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SUMMARY
Microbial communities play a critical role in ecological processes, and their diversity is key to their func-
tioning. However, little is known about whether communities can regenerate ecological diversity following
ecotype removal or extinction and how the rediversified communities would compare to the original ones.
Here, we show that simple two-ecotype communities from the E. coli long-term evolution experiment
(LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting
via negative frequency-dependent selection. Communities separated by more than 30,000 generations of
evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth
traits with the ecotype it replaces. However, the rediversified community is also different from the original
community in ways relevant to the mechanism of ecotype coexistence—for example, in stationary phase
response and survival. We found substantial variation in the transcriptional states between the two original
ecotypes, whereas the differences within the rediversified community were comparatively smaller, although
the rediversified community showed unique patterns of differential expression. Our results suggest that evo-
lution may leave room for alternative diversification processes even in a maximally reduced community of
only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even
more pronounced in communities of many species where there are even more potential niches, highlighting
an important role for perturbations, such as species removal, in evolving ecological communities.
INTRODUCTION

Ecological diversification refers to the evolution of a popula-

tion or community of organisms to occupy distinct ecological

niches or habitats within an ecosystem.1 Such diversification

can manifest through various mechanisms, including the

evolution of unique physical or behavioral traits that enable

individuals to utilize diverse resources or withstand varied

environmental conditions.2–4 The propensity for ecological

diversification in a community is influenced by factors like

environmental conditions, prevailing biodiversity, and the

interactions among the species present.4–7 The potential

for diversification can be modulated by the presence of unoc-

cupied niches, or ‘‘ecological opportunities.’’5,8 These oppor-

tunities may diminish as diversity increases and niches

become occupied. However, existing communities can also

generate new niches, facilitating the introduction of novel eco-

types. An example is cross-feeding, where species produce

metabolites that pave the way for the rise of new ecotypes

by forming exploitable niches.9–13
Curren
Microbial communities offer a valuable model for investi-

gating the intertwined evolutionary and ecological processes

driving diversification due to their rapid reproductive and evolu-

tionary rates.11,13–21 In both natural settings22–25 and experi-

mental systems, swift ecological diversification in microbial

communities has been documented, typically propelled by

mechanisms such as cross-feeding,26–30 resource partition-

ing,9,11,31–33 spatial niche differentiation,15,34–36 and potentially

other ecological trade-offs.37,38 Interactions within microbial

communities can either inhibit,17,18 promote,11,13 or have mixed

impacts39 on diversification. The enduring coexistence of a new

ecotype with its immediate ancestor is not assured and may

hinge on community characteristics, such as metabolic trade-

offs.12,40 In experimental contexts, ecological differentiation of

a diversified ecotype is often indicated when an ecotype’s

fitness inversely correlates with its frequency, i.e., displaying

negative frequency-dependent fitness effects. Stable coexis-

tence between the diversified ecotype and its ancestor is

implied if the former can invade when rare but not when

abundant.
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Even when ecotypes can stably coexist, it does not guarantee

that they will coexist indefinitely or at all locations. Ecotypes can

migrate to new territories, potentially without other community

members, or some ecotypes within the community may sponta-

neously go extinct (e.g., due to demographic stochasticity or

environmental fluctuations). In either case, the community be-

comes perturbed, losing one or more members and potentially

leaving ecological niches unfilled. Environmental disturbances

that cause ecotype loss are prevalent across diverse types of

microbial ecosystems, including aquatic, soil, and human-

associated environments.41–47 Oftentimes, local ecotype/spe-

cies extinction is not benign—loss of microbial taxa has been

associated with deterioration of ecosystem functioning in natural

systems.48,49 It has long been noted among biologists that newly

isolated species, and species extinctions, can open up ecolog-

ical opportunities and lead to rapid diversification events.50–53

Theoretical models suggest that perturbed communities may

respond with a combination of ecological and evolutionary

changes.12,54,55,56 These evolutionary changes may include

both directional and diversifying selection,56 with newly evolved

variants either replacing existing community members or coex-

isting alongside them. However, it remains unclear which com-

munities have the potential to rediversify. When rediversification

does occur after ecotype removal, there are two possible sce-

narios: (1) the perturbed community rediversifies and eventually

returns to a state similar to the original community before

the disturbance, or (2) the perturbed community rediversifies

and forms a community that is qualitatively different from the

original one.

Here, we investigate the aforementioned questions surround-

ing rediversification using a minimal microbial model community

of only two, naturally diversified E. coli strains. Specifically, we

employ two strains derived from the E. coli long-term evolution

experiment (LTEE), which was started by Dr. Richard Lenski

and has been running for over 30 years or more than 70,000 gen-

erations.57 An initially isogenic strain of E. coli was split into 12

replicate populations and propagated through daily dilutions in

glucose minimal media (Davis minimal media [DM]25). At the

outset of the LTEE around 6,500 generations, it was found that

one lineage, ara-2, spontaneously diversified into two line-

ages—small (S) and large (L)—that coexist via negative fre-

quency dependence.16 The ecotypes were named for the sizes

of their colonies on certain agar plates, either S or L. The S and

L lineages inhabit distinct temporal and metabolic niches in

the LTEE environment. During exponential phase, L grows

more quickly on glucose, while S specializes in stationary

phase survival and utilizes acetate, a byproduct of overflow

metabolism.27,58 Since their diversification, the lineages have

persisted and evolved over time, exhibiting genetic, transcrip-

tional, and metabolic divergence.16,27,58–63 The LTEE-derived

communities are ideal for our plan to investigate the possibility

and potential patterns of rediversification over evolutionary

time. We can revive the S-L community at 6,500 generations to

probe rediversification right after emergence of the community

and compare with rediversification at later stages of the evolu-

tion experiment.

We found that when we isolated the S ecotype under certain

conditions, it would spontaneously rediversify, giving rise to a

new big colony ecotype SB, even if we used S clones separated
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by more than 30,000 generations of evolutionary time. The new

ecotype, SB, displays hallmarks of ecological differentiation,

including negative frequency-dependent fitness effects when

in coculture with its ancestral S clone. We dissected the new, re-

diversified community, and found that while SB shares a number

of traits with both L and S, it also behaves in entirely new ways.

Our findings suggest that even in a maximally reduced commu-

nity of only two strains, evolution may leave room for alternative

diversification processes, suggesting a hidden adaptive poten-

tial only revealed by ecotype removal. This raises the possibility

that perturbations, such as ecotype removal, could play an

important role in evolving ecological communities by creating

opportunities for alternative evolutionary pathways.

RESULTS

S can quickly diversify into a new ecotype
The ability of the S ecotype to emerge and coexist with the

L ecotype in the LTEE has been attributed to its proficiency in

scavenging acetate released from overflow metabolism during

glycolysis, aswell as its ability to survive and thrive during station-

ary phase.27,58 It has been proposed that the L-S and similar

polymorphisms may arise because of a fundamental, hard-to-

break trade-off between glucose and acetate growth rates in

E.coli.12,55Basedon theseexplanations,onemaysuspect that af-

ter removing either L orS in the two-ecotype community the com-

munity may eventually rediversify and will eventually approach a

two-ecotype community similar to the original L-S community.

We performed a simple experiment where we cultured an

S clone isolated around 6,500 generations, immediately after

the ara-2 lineage diversified into S and L, in glucose minimal me-

dia (DM25) for approximately 60 generations (9 days), with 12

biological replicates. To visualize colony morphologies of the re-

sulting cultures, we plated the cultures on tetrazolium arabinose

(TA) agar plates. Surprisingly, 2 of the independent cultures dis-

played a mixture of large and small colonies (Figure 1A).

After eliminating contamination possibilities by sequencing

several diagnostic genetic loci, we examined whether the large

colony phenotype was heritable. We isolated several large and

small colonies and propagated them in DM25 for around 30 gen-

erations (5 days). The phenotype appeared to be stably heritable

for all selected colonies. To avoid prematurely associating the

larger colony phenotype with the L type, we referred to the

emerging type in our experiments as SB, due to its large (big) col-

onies and its ancestor S.

