulus requires the presence of an indirect negative feed-
back or an incoherent feedforward loop in the network graph. Even when the exact stimulus
dynamics is not known, the comparison of the dynamics of internal components with the
topology of the network graph can point to inconsistencies or missing loops.

We applied these results in combination with mathematical modeling and subsequent experi-
mental tests to a network controlling transient upregulation of icl1, the gene encoding a glyoxylate
shunt enzyme (isocitrate lyase 1), in response to hypoxia inM. tuberculosis. We found at least one
inconsistency in the previously postulated network structure. Our results predict that there should
be biochemical interactions that post-transcriptionally downregulate sigma factors σB, and possi-
bly σE. Focusing on the former, we show that this downregulation can be explained by proteolytic
degradation of σB protein by Clp protease system. Our model demonstrates that this interaction is
consistent with all measurements for wild-type and genetically modified strains (Fig 6). As ClpP
is essential forM. tuberculosis growth in vitro [40], a ClpP knockout mutant could not be created.
Thus, this is a major prediction of the model that will be tested in future studies.

The predicted proteolytic degradation of σB is not unprecedented. In multiple bacterial spe-
cies, stress-induced alternative sigma factors are proteolytically degraded by clp homologs. For
example, RpoS (σS) is an enterobacterial sigma factor that is implicated in stationary-phase sur-
vival as well as virulence in pathogenic species [8,41–45]. The protease ClpXP has been impli-
cated in the regulation of RpoS in several pathogens, including S. typhimurium [43,44], and has
been directly shown to degrade RpoS in E. coli [45]. It is known that the mycobacterial σB and
RpoS share an evolutionary relationship [8], which might suggest that proteolytic degradation
by ClpP is conserved among some sigma factors. Additionally, ClpP has been shown to degrade
σB of B. subtilis [46]. Despite sharing a common name, the σB of B. subtilis is actually more
closely related to the mycobacterial σF [27]; however, mycobacterial σF and σB share a common
evolutionary origin [27], again possibly pointing to a potential conserved mechanism for the
regulation of stress-induced sigma factors.

What is the significance of the transient activation of icl1 in hypoxia and the predicted feed-
forward loops? The hypoxic response can be considered a component of the metabolic adapta-
tion ofM. tuberculosis during infection, both because oxygen may become limiting inside the
infected macrophage and because the lung tissue microenvironment becomes hypoxic as a
granuloma develops [47–49]. Such adaptation ultimately leads to tubercle bacilli transitioning
to a non-replicating/persistent state that is associated with latent infection. It may be argued
that the stress-induced activation of adaptive metabolic pathways, such as those involving the
activity of the icl1 product, is transient because the response to stress is followed by slow-down
of the mycobacterial metabolic activity. Consequently, no sustained expression of metabolic
enzymes such as Icl1 is required. Presumably, the transient surge in icl1 transcription at day 4
of hypoxia produces sufficient amounts of Icl1 protein until persistence is fully attained.
Indeed, the observation that icl1 is induced transiently also during mouse lung infection sup-
ports a physiological role of this dynamics in pathogenesis [12]. If these hypotheses are correct,
drugs blocking negative interactions responsible for non-monotonic dynamics could in princi-
ple destabilize transitions to latency or trigger reactivation.

The theorem described in this work can be applied to a wide variety of biological systems to
help understand the relationship between network topology and dynamics. For example, bio-
chemical adaptation is a topic of wide interest, largely because of its ubiquity in biological sys-
tems—adaptation occurs when a step-up input into a biochemical network causes one or more
downstream components to transiently increase but then return to the previously maintained
steady state. Chemotaxis—the process where a cell moves in response to a chemical signal—is a
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well-known behavior that exhibits adaptive responses. This behavior is seen in a wide variety of
organisms, including bacteria, neutrophils [50] and amoeba [50–52]. The mechanisms whereby
these organisms achieve adaptation vary widely, but a well-studied case is chemotaxis in E. coli—
given a step input of a chemoattractant, the rate of ‘tumbling’ will initially sharply decrease, but
then return to nearly its original level [53]. Therefore, biochemical adaptation is a specific case
where a monotonic input gives rise to a non-monotonic output. Wemay apply the described the-
orem to conclude that there must be either an incoherent feedforward loop or a negative feedback
loop. Indeed, this observation is recapitulated by previous work by Ma et al. that used simulations
and parameter sampling to show that there are only two types of networks that can produce
robust biochemical adaptation–incoherent feedforward loops and negative feedback loops [54].
Thus, the theoremmay help clarify structure-function relationships in well-characterized bio-
chemical networks, as well as predict previously unforeseen inconsistencies in others.