To gain insights into the robustness of the observed rediversi-

fication after isolation of S over evolutionary timescales, we iso-

lated S from later generations, spanning more than 30,000 gen-

erations of evolution. We repeated the same experiment with

S clones from 17,000 and 40,000 generations with 24 indepen-

dent cultures each; however, we did not see any noticeable

emergence of big colonies after 60 generations (screened about

200 colonies per plate). It is unclear why we did not see any big

colonies; one possible explanation may be that the rate at which

S morphs transition to SB morphs may be low enough that we

would need to have many more replicate cultures to observe re-

diversification (as in the 6,500 S clones). We previously noticed

that 6,500 SB clones (labeled 1 and 6) grew much better in

lysogeny broth (LB) liquid media compared with S clones
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Figure 1. Emergence of the stably heritable SB morph and frequency-dependent fitness effects

(A) Big colony morphs can arise in S cultures derived from 3 different LTEE time points, separated bymore than 30,000 generations of evolution (6,500 clones are

shown here as an example).When both small and big colonies are isolated and propagated in liquid DM25 culture for about 30 generations, then plated on TA agar

plates, we see that the colony size is heritable.

(B–D) Reciprocal invasion experiments, measuring relative fitness of clones when they are in the minority of the population (approximately 1%) or in the majority

(approximately 99%). Each point represents a biological replicate, and horizontal lines represent mean across all points. Competitions between (B) SB clones and

S, (C) S and L, and (D) SB and L. We generally see negative frequency-dependent fitness effects across all strains and competitions.

(E) Triple competition between SB, S, and L, where L and SB are near their equilibrium frequencies and SB in the minority (around 1%). See also Figures S1–S3.
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(potentially accounting for their bigger colonies sizes on similar

agar plates). Thus, we sought to see whether we could enrich

for the appearance of SB by growing 6,500, 17,000, and

40,000 S clones in LB liquid culture. Under these growing condi-

tions, we indeed saw thatSB colonies appeared rapidly, within 1–

3 days, in nearly all of the independent S cultures across the

three LTEE time points (Figure S3). We attributed this to the

higher fitness of SB in LB, relative to S. The new SB clones

were again stably heritable for at least 30 generations.

The big colony phenotype SB bears at least a superficial

resemblance to L, which begs the question: do SB and S repre-

sent genuinely different ecotypes, occupying different ecological

niches, with the potential to coexist with each other? To answer

this question, we performed reciprocal invasion experiments,

where we mixed S and SB clones at high and low frequencies,

and tracked how their frequencies change via flow cytometry

over the course of three growth cycles (see STAR Methods),

to estimate their relative, frequency-dependent fitness effects

(Figure 1B). While relative frequencies of LTEE strains are typi-

cally measured by colony counting, we found significant bias

(Figures S1G and S1H) in frequency measurements of S/L

when measured via colony-forming units (CFUs). In contrast,

we see that flow cytometry provides unbiased frequency mea-

surements (Figures S1A–S1F). We thus chose to use flow cytom-

etry for all further measurements instead of CFUs, owing to its

minimal bias and reduced measurement noise (Figure S1). The

introduction of genomically integrated fluorescent proteins

does not have a measurable impact on fitness (Figure S2C).
We found that most SB clones had significant negative-fre-

quency-dependent fitness differences when in competition

with their parental S clone, a hallmark of ecological differentia-

tion (p< 0:05 for all clones except 6,500 SB 3). These data sug-

gest that many of the SB clones can coexist with S, because

relative fitness is greater than 0 at low frequencies and less

than 0 at high frequencies. However, it is not clear if this is the

case for all of the isolated SB clones, as some have a relative

fitness near or less than 0 at low frequencies. This may be

because the aforementioned SB clones either genuinely do not

coexist with S, or perhaps they coexist at a frequency around

or lower than the one where we took the measurements.

The frequency-dependent fitness differences between SB and

S were similar in magnitude to the fitness differences between

L and S (Figure 1C), which were all significant at p< 0:01. We

also competed SB against L (Figure 1D) and again found signifi-

cant frequency-dependent fitness differences for most clones

(p< 0:01 for all clones except 6,500 SB 3 and 17,000 SB 1). How-

ever, if at least some SB clones can invade both S and L when

rare, why has the SBmorph not appeared in the ara-2 population

of the LTEE, where L and S have been coexisting and coevolving

for tens of thousands of generations? We hypothesized that SB

could not invade an already ‘‘full’’ community and could only

have the chance to invade when one of the ecotypes is removed.

We performed a triple competition experiment, with L and S near

their equilibrium frequency and SB in the minority (Figure 1E). We

found that most SB clones had a significantly lower fitness

comparedwith when it was in theminority with either S or L alone
Current Biology 34, 855–867, February 26, 2024 857
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(p< 0:05 except for 6,500 SB clones 2 and 3 compared to when

competed against S alone, and 17,000 SB 1 6,500 SB 3 when

competed against L alone).

While we have shown that SB spontaneously emerges from a

monoclonal population of S and occupies a distinct ecological

niche, it is not yet clear how SB compares with S and L. In partic-

ular, wewant to understand ifSB simply fills the same niche that L

had occupied before removal, making it somewhat functionally

equivalent to L. The negative frequency-dependent selection be-

tween L and SB suggests that they must be different to some de-

gree, but it is still unclear if SB represents a sort of intermediate

between S and L, or if it shows novel traits. In the following, we

will show that while SB resembles L in some of its growth prop-

erties, it also shows clear differences that are critical for its coex-

istence with S.

Within-cycle growth dynamics of cocultures
To better understand how ecological differentiation arises in the

SB-S and L-S systems, wemeasured thewithin-cycle growth dy-

namics of SB, L, and S in coculture with each other via flow cy-

tometry. The LTEE environment is a seasonal one,27,64—every

24 h, cultures are transferred 1:100 into fresh glucose minimal

media. The populations spend the first part of the day in expo-

nential phase; the remaining time, more than 2/3 of the day, is

spent transitioning out of exponential phase and in stationary

phase. It has been previously shown that L and S occupy

different temporal niches from one another, where L specializes

on exponential growth on glucose, and S specializes on station-

ary phase survival and growth on acetate. Thus, it is natural to

ask how temporal variations in growth are similar or different in

the SB-S system.

To perform the experiments, we propagated S, SB, and L

separately in monocultures for 2 days, before mixing S with

SB and S with L, both at high and low frequencies. We mixed

strains with their partners from the same LTEE generation. For

simplicity, we only used SB clone 1 for all experiments and

LTEE generations. We propagated the cocultures for one more

cycle to allow the populations to physiologically adapt to the

new environment. At the end of the 24-h cycle, we took a flow cy-

tometry measurement of the culture, then split the cultures into

biological replicates and diluted the cocultures 1:100 into fresh

media. Afterward, we took flow cytometry measurements from

the cocultures approximately every hour for about 8 h, then

we took one last measurement at the end of the 24-h cycle (Fig-

ures 2 and S4). We chose this design because the fastest dy-

namics occur during and right after exponential phase—the first

8 h—while dynamics in stationary phase are much slower. The

cultures were grown in a 37�C shaking water bath. We corrected

the cell counts measured in flow cytometry by the total dilu-

tion rate.

We initially focus on the dynamics of strains from 6,500 gener-

ations (Figure 2). Overall, it is immediately clear that there are

larger differences in dynamics in the L-S cocultures compared

with the SB-S cocultures. When S is in both the majority and mi-

nority, L has a long, 2-h lag time, while S starts growing much

more quickly (Figures 2C and 2D), causing a large upward spike

in S frequency. We fit a generalized logistic model to the growth

curves tomore precisely extract the lag times (Figure S5), andwe

see that 6,500 L has a longer lag time than S (p< 0:01, in both
858 Current Biology 34, 855–867, February 26, 2024
cases). When S is cocultured with SB, we do not see any notice-

able lag time; however, when S is in the minority, S ‘‘wakes up’’

more quickly than SB (p = 7$10� 8), leading to a small spike in

S frequency at the beginning of the time course. We see similar

patterns in the cocultures from 17,00 and 40,000 generations—

both L and SB appear to have growth rates very close to 0 at the

beginning of the time course, but S consistently has a larger

initial growth rate (Figure S4). The initially faster growth of

S only occurs when S is in the minority for both L and SB

strains (p< 0:02, across all comparisons); there is no longer a

noticeable difference when S is in the majority (p> 0:1, across

all comparisons).

When 6,500 L starts growing, it has a significantly larger

growth rate than S, pushing the frequency of S back down.

Themagnitude of this growth rate difference is similar regardless

of the relative frequency of the ecotypes (Figures 2E and 2F). In

contrast, the differences between SB and S are much smaller. At

both starting frequencies, SB may have a small growth rate

advantage compared with S early in exponential phase, then S

appears to grow faster in late exponential phase.