Methods

Interpolation of inputs into model
The transcriptional regulation of both sigB and clgR is complicated and not very well under-
stood [9,23]. To simplify the model, we treated sigB and clgR as inputs into the system by inter-
polating the time course of experimentally measured mRNA concentration of both species
with a phenomenological function that followed the data trends. The interpolation gives a
smooth, continuous function that can approximate species dynamics and can be fed directly
into the model. As the wild-type sigB and clgR data appeared to demonstrate approximately
adaptive dynamics, i.e. the time-point at day 5 is approximately the same as day 0, the follow-
ing pulse function was fitted to the data:

mB tð Þ ¼ 1þ a1
tn

an2 þ tn

� �
1

1þ t
a3

� �m

0
B@

1
CA ð3Þ

mClgR tð Þ ¼ 1þ b1
tn

bn2 þ tn

� �
1

1þ t
b3

� �m

0
B@

1
CA ð4Þ

Herem, n and all an / bn are unknown parameters, and t is the independent variable (time).
The parameters n andm were fixed to 6 and 12 respectively, while the values ai and bi (i = 1,2,
3) were optimized to ensure best fit to the measured data. To this end, experimental data nor-
malized to the value at day 0, and non-linear least-square regression was performed using the
MATLAB function fminsearch (optimization toolbox) to find the values of the unknown, free
parameters. The data point at day 0 was replicated at day 1 for the sole purpose of interpolation
as it was observed that relevant gene expression did not change significantly in our experimen-
tal set up from days 0–2.

Since the mean value of sigBmRNA in the ΔclgR strain decreased below its initial level on
day 5, a different form of pulse function was fitted to the data:

mB tð Þ ¼ c4 þ c1
tn

cn2 þ tn
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1
CA ð5Þ
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In the clgRmutant case, the parameters n andm were fixed to 6 and 18 respectively whereas
the values of ci (i = 1–4) were obtained by non-linear least-square regression as above. Fitted
parameter values may be found in S1 Table. It is important to note that the form of the interpo-
lating equations was chosen solely because of their adaptive behavior and ability to change
quickly; the form of the equations does not have any biological significance. Therefore, we have
also tested the robustness of the model to the precise form of the input by generating a family
of input curves.

Generation of family of sigB and clgR input curves
In order to better understand both how uncertainty in the sigB and clgR expression measure-
ments affected the dynamics of downstream nodes, we generated a family of input curves. Ran-
dom data points were sampled from a normal distribution for each time point of both sigB and
clgR, where the mean and standard deviation corresponded to the measured values. The point
at day 0 was replicated to day 1.5, and the point at day 5 was assumed to be near the final
steady-state value and thus the point was copied to day 6. These data points were interpolated
with a shape-preserving cubic interpolation in MATLAB (interp1, method: ‘pchip’). The inter-
polation curves were then each re-normalized to their initial value. We used the curves as in
Figs S2 and S5.

Dynamical equations
The dynamics of protein concentrations in our model are given by ordinary differential equa-
tions that describe the kinetics of protein synthesis (translation) and first-order protein degra-
dation. Here B (σB; variable name B was used for ease of notation), LrpI, Icl1, IdeR, and ClgR
represent protein concentrations, andmx represents the corresponding mRNA concentrations.
A description of all parameter symbols may be found in S2 Table. For B, concentration of σB

protein, the dynamical equation is of the form:

dB
dt

¼ bBmB � kdegBB ð6Þ

wheremB is the concentration of sigBmRNA. In the same fashion, concentration of ClgR may
be described by:

dClgR
dt

¼ bClgRmClgR � kdegClgRClgR ð7Þ

The dynamics of LrpI and IdeR protein is similarly described:

dLrpI
dt

¼ bLrpImLrpI � kdegLrpILrpI ð8Þ

As we do not have data describing Icl1 and IdeR protein dynamics, and Icl1/IdeR do not affect
any other nodes in the network, we did not keep track of Icl1 and IdeR protein in our simula-
tions. To solve these equations we also need equations for mRNA concentrations. As mRNAs
usually have a significantly shorter half-life than proteins, we can employ the quasi-steady state
approximation and describe mRNA concentration by algebraic equations as function of tran-
scription regulators controlling their expression. For example, icl1mRNA concentration
(micl1) is a function of σB and LrpI concentration:

mIcl1 ¼ bicl1

KnIþ1
ILB þ fILBðBÞðLrpIÞnI
KnIþ1

ILB þ ðBÞðLrpIÞnI ð9Þ
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Similarly, the concentration of both ideR and lrpImRNA is solely a function of σB concentra-
tion.

mLrpI ¼ bLrpI

KLB þ fLBB
KLB þ B

ð10Þ

mIdeR ¼ bIdeR

KRB þ fRBB
KRB þ B

ð11Þ

For the main model, used in Fig 6, a ClgR-induced protease (Clp) was introduced, described by
the following:

mClp ¼ bClp

KCC þ fCCðClgRÞnCC
KCC þ ðClgRÞnCC ð12Þ

dClp
dt

¼ bClpmClp � kdegClpClp ð13Þ

It was hypothesized that Clp degrades σB, so a new term was added to the equation for dynam-
ics of σB solely for this model:

dB
dt

¼ bBmB � kdegBB� kcat
ðClpÞðBÞ
KM þ B

ð14Þ

The Michaelis-Menten formulation of enzyme kinetics was used here to represent the degrada-
tion of σB by Clp (which assumes that the enzyme-substrate binding is fast). However, similar
results were obtained when using the full ODE representation of enzyme kinetics, where C is
the enzyme-substrate complex, formed between σB and Clp. The formulation is shown below:

dB
dt

¼ bBmB � kdegBB� kf Bð Þ Clpð Þ þ krC ð15Þ

dClp
dt

¼ bClpmClp � kdegClpClp� kf Bð Þ Clpð Þ þ krC þ kcatC ð16Þ

dC
dt

¼ kf Bð Þ Clpð Þ � krC � kcatC � kdegCC ð17Þ

The direct repression of lrpI by ClgR with LrpI autoregulation (Fig 4C) is modeled as:

mLrpI ¼ bLrpI

KLB þ fLBB
KLB þ B

� �
KnL

LL þ fLLLrpI
nL

KnL
LL þ LrpInL

� �
1

1þ ClgR
KLC

� �nc

0
B@

1
CA ð18Þ

For the model without lrpI autoregulation (Fig 4A and 4B), we use fLL = 1 and as a result:

mLrpI ¼ bLrpI

KLB þ fLBB
KLB þ B

� �
1

1þ ClgR
KLC

� �nc

0
B@

1
CA ð19Þ

For the simulations shown on S3A Fig, we use Eqs (7–9 and 19) for ClgR, LrpI, IdeR, Icl1 and
use an additional equation for a hypothetical anti-sigma factor (A), adds new terms of binding
and dissociation to σB dynamics to describe the sequestration of B with A to form a complex
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(C2):

dB
dt

¼ bBmB � kdegBB� kf BAþ krC2 ð20Þ

A is the (free) concentration hypothetical anti-sigma factor and AT is the total amount of anti-
sigma factor (bound + unbound). As we assume that the total amount of A (AT) is constant, it
was treated a system parameter. The complex then follows the following dynamics:

dC2

dt
¼ kf B � A� krC2 � kdegCC2 ð21Þ

At quasi-steady state, we use the following expression:

A ¼ ðkr þ kdegCÞAT

kr þ kdegC þ kf B
ð22Þ

The case where A is regulated by ClgR was also explored (refer to S3C Fig). Most equations
remain the same, except the total amount of A is no longer treated a system parameter, and the
pseudo-steady state approximation is not applied to C. The following describe the mRNA and
protein of A:

mA ¼ bA

KnA
AC þ fACðClgRÞnA
KnA

AC þ ðClgRÞnA ð23Þ

dA
dt

¼ bAmA � kdegAA ð24Þ

Similarly, the case where σB activated transcription of the hypothetical sigma factor was also
investigated (refer to S3B Fig); simply replace ClgR with B and set nA to 1 in Eq 24.

Relationship between the relative changes of lrpI and sigBmRNA
Below we demonstrate that regardless of the parameter values and for any monotonically
increasingmClgR(t)> 0 andmB(t)> 0, the solution dynamical system consisting of differential
Eqs (6–8) and algebraic Eq (19) starting from steady-state at t = 0 would be subject to the fol-
lowing condition:

mBðtÞ
mBð0Þ

� mLrpIðtÞ
mLrpIð0Þ

ð25Þ

To prove this, we first note that with monotonically increasingmClgR(t) in Eq (7) we can con-
clude that