In contrast to the dynamics in lag and exponential phase, the

later ‘‘stationary phase’’ dynamics are highly dependent on

which ecotype is in the majority. While most conditions show

non-zero growth rates after about 8 h of growth, we still refer

to this period as stationary phase, because the growth rates

are small. When S is cocultured with L, S grows better than L un-

der both conditions, but the absolute growth rates differ between

the conditions (insets in Figures 2E and 2F). When S is in the mi-

nority with L, both S and L have net positive growth in stationary

phase, although it is higher for S (p = 9$10� 4), potentially point-

ing to the favorable conditions of L-dominated stationary phase

and the putatively large amount of excreted acetate available for

exploitation. In contrast, when S is in the majority with L, S has a

smaller, albeit still positive, net growth rate, while L has a net

negative growth rate in stationary phase (p = 5$10� 4). Concor-

dantly, these patterns suggest that S-dominated stationary

phase is much less hospitable to both S and L.

We see different stationary phase patterns when SB and S are

in coculture, where SB now performs consistently better than S

(insets in Figures 2E and 2F). The ecotype growth rates are signif-

icantly different (p = 0:016) when SB is in the majority with

S—SB has a moderately positive net growth rate, while S has

essentially a net 0 growth rate in stationary phase. Then, when

SB is in the minority, both SB and S have net negative growth

rates, but S declines more than SB, although the difference is

non-significant (p = 0:16). If SB were more similar to L, i.e., an

exponential phase specialist that secretes a substantial amount

of acetate, we would have expected that SB-S and L-S cocul-

tures would have similar behavior in stationary phase. Instead,

SB appears to have enhanced survival in stationary phase and

decreases the survival prospects of S, perhaps because of the

reduced availability of acetate. Thus, while SB does not have a

significant advantage over S in exponential phase like L has, it

compensates with a clear advantage over S in stationary phase,

essential for coexistence of SB with S.

The results show differences in stationary phase behavior

across generations, as well as several conserved features (Fig-

ure S4). Similar to the 6,500 strains, when 17,000 S are in the

minority with L, S has a large positive growth rate during
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Figure 2. Growth dynamics of cocultures over the course of one 24-h growth cycle

Measurements were taken approximately every hour via flow cytometry for the first 8 h after transfer into new media. An additional measurement was taken

approximately 24 h after the start of the cycle. Mixed SB 1 with S along with L with S, all from 6,500 generations, where ecotypes were mixed both in the majority

and minority of the population. Different lines represent biological replicates.

(A and B) Frequency dynamics of S against SB and against L.

(C and D) Total cell count dynamics, separated by each strain in the cocultures.

(E and F) Empirically measured growth rates over time for each strain in the cocultures, calculated as the slope of log-transformed abundance between adjacent

time points, using the second time point as the x axis location. Insets show growth rates during stationary phase, from around 8 to 24 h, on the y axis—presented

to provide a more fine-grained view of the slow changes in abundance during stationary phase. Error bars represent standard errors. See also Figures S4 and S5.
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stationary phase, whereas L does not grow. However, when S

is in the majority with L, its growth rate is comparable to that of

L. The 40,000 S and L strains show different patterns, where L

generally has a higher stationary phase growth rate. However,

this appears to be offset by a large growth advantage of S right

at the end of exponential phase/beginning of stationary phase;

this growth advantage is much larger when S is in the minority

compared with when it is in the majority. This indicates that the

growth advantage of 40,000 S has shifted earlier, potentially

because it has adapted to consume the acetate secreted by

L much more quickly.

Again, the stationary phase behavior when 17,000 and

40,000 S and SB are grown in coculture is noticeably distinct

from the behavior of L-S coculture. Similarly, 17,000 S also

does not grow well in SB-dominated stationary phase. And
17,000 SB actually has a large positive stationary phase

growth rate when S is setting the environment, suggesting

that SB has more to gain from stationary phase when it is in

the minority compared with vice versa. The picture shifts again

with the 40,000 strains—SB benefits very little from being in

stationary phase, but in contrast, S grows well in stationary

phase, especially when dominated by SB. This is quite

different from the behavior of 40,000 S-L cocultures, albeit in

a different direction than the strains from the earlier genera-

tions. Thus, in 40,000 cultures, it appears that SB-S cocultures

act more like L-S cocultures from earlier generations, where

SB is the clear exponential phase specialist and S is the sta-

tionary phase specialist.

Together, these results show that growth traits of L-S cocul-

tures change over evolutionary time, and SB-S cocultures are
Current Biology 34, 855–867, February 26, 2024 859
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Figure 3. Competition of SB and L against S in novel environments

(A–D) Red and blue points represent the relative fitness of S in competition with SB and L clones from the same LTEE time point, respectively, where different

symbols represent different clones. Competitions performed in exponential phase in the same media base (DM) supplemented with different carbon sources: (A)

200 mg/L acetate, (B) 1 mg/mL casamino acids, (C) 20 mM pyruvate, (D) 20 mM glycerol.

(E) Principal-component analysis, using relative fitness in each environment as features. Percentages in parentheses represent percent variance explained by

each principal component. See also Table S4.
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similar in important ways (e.g., initial growth rates), but also show

departures from the original community (e.g., stationary phase

behavior) that reveal how the ecological dynamics have shifted

with the new, rediversified ecotype.

Growth traits in novel environments
While we have shown that SB has distinct growth traits when in

coculture with S in the evolutionary condition, does SB also

behave differently compared with S in novel environments that

neither have been in contact with before? If S and SB mostly

behave similarly in novel environments, then perhaps the under-

lying change between the two morphs is targeted only toward

traits relevant to the mechanism of ecological differentiation.

Other newly diversified ecotypes have previously shown tar-

geted changes to niche adaptation, such as acetate-specialist

E. coli ecotypes that evolve due to specific mutations in the

main acetate-scavenging gene, acs.29,30 On the other hand, if

pleiotropic effects are widespread, then the underlying meta-

bolic/physiological shift in SB may involve global, rather than tar-

geted changes.

To this end, we competed SB clones against S clones for each

LTEE time point in the same minimal media base as the evolu-

tionary condition (DM), supplementedwith different carbon sour-

ces (Figure 3). For comparison, we also competed S against L

clones for each LTEE time point in each of the conditions. We

chose four different carbon sources that support the growth of

S, SB, and L clones from all time points and that enter into central

metabolism at different points,65 potentially allowing us to gain

insight into global changes in physiology and metabolism. After

growing cocultures together for 2 days in DM25, we diluted
860 Current Biology 34, 855–867, February 26, 2024
them 1:100 in each different media.We kept the cultures in expo-

nential phase and took two-ecotype frequency measurements

via flow cytometry: one right before transfer into the new media,

and one at the end of exponential phase. As usual, relative

fitness was computed as the change in logit frequency.

We see that for most SB clones, across most conditions, SB is

noticeably non-neutral relative to S (false discovery rate [FDR]-

corrected two-sided t tests; Table S4). Consistent with previous

experiments,60 we see that L is also usually non-neutral relative

to S across the different carbon sources. The relative fitness of

SB and L clones varies considerably across time points and car-

bon sources. There is not a clear relationship between the fitness

of SB (relative to S) and the fitness of L (relative to S) from the

same time point, also visible in the principal-component analysis

(PCA) representation of the data (Figure 3E). In the PCA, it ap-

pears that SB clones within time points generally cluster together

(but not completely), not with the L clones from their time point;

however, leveraging a modified permutational multivariate anal-

ysis of variance (PERMANOVA) test (see STAR Methods), we

could not reject the null hypothesis that SB clones within a time

point cluster together more than the L clone within the time point

(p> 0:15 for all time points).

Again, there is some variation between different SB clones. For

example, the 17,000 SB 1 clone behaves noticeably differently

compared with the 17,000 SB 2 and SB 3 clones especially in

the pyruvate (p< 0:001, both clones) and glycerol (p< 0:02,

both clones) conditions, while the three clones cluster together

in the acetate condition. The 17,000 SB 2 and SB 3 clones also

appear to cluster together, away from the 17,000 SB 1 clone in

the PCA plot (Figure 3E). The 17,000 SB 1 clone also behaved



A B Figure 4. Traits affecting coexistence

(A) Growth dynamics of 6,500 strains in glucose/

acetate media. All strains were grown in mono-

culture, and prior to approximately 6 h, they are

growing exponentially on glucose. Afterward, a di-

auxic shift if visible in all growth curves, where the

strains begin to switch to using acetate. Error bars

are standard deviations, over 8 biological replicates

for each culture. Inset represents lag time from

glucose to acetate growth; error bars are 95%

confidence intervals (CIs).

(B) Survival and growth of strains on heat-killed cells

provides evidence of differential ability to grow and

survive on cell debris. After 24 h of growth, we thoroughly washed a 6,500 S culture (to remove any extracellular metabolites), resuspended the culture in blank

media, and heat-killed the culture. We then washed cultures of 6,500 strains L 1, SB 1, and S 1, mixed the strains, took flow cytometry measurements, and

transferred the cultures 1:1,000 to the heat-killed culture. We then allowed the cultures to incubate for 16 h before taking another measurement.
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differently compared with the other two in the reciprocal invasion

experiment against 17,000 L, where 17,000 SB 1 did not show

noticeable frequency dependence (Figure 1D). The 6,500 SB 3

and 40,000 SB 1 clones also cluster away from the other two

clones within their time point. The conditions where these

‘‘outlier’’ clones diverge from the other clones varies between

time points-6,500 SB 3 is different when grown in in pyruvate

and casamino acids (p< 0:03, all comparisons), and 40,000 SB

1 is primarily different in the acetate condition (p< 0:03, all

comparisons).

Across all three time points, we see that S is better at growth in

acetate compared with L. The evidence for this is stronger for

strains from 6,500 generations (p = 5$10� 4) and 17,000 gener-

ations (p = 0:017), compared with those from 40,000 genera-

tions (p = 0:093). This is consistent with prior findings,58 and

the notion that S represents a consistent acetate-scavenging

specialist over evolutionary time. In contrast, the behavior of

SB in acetate is more variable, both across time points and be-

tween different SB clones. Two of three 6,500 SB clones have a

fitness disadvantage in acetate (p< 0:03, in both cases) relative

to S (albeit less pronounced compared with L), whereas at least

one SB clone from both 17,000 and 40,000 generations have a

fitness advantage in acetate (p< 0:02, in both cases).

We found the fitness disadvantage of 6,500 SB in acetate puz-

zling, because it appears to generally perform better in stationary

phase compared with S (Figure 2). At least in the S-L community,

the advantage of S in stationary phase appears to be mostly

driven by decreased lag time to acetate growth,66 increased ac-

etate growth rate,58 and increased ability to scavenge dead

cells.27 We began by testing if SB has a smaller glucose-to-ace-

tate lag time compared with S, which could explain its stationary

phase advantage. By growing SB, S, and L strains onmedia con-

taining both glucose and acetate, we could observe how they

transition from glucose to acetate growth (Figure 4A). Contrary

to expectations, SB actually has a longer lag time than S, more

similar to that of L, which should give it a disadvantage in station-

ary phase. So we moved on to testing whether SB could scav-

enge cell debris more efficiently than S. To do so, we competed

mixtures of SB and S, and L and S, together in heat-killed cul-

tures, resuspended in blank media to eliminate the presence of

extracellular metabolites (Figure 4B). Consistent with prior

data,27 we see that S is generally more efficient than L at growing

and surviving in an environment of dead cells, albeit with a fre-

quency-dependent effect. In contrast, SB is able to scavenge
dead cells better than S, which may explain its ability to perform

better in stationary phase.

Together, this is another sign that SB is occupying a genuinely

different ecological niche compared with L, which may be shift-

ing over evolutionary time.

Transcriptional differences between ecotypes
Given the strong heritability of the SB phenotype, and multiple

traits that differ with respect to S, we reasoned that the SB

phenotype may have an underlying genetic cause. Thus, we per-

formed whole-genome shotgun sequencing of several S and SB

clones with both short-read sequencing (Illumina) and long-read

sequencing (Nanopore) (see STAR Methods). After reference-

based assembly, we saw that all SB clones had several muta-

tions relative to their ancestor, and all S clones from the same

LTEE generation also had several mutations relative to each

other. The mutations were a mix of synonymous and non-synon-

ymous point mutations, insertions and deletions, and several

large genomic rearrangements (Table S3). However, none of

the mutations differentiated S and SB—there were no consistent

mutations in specific genes or operons. The large number of mu-

tations separating SB clones from their S ancestor is not surpris-

ing; the ara-2 lineage fixed a hypermutator allele before theS and

L lineages split, such that the germline mutation rate is about

1003 higher than that of the LTEE ancestor.67 Thismakes it likely

that many of the mutations are likely (nearly) neutral hitchhikers,

or otherwise were not affected by selection. We attempted to

determine whether there was any parallelism on the level of

Kyoto Encyclopedia of Genes and Genomes (KEGG) annota-

tions instead of genes, but again, we did not detect anything.

Thus, because of the combination of the high mutational back-

ground and lack of detectable genetic parallelism, we cannot

determine whether the SB phenotype has a genetic cause, or

what the causative mutation(s) would be. If the SB phenotype

is caused by some genetic change, it is likely that many different

mutations are able to cause a similar phenotype.

To further understand the underlying causes of the SB pheno-

type,we turned tomeasuring transcriptional differencesbetween

L, S, and SB from 6,500 generations using RNA sequencing

(RNA-seq). We chose to focus on 6,500 strains because this is

the LTEE time point immediately after the S and L lineages diver-

sified, allowing us to focus on the ‘‘minimal’’ differences between

S and L, rather than after extensive evolution and divergence.We

cultured two biological replicates of two independent clones of
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Figure 5. Results from RNA-seq of L, S, and SB clones from 6,500 generations

(A) Principal-component analysis of RNA-seq data, after processing. Samples with the same name represent biological replicates of the same clone; the 1 and 2

labels are to indicate which clone the samples come from.

(B) Distributions of log2 fold changes in gene expression across all genes, comparing different strains to each other.

(C–F) Results of a KEGGgene set enrichment analysis to identify pathwayswith coordinated changes in gene expression between ecotypes, where (C) and (D) are

comparingSBwithS and (E) and (F) are comparing LwithS. Only pathways that are called as significant at p< 0:05 after an FDR correction are included; points are

colored by FDR-corrected log10 p value. Pathways are ordered by normalized enrichment score, which is roughly a measure of the extent to which pathway-

associated genes are overrepresented at the top or bottom of the entire list of genes, ranked by fold expression change. The size of the points is proportional

to the ‘‘gene ratio,’’ which is the ratio of core enrichment genes to the total number of genes in the pathway, i.e., the fraction of genes in the pathway that show

differential expression. See also Table S3 and Figure S6.
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each L, S, and SB from 6,500 generations in glucoseminimal me-

dia, and collected samples in mid-exponential phase (see STAR

Methods), in line with previous, similar transcriptomic measure-

ments.60,68 For a broad overview of the data, we first performed

a PCA, using (normalized, transformed) expression for each

gene as the features (Figure 5A). We see that the first principal

component already captures more than half of the variance be-

tween samples, which primarily serves to separate the L clones

from theS andSB clones. TheS clones appear to cluster together

strongly, with theSB clones flanking them.Hierarchical clustering

also reveals that theS clones cluster together, with theSB 2 clone

as the next most similar, and the SB 1 clone as the outer-most

member of the cluster (Figure S6A). This suggests that there

are more differences between S and SB than there are between

the two S clones, but there are stronger differences comparing

both S and SB with the L clones. The same picture emerges if

we look at the distribution of log2 fold expression changes

between different ecotypes (Figures 5B and S6D). Comparing S

andSBwith L, there aremany geneswith a large range of expres-

sion changes, both increasing and decreasing in expression. In

contrast, there are generally smaller differences between the

twoSB clones andS. Again, there are larger andmore differences
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between SB 1 and S, compared with SB 2 and S, suggesting vari-

ability between the two SB clones.

Given that there are noticeable differences between SB and S,

we next sought to understand what those differences represent.

Are there identifiable pathways with coordinated expression

changes? How do they compare with the differences between

LandS?To this end,weperformedgeneset enrichment analyses

to identify differentially expressed KEGG pathways.69 We first

compared SB to S and L to S, and only look at pathways that

are significantly enriched at p< 0:05 after a multiple-testing

correction (Figures 5C–5F). We see that there are a number of

pathways significantly downregulated in SB compared with S,

and only one pathway significantly upregulated (Figures 5C and

5D). Most of the downregulated pathways are related to different

aspectsof aminoacidmetabolism.Wealso separately compared

SB 1 and SB 2 against S to better understand the variability be-

tween the two clones (Figure S6C). As expected, most of the

terms identified in the pooled analysis (e.g., ribosomal proteins,

amino acid metabolism terms) appeared as the top terms when

we analyzed the clones separately, albeit at a lower significance

level thanwhen the data from the two clones are pooled together.