ClgRðtÞ � ClgRð0Þ ð26Þ
Now consider alternative dynamical system for which ~mClgRðtÞ ¼ ~mClgRð0Þ and consequently
C~lgRðtÞ ¼ C~lgRð0Þ. Here and below ~ denotes variables of an alternative system. Now from
Eq (19) we can see that

mLrpIðtÞ � ~mLrpIðtÞ and mLrpIð0Þ ¼ ~mLrpIð0Þ ð27Þ

As the last term in Eq (19) is a decreasing function of ClgR and the rest of the terms are the
same in original and alternative system. We also note that the alternative system no longer has
negative loop between the input,mB(t), and the output, ~mLrpIðtÞ. Therefore, we can apply the
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result on the steady state gain (S1 Text) to conclude that

~mLrpI tð Þ � bLrpI

KLB þ fLBbBmBðtÞ=kdegB
KLB þ bBmBðtÞ=kdegB

" #
1

1þ ClgRð0Þ
KLC

� �nc

0
B@

1
CA ð28Þ

Here the right-hand side is i/o steady state response of the system deduced from Eqs (6) and
(18) (G(u(t) in the notation of the S1 Text (page 5), withmB(t) = u(t) as an input). We note
that the expression in the square brackets is a sublinear function ofmB(t) and therefore

KLB þ fLBbBmBðtÞ=kdegB
KLB þ bBmBðtÞ=kdegB

� mBðtÞ
mBð0Þ

KLB þ fLBbBmBð0Þ=kdegB
KLB þ bBmBð0Þ=kdegB

ð29Þ

Now by combining these results we conclude

mLrpIðtÞ
mLrpIð0Þ

� m
�
LrpIðtÞ

m� LrpIð0Þ
� mBðtÞ

mBð0Þ
ð30Þ

We note that for t = 3 days we have mBðtÞ
mBð0Þ � 2and

mLrpI ðtÞ
mLrpI ð0Þ � 3 contradicting this inequality. Thus

the model without autoregulation of can never match the observed fold-change inmLrpI

Simulations
The formulated system of equations for each model was analyzed using a number of tools and
functions inMATLAB 2013(a). Solution of the system of ODEs was obtained with ODE15s solver,
as the parameter variation during optimization may cause system stiffness. Each case was run using
500 different initial parameter sets, by setting the initial parameters to a set of random numbers
generated through the RandStream function in MATLAB, seeded with 'mt19937ar’. All parameter
optimization simulations were run on the Rice Shared Tightly-Integrated Cluster (STIC).

Parameter optimization
Parameter fitting was employed in order to test the compatibility of the proposed network topol-
ogies with the experimental data. If there is a set of parameters that allows the dynamical equa-
tions describing the system to sufficiently replicate the experimental data, then the network
topology may be feasible. In order to fit system parameters to the data, the parameters were var-
ied in order to attempt to minimize the deviation of the numerical solution of the dynamical sys-
tem from the experimental data (least squares). All fits used unweighted least squares, except the
wild type ideR and icl1 data, which was weighted by the standard deviations of each data point
because the data point at day 3 and 4 respectively had particularly large standard deviations.
Parameter optimization was performed using particle swarm optimization (pso), a metaheuristic,
constrained optimization routine. The same implementation of pso for MATLAB was used for
all aforementioned cases [55]. The pso algorithm was set to have a maximum generation number
of 5000 and a population size equal to the number of free parameters. The parameter constraints
are delineated in S3 Table, and the parameters corresponding to the fit on Fig 6 are shown in
S4 Table.

Statistical tests
In order to avoid assumptions regarding the underlying distribution of the data, a Wilcoxon
rank-sum test (in MATLAB) was used to evaluate statistical significance for all tests. A one-
tailed test was employed to evaluate if the peak expression was larger than both the first and
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last data points for the dynamics of each gene product (sigB, clgR, lrpI, icl1, ideR). A two-tailed
test was used to evaluate if there was a significant difference between lrpI expression in wt and
ΔlrpI strains for all time points.

Bacterial strains, reagents and media, and growth conditions
M. tuberculosismutants with deletion of sigE, sigB, or clgR, were previously reported [56–58]
and a transposon-insertion mutants in gene rv0465c was obtained from the BEI repository
[12,59]. The gene numbering of theM. tuberculosis genome is presented according to the sys-
tem of Cole et al. [60]. Aerated and hypoxic cultures ofM. tuberculosis were grown in Dubos
Tween-albumin broth (Becton Dickinson) or Middlebrook (MB) 7H10 (solid medium) (Difco)
supplemented with 0.05% Tween 80, 0.2% glycerol, and 10% ADN (2% glucose, 5% bovine
serum albumin [BSA; Sigma], 0.15 M NaCl). Aerated liquid cultures ofM. tuberculosis were
grown in 25-ml tubes at 37°C with magnetic-bar stirring at 450 rpm. Hypoxic cultures ofM.
tuberculosis were grown as described below [12]. Bacilli growth was monitored by measuring
optical density or enumeration of colony forming units. Aliquots of cultures were harvested at
selected time points and processed for RNA extraction. We note that we observed no growth
defects in the mutants, and the optical densities across the time-courses were nearly identical
for all strains used (S6 Fig).