There are potentially a handful of differences in enriched
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Figure 6. Dynamics of s70 promoter activity revealed by fluorescence intensity measurements

(A–D) We performed an experiment where we mixed 6,500 S 1 and either 6,500 L 1 or SB 1 at high and low frequencies at day 0 after 3 days of growth in

monoculture, and measured (A and B) frequencies and (C and D) YFP/BFP fluorescence intensities via flow cytometry. The YFP and BFP genes are under the

control of a constitutive s70 promoter. We propagated the strains in coculture thereafter. We see large, consistent, community composition-dependent shifts in

fluorescence intensity for several conditions upon introduction to the community context, especially noticeable when S is in the minority with L, and when SB is in

the minority with S.

(E and F) We quantified the within-cycle fluorescence dynamics (same dataset as shown in Figure 2), where we see substantial changes over the course of the

growth cycle.
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pathways between the two clones. For example, terms related

with O-antigen biosynthesis (e.g., biosynthesis of nucleotide

sugars, O-antigen nucleotide sugar biosynthesis) may be upre-

gulated in SB 1, but not SB 2. The differentially expressed path-

ways between L and S are mostly different, there are no terms

related to amino acid biosynthesis, and many terms related to

lipid metabolism and O-antigen biosynthesis (Figures 5E and

5F).Differentially expressedpathways inL tend to not bedifferen-

tially expressed in SB, and vice versa (Figure S6B).

There are two pathways that are enriched in both comparisons:

flagellarassemblyand ribosomalproteins.Thechanges toflagellar

assembly expression are in the opposite direction for SB and L,

where it is upregulated in SB but downregulated in L, suggesting

that gene expression for this pathway is ordered L < S < SB. In

contrast, expression of ribosomal proteins is downregulated in

both L and SB, perhaps indicating some degree of parallelism

involving a fundamental aspect of cell physiology between the

two ecotypes. However, overall, with the exception of the downre-

gulation of ribosomal proteins, it appears that the transcriptional

changes that differentiate SB and L from S are quite distinct.

Our RNA-seq dataset was restricted to monoculture mid-

exponential phase culture, so we sought to elucidate gene

expression changes throughout the growth cycle, while varying

community composition, by leveraging the fluorescent reporters

we introduced into the ecotypes, all inserted into the same

genomic location. Fluorescence intensity is commonly used to

measure protein concentration and promoter activity.70–73 The
genes encoding the fluorescent proteins are under the control

of a constitutive s70 promoter, giving a read-out of s70 activity.

The net activity of s70 is a useful measure of the global transcrip-

tional state because it is highly responsive to changes in environ-

mental conditions and growth phases. It plays a crucial role in

coordinating the expression of genes in response to environ-

mental stresses, nutrient availability, and other external stim-

uli.74–77 By monitoring s70 activity, we hope to gain insights

into how the cell responds and adapts to different conditions,

providing a snapshot of the global transcriptional state.

To this end, we performed an experiment where we mixed

6,500 S 1 with either 6,500 L 1 or SB 1 at high and low fre-

quencies, after 3 days of growth in monoculture and measured

their frequencies over time and population-averaged fluores-

cence intensity at the end of each cycle (Figures 6A–6D). We

see large, consistent, community composition-dependent shifts

in fluorescence intensity for several conditions upon introduction

to the community context, especially noticeable when S is in the

minority with L, and when SB is in the minority with S. Specif-

ically, in both cases, the fluorescence intensity sharply increases

after 1 day of coculture growth, a shift that is maintained for

the duration of the experiment. The parallel changes in putative

s70 activity across SB and S reveal that both actively change their

transcriptional programs in response to community composi-

tion. To a less noticeable degree, we see that the fluorescence

intensity of L is lower when it is in theminority with S, again point-

ing to a degree of composition-dependence.
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We measured the fluorescence dynamics over the course of

the growth cycle to investigate how the difference arise (Figures

6E and 6F). We see substantial, parallel changes throughout the

cycle, with fluorescence intensity dropping during exponential

phase, before increasing again during stationary phase. These

data reveal that increased fluorescence intensity at the end of

the growth cycle seen when S and SB are in the minority with L

and S respectively accumulates during stationary phase, with

the difference mostly disappearing during exponential phase.

Together, these data provide evidence that SB has a transcrip-

tional reaction to the presence of S in the majority that is parallel

to how S reacts to the presence of L in the majority.

DISCUSSION

Our study explores the capacity of an evolvedmicrobial commu-

nity to quickly regenerate ecological diversity following the

removal of an ecotype. Our results suggest that even in the

case of a community composed of only two strains in a minimal

environment, evolution can leave room for alternative diversifica-

tion processes.

The rediversified ecotype, SB, demonstrates the robustness of

microbial communities to perturbations by sharing several

growth traits with the ecotype it replaces, L. For instance, both

SB and L exhibit slower initial growth or longer lag times

compared with S across all LTEE time points, which may be

involved in a trade-off allowing for higher exponential growth

rates, as observed in other systems.78 However, differences be-

tween the rediversified and original communities suggest that

the mechanism of ecotype coexistence has shifted. Notably,

we observe variations in stationary phase responses, survival,

and ability to scavenge dead cells, as well as distinct patterns

of gene expression. At least in the 6,500 strains, coexistence be-

tween S and SB appears primarily driven by a trade-off between

glucose growth in late exponential phase (where S does better),

and the ability to survive in stationary phase, owing to the advan-

tage in scavenging dead cells (where SB does better). Together,

these findings indicate that ecological rediversification in the S-L

system may be influenced by a combination of constraints and

opportunities. While some traits may evolve nearly deterministi-

cally due to strong ecological or physiological constraints, other

trait values may be more unconstrained. The interplay between

contingency and determinism mirrors patterns observed in

various other evolving systems, including the LTEE.79–81 Dis-

secting why some traits are more evolutionarily constrained dur-

ing diversification compared with others could be a fruitful

avenue for future investigation.

We attempted to determine a potential genetic origin of the SB

phenotype. However, we did not find any consistent mutations

shared between the independent SB clones, relative to their S

ancestor. Thus, the SB phenotype likely either has a large target

size, such that many different mutations can cause the same

phenotype,82,83 or it is causedby anon-genetic heritable change.

Despite the fact that we did not find any shared mutations, the

transcriptional changes of two SB clones were targeted to the

same handful of pathways, predominantly related to amino acid

metabolism. This points to parallelism among independent SB

clones, at least on the transcriptional level, if not on the genetic

level. The downregulation of amino acid biosynthesis may be
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related to the scavenging lifestyle of SB, where its amino acid

needs can be met by consuming dead cells instead of through

de novo synthesis. Additionally, while the differentially expressed

pathways in SB and L relative to S were generally different, we

saw decreased expression of ribosomal proteins in both eco-

types. The fraction of the proteome devoted to ribosomes is

known to controlmanygrowth traits in bacteria,84,85 so the similar

changes in L and SB may help to explain the handful of observed

similarities in growth traits. One might expect that ribosome

expression should be lower in S, due to its slower exponential

growth rate86,87; so the fact that this is not the case may suggest

that SB and L are both allocating their proteome not just to opti-

mize exponential growth rate, but also other growth traits aswell.

While we saw that S could rediversify following isolation, we

did not see any obvious ecological or phenotypic diversification

when Lwas isolated. There may be several reasons for this. (1) S

may have some amount of physiological/genetic/metabolic

plasticity that allows it to diversify that L lacks. (2) Diversification

of L may happen slowly or rarely, or more quickly only under

certain environmental conditions. (3) Perhaps L can rapidly

diversify, but cryptically, where no phenotypic changes are

obvious without more extensive phenotyping. It is certainly the

case that we would not have found SB without the obvious

changes in colony size. It could be that rediversification is

much more common than currently appreciated, but simply

not detected. Sequencing technologies, including metage-

nomic62 and DNA-barcoding-based methods,88 could help to

better reveal the full extent of rediversification across microbial

communities. In fact, through metagenomic sequencing, we

now know that ecological diversification is much more common

in the LTEE than previously thought.62

Our study contributes to the understanding of the ecological

consequences of ecotype removal or extinction, which often oc-

curs in natural microbial communities due to sudden environ-

mental shifts.41–47 The ability of these communities to recover

their diversity after such disruptions might be key to maintaining

their functions and stability over time. Contrary to the notion that

evolutionary processes are too slow to influence ecological re-

covery, our findings underscore the importance of evolution in

the rebound of communities after a disturbance.We used simpli-

fied two-ecotype communities, which are ideal for such studies

because they are well documented and amenable to experi-

mental manipulation.16,27,58–63 The methods we developed to

investigate rediversification in this simple model could serve as

a framework for understanding this process in more complex

ecosystems. The presence of alternative eco-evolutionary path-

ways, even in a maximally reduced community of only two

strains, hints at more complex dynamics in richer ecosystems.