Gradual oxygen depletion model
WhenM. tuberculosis cultures reached OD580 of 0.4 (mid-log phase), they were diluted to an
OD580 of 0.004. Gradual oxygen depletion was achieved by incubating 17 ml-aliquots of
diluted culture in 25-ml culture tubes containing a magnetic stirring bar. This design results in
a ratio of headspace air to medium of 0.5, in accordance with the classical method established
by Wayne and Hayes [61].

RNA extraction and enumeration of transcripts
RNA extraction and enumeration of bacterial transcripts were performed as described previ-
ously [12,62,63]. Briefly, total RNA was purified using TRI reagent (Molecular Research Cen-
ter, Cincinnati, OH) according to the manufacturer's protocol. Reverse transcription was
performed with random hexameric primers and ThermoScript reverse transcriptase (Life tech-
nology, Carlsbad, CA). Transcripts were enumerated by real time PCR in a Stratagene Mx4000
thermal cycler (Agilent Technologies), using gene-specific primers, and molecular beacons
(refer to S5 Table). Transcript numbers were normalized to 16S rRNA copy number ofM.
tuberculosis, as described previously [12,62]. To compare with simulations, all time course
qRT-PCR data in the wild-type strain were normalized to the first data point (time 0), whereas
all data from mutant strains were normalized to the first time point of the corresponding wild
type strain.

Supporting Information
S1 Fig. Block-diagram summary of approach shown in this paper.
(PDF)

S2 Fig. Repression of lrpI by ClgR alone cannot account for nonlinear amplification of lrpI.
(A) A family of sigB and clgR input curves (100 pairs) was created (see Methods for details); for
each pair of input curves, optimization was repeated for the model shown in Fig 4A and 4B.
Amplification of lrpI was plotted for all 100 simulations, all of which resulted in sublinear lrpI
amplification at day 3, in stark contrast to the experimental data. The blue circle represents the
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mean experimentally determined amplification of lrpI and the error bars show ±one standard
deviation of both lrpI and sigB at day 3
(PDF)

S3 Fig. Models with a hypothetical anti-sigma factor B is were not able to replicate experi-
mental data. Several models were constructed where lrpI is directly downregulated by ClgR
and a hypothetical anti-σB factor, A, was introduced that was either (A) constitutively
expressed, (B) regulated by σB, or (C) regulated by ClgR. The predicted dynamics (optimal
parameter sets, solid lines) do not replicate the experimental data (triangles and squares) in
both the wild type (D-F) and ClgR mutant strain (G-I), as well as the wild type ideR dynamics
(J-L).
(PDF)

S4 Fig. Predicted ideR dynamics are consistent with experimental data in Clp model. Addi-
tional fitting results to the model shown in Fig 6. As shown, the predicted ideRmRNA dynam-
ics agree well with the experimental data.
(PDF)

S5 Fig. Qualitative dynamics of icl1 are robust to variations in the input functions. (A) A
family of sigB and clgR input curves (100 pairs) was created (see Methods for details), and (B)
the dynamics of icl1 were modeled with the same network and parameters as Fig 6 (S4 Table);
the bold line represents median icl1 expression at each time point. However, there was no indi-
cation in the data that either sigB or clgRmRNA decreased below its initial value after day 0, so
all curve pairs where either sigB or clgR fell below 1 were excluded in C; the icl1 curves corre-
sponding to the non-excluded input curves are shown in D.
(PDF)

S6 Fig. Growth curves of allM. tuberculosis strains examined in this work.
(PDF)

S1 Table. Input interpolation parameter values.
(PDF)

S2 Table. Description of parameters.
(PDF)

S3 Table. Parameter ranges.
(PDF)

S4 Table. Optimized parameter values corresponding to Fig 6.
(PDF)

S5 Table. Primers (Fwd and Rev) and molecular beacons (MB).
(PDF)

S1 Text. Proof of Theorem.
(PDF)

S1 Data. All experimental data used in this work.
(XLSX)

S1 Code. Model corresponding to Fig 6 implemented in MATLAB.
(M)
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