Ultimately, our work sheds light on the resilience of microbial

communities, their ability to recover ecological diversity, and

their adaptability to environmental changes. Future research

on the processes that control these dynamics is essential for a

comprehensive understanding of microbial community function

and stability, especially in the face of environmental shifts.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Most of the experiments presented here were performed in Davis Minimal Media (DM) base [5.36 g/L potassium phosphate (dibasic),

2g/L potassium phosphate (monobasic), 1g/L ammonium sulfate, 0.5g/L sodium citrate, 0.01% Magnesium sulfate, 0.0002% Thia-

mine HCl]. The media used in the LTEE and the competitions shown in Figures 1 and 2 is DM25, that is DM supplement with 25mg/L

glucose. The strains used in this workwere all isolated from the E. coli Long-TermEvolution Experiment (LTEE), and listed in Table S1.

For competition experiments, generally we first inoculated the strain into 1mL LB + 0.2% glucose + 20mM pyruvate (which we

found prevented the emergence of the SB while allowing for robust growth). After overnight growth, we washed the culture 3 times

in DM0 (DMwithout a carbon source added) by centrifuging it at 2500xg for 3 minutes, aspirating the supernatant, and resuspending

in DM0. We transferred the washed culture 1:1000 into DM25 in a glass tube. If a strain was isolated directly from a colony, we would

instead directly resuspend the colony in DM25. Generally, we grew 1mL cultures in a glass 96well plate (Thomas Scientific 6977B05).

We then grew the culture for 24 hours at 37�C in a shaking incubator. The next day, we transferred all the cultures 1:100 again into

1mLDM25. After another 24 hours of growth under the same conditions, we wouldmix selected cultures at desired frequencies, then

transfer the mixture 1:100 to DM25. After another 24 hours of growth under the same conditions, we would transfer the culture 1:100

to a desired media and start taking flow cytometry measurements–in the competitions of Figures 1 and 2, the media is DM25, for the

competitions of Figure 3, the media is DM supplemented with 200mg/L acetate, 1mg/mL casamino acids, 20mM pyruvate, or 20mM

glycerol. For the competitions of Figure 1, we took measurements for 3-4 total days, doing 1:100 serial transfers every 24 hours in

DM25; for Figure 2 we took measurements approximately every hour for 8 hours, then another measurement at 24 hours; for Figure 3

we took a secondmeasurement after 8 hours, when the cultures were still in exponential phase. For growth in glucose/acetate media,

we grew all strains in DM + 250mg/L acetate + 250mg/L glucose, after three cycles of growth on DM25, measuring OD600 absor-

bance in a shaking plate reader (SpectraMax 190; Molecular Devices) over the course of 24 hours. For the competitions in the

heat-killed cultures, we grew 6.5k S 1, L 1, and SB 1 cultures overnight in DM2000. We washed all the cultures in DM0 3x, as

described above, to eliminate the presence of extracellular metabolites. We then heat-killed a portion of the S 1 culture by incubating

it at 70�C for 45 minutes. We then mixed 6.5k S 1, L 1, and SB 1 cultures appropriately, took a flow cytometry measurement, and

resuspended them 1:1000 in 1mL of the heat-killed culture. We allowed the cultures to grow at 37�C for 16 hours (the approximate

length of stationary phase), and then took another measurement.

METHOD DETAILS

Integration of fluorescent proteins
We sought to use flow cytometry to quantify ecotype abundances, which would necessitate that we could differentiate the strains via

fluorescence. We decided to integrate fluorescent proteins into a neutral genomic location of our various strains rather than using

plasmids, because plasmids can carry a significant metabolic burden, and it is often necessary to add antibiotics to the media to

select against plasmid loss. We used a system based on that of Schlechter et al.90 to integrate fluorescent proteins with miniTn7,

a transposon that inserts cargo at a putatively neutral intergenic site downstream of glmS. Briefly, the system works by mating

the recipient strain-of-interest with a donor strain, harboring a plasmid with the miniTn7 proteins, an ampicillin-resistance gene, a

temperature-dependent origin of replication, and the cargo flanked by the left and right Tn7 recognition sites. In this case, the cargo
Current Biology 34, 855–867.e1–e6, February 26, 2024 e2
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consists of a fluorescent protein, under the control of a broad host-range promoter, and a chloramphenicol resistance gene, for se-

lection of integration.

Our protocol for integration proceeded as follows. First, we grew the donor strain with the desired plasmid in LB + 100mg/mL

carbenicillin + 10mg/mL chloramphenicol at 30�C shaken, overnight. We also grew the recipient strain overnight in DM2000 media

at 37�C, directly from glycerol stock. The next day, we washed the donor culture by centrifuging it at 2500xg for 3 minutes, aspirating

the supernatant, and resuspending in DM0.We thenmeasured the optical density (OD) of both cultures, andmixed about 1OD$mL of

each culture on a 20mL LB/agar plate supplemented with 0.2% glucose + 20mM pyruvate. The cultures were allowed to grow into a

lawn overnight at 30�C, allowing the donor strain to conjugate with the recipient. Afterwards, we scraped up the lawn and resus-

pended it in 3mL DM0. We washed the resuspended culture 3 times, as previously described, and then streaked out the culture

on a DM2000 + 10mg/mL chloramphenicol + agar plate, then allowing the plates to incubate overnight at 37�C. This step simulta-

neously selects against the presence of the donor (the donor is a proline auxotroph), against the Tn7 plasmid (it has a tempera-

ture-sensitive origin of replication), and for integration of the Tn7 cargo (via the chloramphenicol resistance gene). After two days

of growth, we restreaked a number of colonies that appeared on DM2000/agar plates for isolation. We then tested for integration

of the Tn7 cargo by amplifying and sanger sequencing the junction between the genome and the fluorescent protein insertion

(see Table S2 for oligonucleotide sequences), and by looking for fluorescence via fluorescence microscopy. We confirmed that

the plasmid was not present in the colony by testing resistance against carbenicillin. We ensured that the colony was not the donor

or a contaminant by checking colony morphologies on tetrazolium -maltose (TM), -arabinose (TA), and -xylose (TX) agar plates. We

further confirmed identity by sanger sequencing the arcA and aspS loci of the clones we moved forward with (see Table S2 for oligo-

nucleotide sequences).

We found that the fluorescence provided by the plasmids designed in Schlechter et al.90 were insufficiently strong for our purposes.

We also needed two different fluorescent proteins with non-overlapping fluorescence profiles so that we could distinguish the two

in our flow cytometer. We decided to use the fluorescent proteins sYFP2100 and eBFP289 because they share the same ancestor and

are highly homologous, and are thus likely to have the same or similar physiological effects on their host, and they have sufficiently

different fluorescence profiles that are compatible with our flow cytometer. Thus, we sought to increase the expression levels of the

fluorescent proteins, and add in BFP, by constructing new plasmids. We chose to use the strong, constitutive s70 BBa_J23119

promoter91 and a ribosome binding site (RBS) designed in silico with the Salis lab "RBS calculator"92, placing them immediately up-

stream of the fluorescent protein sequences. We used Gibson assembly to construct the plasmids by ordering compatible oligonu-

cleotides with the promoter and RBS sequences on them, and then using the backbone of pMRE-Tn7-133 from Schlechter et al.90

and the eBFP2 gene from pBad-EBFP289 for the BFP plasmid. Final plasmid sequences were confirmed via sanger sequencing.

Flow cytometry
For all population measurements taken with flow cytometry, we used the ThermoFisher Attune Flow Cytometer (2017 model) at the

UC Berkeley QB3 Cell and Tissue Analysis Facility (CTAF). For every measurement, we loaded the samples into a round bottom

96 well plate, for use with the autosampler. Typically we diluted the samples 1:5 in DM0, but we changed the dilution rate over

the course of the 8 hour within-cycle timecourse. We set the flow cytometer to perform one washing and mixing cycle before

each measurement, and ran 50mL of bleach through the autosampler in between each measurement to ensure that there was no

cross-contamination between wells. We used the "VL1" channel to detect eBFP2 fluorescence, which uses a 405nm laser and a

440/50nm bandpass emission filter. We used the "BL1" channel to detect sYFP2 fluorescence, which uses a 488nm laser and a

530/30nm bandpass emission filter. For the triple competitions shown in Figure 1E, we used a BFP-tagged S, a YFP-tagged SB,

and a non -fluorescent L strain. To estimate the frequency of L, we added 5 mM of Syto62 red fluorescent dye (ThermoFisher

S11344) to the sample immediately before measurement. We used the "RL1" channel to detect Syto62 fluorescence, which uses

a 637nm laser and a 670/14nm bandpass emission filter. We always used a sample flow rate of 25mL/min.

We use the package flowcytometrytools (v0.4.5)93 to analyze the flow cytometry data. We first perform a hyperlog trans-

form101 and then created threshold gates to sufficiently separate the "noise cloud" (nonfluorescent particles present even

when running blank media) from particles with clear fluorescence. We noticed that in addition to seeing single positive BFP+

and YFP+ particles, we also see some particles called as fluorescent in both channels (Figure S2A). We observed that the pro-

portion of double positive events decreased as a function of fluid flow rate and dilution rate (Figure S2B), suggesting that some-

times multiple cells end up in front of the flow cytometry laser at the same time, and are counted as one event. Thus, we sought

to correct for this effect. We assume that the probability of a cell ending up in front of the laser is constant per unit time, and

uncorrelated in time, i.e. that it is a Poisson process. Thus, for any given window of time, the probability of observing some

number of events is distributed as a Poisson distribution. So under this model, the observed BFP or YFP ‘‘clouds’’ will consist

of single cells, double cells, triple cells, and so on. Similarly, there are many combinations of BFP/YFP cells that can end up in

the double positive cloud. So, in order to get the expectation of the observed frequencies, we add up the contributions of sin-

glets, doublets, triplets, etc by considering the probability of n cells passing in front of the laser together times the probability of

all n cells being the same color,

fobsi =
XN
n = 1

pðn cellsÞfni (Equation 1)
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where i˛ f1;2g. As previously mentioned, pðn cellsÞ will follow a Poisson distribution, but as we do not observe the case when zero

cells pass in front of the laser, we will use a zero-truncated Poisson.

fobsi =
XN
n = 1

ln

n!ðel � 1Þf
n
i =

elfi � 1

el � 1
(Equation 2)

Where l is the average number of cells per event. We have two equations (for fobs1 and fobs2 ) and two unknowns (l and f1), so we can

solve for the real frequencies, which we solve for via numerical root-solving. The total cell count N also must be corrected, where

Ncorrected = Nobservedle
l=ðel � 1Þ. The post-correction frequencies appear to be well-reflective of frequencies measured with colony

counting (Figure S1). The primary reason why we chose to use amathematical correction rather than diluting the samples to the point

where lz0 was for time and efficiency. We found that in order to reduce the number of mixed events to near zero, we would have to

run a much larger volume through the flow cytometer, which takes much more time. This is especially problematic for the growth

curve experiments in Figure 2, where the dynamics are quite rapid, and long times spent in the flow cytometer would likely distort

the data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Once we obtained estimates of strain frequencies and total abundances, we can calculate several downstream metrics of the dy-

namics. Throughout the manuscript, we estimate the fitness effect of a strain s from the dynamics of ecotype frequencies, fðtÞ, using
the model

logit fðtÞ = st + logit f0 + εt : (Equation 3)

We measure time t in units of 24-hour growth cycles, and thus fitness effects are measured in units of 1/cycle. We fit the model

using ordinary least squares, jointly estimating s and the intercept f0. We calculated p-values for differences in fitness effects as a

function of initial ecotype frequency (Figures 1B–1D) using a standard two-sample t-test, then performed a standard Benjamini-

Hochberg FDR correction, pooled across all of the comparisons.

Once we obtained fitness data to measure growth traits in novel environments (Figure 3), we were first interested in testing how

often fitness effects are significantly non-neutral relative to S (i.e. deviate from 0). Thus, we performed standard two-sided, one-sam-

ple t-tests on all environment-strain conditions, then corrected the p-valueswith a Benjamini-Hochberg FDR correction (Table S4). To

test if SB clones (within a timepoint) had significantly different fitness effects in each condition, we used two-sided, two-sample

t-tests, then again corrected with a Benjamini-Hochberg FDR correction. Then, we were interested in testing the hypothesis that

the SB clones within a timepoint cluster together more strongly than with the L clone within the timepoint. Thus, we turned to using

a slightly modified version of permutational multivariate analysis of variance (PERMANOVA),102 to better reflect the structure of our

data, where we have multiple biological replicates for each measurement. To calculate the F statistic, we first computed the mean

relative fitness effect of each strain in each environment, across biological replicates, s. We used total Euclidean distance between

mean fitness effects as the metric, i.e. the total squared distance is the sum over all environments of the squared difference in fitness

between two strains. We only computed the distance for the four strains (SB clones 1-3, L clone) within a timepoint. As previously

described,102 and without modification, we used the total sum-of-squares and the within groups sum-of-squares to compute the

F statistic, using the distancemetric. Then, we needed to estimate a null distribution to compare the F statistic. If we were to estimate

the null distribution with the standard method, we would only get 3 values (treating either SB clone 1, 2, or 3 as the outgroup), which is

not sufficient to construct a null distribution. However, the estimated mean fitness effects are calculated from a finite number of bio-

logical replicates; with resampling, the mean will change. Thus, we use a parametric resampling scheme to model the variability from

sampling. We resampled each mean fitness effect 10,000 times using a Student’s t distribution, srs = s � t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vars=n

p
, where srs is the

resampled fitness effect, s is the empirical mean fitness effect, vars is the empirical (unbiased) variance across biological replicates, n

is the number of replicates, and t � tn� 1 is drawn from a t-distribution with n � 1 degrees of freedom. We get similar results if we

resample using a gaussian distribution instead of a t distribution. We then treat either SB clone 1, 2, or 3 as the outgroup (instead

of L), and repeat the multivariate ANOVA procedure to get F statistics for each resampled sample. We concatenate the samples

from cases where each of the SB clones is treated as the outgroup, so that the final size of the null distribution is 30,000 samples.

We calculate the p-value as the fraction of values in the null distribution that are larger than the F statistic.

We calculated empirical growth rates (Figures 2 and S4) over the course of the 24 hour cycle using the total ecotype abundance

data, nðtÞ. For each pair of adjacent time points in a cycle, we used ordinary least squares to extract estimates of the growth rate (r)

and its standard error, using the model log nðtÞ = rt + n0 + εt. Growth rate estimates were compared using Wald’s test, and p-values

were corrected via a Benjamini-Hochberg FDR correction.

We fit generalized logistic models (Richard’s curves) to the 24 hours growth curve abundance data to extract estimates of lag times

for each strain and condition (Figures 4A andS5).103 For theOD600 data in Figure 4A, we used the timecourse after the end of glucose

exponential phase. Denoting the fitted abundance as bnðtÞ, we use the following form for the generalized logistic model:

bnðtÞ = a
�
1+Te� kðt� tmÞ�� 1=T

+b; (Equation 4)
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We jointly infer the parameters a, T, b, k, tm by using inverse-variance weighted least squares, i.e. min
P

i

P
jðnjðtiÞ � bnjðtiÞÞ2=vi;j,

where i labels time points and j labels biological replicates. We use vi;j as the variance of the measurement error, which is taken to be

the variance of a Poisson random variable. We implement the global minimization by using the differential evolution optimization al-

gorithm implemented in scipy.104 We used standard bootstrapping to estimate the sampling distributions of the lag times, L, with

1000 resamples. We removed outliers from the bootstrapped distributions by first robustly estimating the standard deviation, bs,
of the distribution via the median absolute deviation (MAD), bs = medjL � med Lj=0:67449. Then we counted a bootstrapped repli-

cate as an outlier, and discarded it, if it was more than 3 standard deviations away from the median, 3bs > jL � med Lj. We then used

the bootstrapped distributions to compute confidence intervals and p-values.

Whole genome sequencing
To perform short-read sequencing of SB and S clones (see SI), we first grew the clones overnight in 1mL of DM2000, then pelleted the

cultures and extracted genomic DNA with the DNeasy Blood and Tissue Kit (Qiagen 69504). We prepared the sample libraries with

NEBNext DNA Library Prep kit for Illumina according to the manufacturer’s protocol (New England Biolabs E7645). We sequenced

the samples with the Illumina 4000 HiSeq 150PE.We used breseq (v0.33.2)105 to compare raw reads to the REL606 genome106 (Gen-

Bank: CP000819.1) and to the S ancestor of each SB, and then call genetic variants. Read coverage was around 100x across the

genome, for all samples. We used default parameters for the breseq pipeline, which uses a bayesian model to call single nucleotide

polymorphisms, incorporating information from the FASTQ phred quality score from each read.105

We attempted to determine if there was any parallelism between 6.5k SB clone mutations on the level of KEGG annotations,

focusing on nonsynonymous and indel mutations. We excluded 6.5k SB clone 4 from the analysis, as it is a sister to clone 2. We first

compiled all KEGG annotations of all genes with nonsynonymous and indel mutations across the 6.5k SB clones, and computed how

many times a genemapped to a given annotation. For each annotation that appeared, only one gene in our set mapped to it. We then

expanded our list to include genes immediately adjacent to intergenic mutations, as well as pseudogenes affected by mutations. In

the expanded gene set, we see two genes each map to three different annotations (carbon metabolism, exopolysaccharide biosyn-

thesis, sulfur metabolism). We had planned to implement the multiplicity test to detect parallelism presented in Good et al.,62 how-

ever, they recommend focusing on set items with 3 or more hits to avoid false positives from low counts. We thus do not believe that

there is any parallelism between mutations on the level of KEGG annotations.

To perform long-read sequencing of SB and S clones (see SI), we again grew the clones overnight in 1mL of DM2000, then pelleted

the cultures. High-molecular weight DNA extraction was performed via a standard phenol-chloroform extraction and isopropanol

precipitation. Distribution of DNA fragment sizes were obtained using the Agilent Femto Pulse System. Fragment size selection

was performed using Pippin Prep (Sage Science). The samples were prepared for sequencing with the Nanopore ligation sequencing

kit (Oxford Nanopore, SQK-LSK109). The libraries were then sequenced on an Oxford Nanopore MinION. We used minimap2

(v2.26)94 and sniffles (v2.2)95 with default parameters to detect structural variants.

RNA sequencing
6.5k S and L clones 1 and 2 were isolated from REL11555 and REL11556 respectively; 6.5k SB clones 1 and 2 were the same clones

as previously described. Cultures of 6.5k S, SB, and L clones 1 and 2 were started directly from glycerol stock into 1ml LB + 2g/L

glucose + 20mM pyruvate, as a pre-culture. We started two independent cultures for each clone as biological replicates. After over-

night growth, the cultures were washed by centrifuging the cultures at 2500xg for 3 minutes, aspirating the supernatant, and resus-

pending in DM0, repeated three times. Then, the cultures were diluted 1 : 10� 4 into 1mL fresh DM media supplemented with 4g/L

glucose, in glass tubes. After approximately four hours of growth at 37�C, the cultures were again diluted 1 : 50 in 1mL of the

same media in glass tubes. The cultures were grown shaken at 37�C. The cultures were grown to mid-exponential phase, i.e. until

OD � 0:4, then the entire culture was immediately centrifuged at 2500xg for 3 minutes to pellet. Immediately after centrifugation, we

resuspended the pellets in 25mL TES buffer (10 mM Tris-HCl [pH 7.5], 1 mM EDTA, and 100 mM NaCl) and then lysed the pelleted

cultures with 250U/mL lysozyme (Ready-Lyse Lysozyme Solution; Lucigen R1804M) at room temperature for 5 minutes. For all sub-

sequent steps, we used Monarch Total RNA Miniprep Kit (New England BioLabs T2010S) according to the standard given protocol

for gram-negative bacteria. Samples were eluted in 30ml nuclease-free water, and stored at -80�C. The concentration and purity of all

RNA samples was quantified using Qubit.

RNAse-free DNAse (Invitrogen AM2222) was used to treat the samples for DNA removal. The library preparation was conducted

using Illumina’s Stranded Total RNA Prep Ligation with Ribo-Zero Plus kit and 10bp IDT for Illumina indices. Subsequently, the sam-

ples were sequenced using NextSeq2000, resulting in 2x51bp reads. The process of demultiplexing, quality control, and adapter

trimming was carried out using bcl-convert (v3.9.3) and bcl2fast (v2.20.0.445) (both are proprietary Illumina software for the conver-

sion of bcl files to basecalls). HISAT2 (v2.2.0)96 was used for read mapping. Reads were mapped to the REL606 genome106 (Gen-

Bank: CP000819.1). The read quantification was performed using the functionality of featureCounts (v2.0.1) in Subread.97 All of the

above steps in the pipeline were performed with default parameters, the last two steps also were run with –very-sensitive and

-Q 20 tags, respectively. All sequencing and pre-processing steps were performed by SeqCenter, LLC.

After pre-processing, we obtained a matrix of read counts for each gene for each sample. With this table, we used DESeq2

(v1.38.3)98 to compute fold change in expression between strains and variance-stabilized relative expression values for each

gene across samples (blindly with respect to the design matrix), all with default parameters. We used the variance-stabilized relative
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expression values for the principal components analysis (PCA). We used the ashr method (v2.2)107 with default parameters to shrink

and regularize the log2 fold changes in expression. We computed log2 fold change in expression between samples in two ways, (1)

treating the SB clones as one "strain", and (2) treating the SB clones as separate, so that we get different fold changes in expression

for each clone. Otherwise, forS and L, we pooled data across the two clones and biological replicates when computing fold change in

expression. We used the package clusterProfiler (v4.6.2)99 to perform the KEGG gene set enrichment analysis (GSEA).108 We used

the previously computed log2 fold change in expression as the metric to pre-sort the list of genes. We used the gseKEGG method

along with the parameters organism="ebr", nPerm=1000000, minGSSize=3, maxGSSize=800, eps=1e-20 to perform the analysis.
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Figure S1: Accuracy of flow cytometer in recovering frequencies of

fluorescently-labeled strains in a population. Related to Figure 1.

(A) We cultured YFP- and BFP-tagged versions of REL606 in DM25, then
mixed the cultures at four di↵erent frequencies. After culturing for another
serial dilution round, we measured each culture 24 times in the flow cytometer
(i.e. technical replicates). We also plated the cultures on LB/agar plates and
counted the number of blue/yellow colonies for each culture to get CFUs. The
colored points represent the flow cytometry measurements. The black lines rep-
resent frequencies from CFUs for each of the four cultures, ± standard error.
We see that the CFU and flow cytometry measurements mostly match up. The
x-axis labels refer to the initial volumetric mixing fraction of the two strains.
(B) A plot showing the (scaled) mean-variance relationship, where the variables
are transformed such that we would expect a linear relationship with a slope
of 1 if the error associated with measuring frequencies followed a binomial, and
� 1 if it was overdispersed. fY FP,i represents the relative frequency of YFP
cells in the population, for replicate i, and Ni represents the total number of
events from the flow cytometer. The blue points are measurements from each
experiment, the solid line is the fit to the points, and the dashed line is the
binomial expectation where x = y. Indeed, we see that error looks approxi-
mately binomial. We fit the regression line with ordinary least squares (without
and intercept) and obtained the standard error using standard bootstrapping
on the replicates. (C,D) We cultured YFP- and BFP-tagged versions of 6.5k
L 1 and S 1 respectively in DM25, then mixed the cultures at two di↵erent
frequencies. After culturing for another serial dilution round, we measured each
culture 24 times in the flow cytometer (i.e. technical replicates). (C) The col-
ored points represent the flow cytometry measurements. The x-axis labels refer
to the initial volumetric mixing fraction of the two strains. (D) A plot show-
ing the (scaled) mean-variance relationship, similar to panel B. The blue points
are measurements from each experiment, the solid line is the fit to the points,
and the dashed line is the binomial expectation where x = y. Again, we see
that measurement error is consistent with a binomial. We fit the regression line
with ordinary least squares (without and intercept) and obtained the standard



error using standard bootstrapping on the replicates. (E,F) In a separate set
of experiments, we again cultured YFP- and BFP-tagged versions of 6.5k L 1
and S 1 respectively in DM25, then mixed the cultures at three di↵erent fre-
quencies. We also plated the cultures on standard LB agar plates, and counted
the number of BFP+ and YFP+ colonies on the plate after overnight growth.
The colored points show flow cytometry technical replicates for each conditions,
and the black lines show the CFU-based measurements (shaded region is 95%
CI). The (E) frequencies and (F) total cell counts measured via flow cytometry
and CFUs on LB plates mostly match up. The cell counts measured by flow
cytometry lie within the CFU confidence intervals, they may be slightly biased
downwards (p = 0.11; linear model without intercept) by a factor of about 0.9.
The frequency measurements do not appear to be biased. (G,H) In another
separate experiment, we cultivated four 6.5k L 1 and S 1 cultures at di↵erent
frequencies, and measured frequencies both by taking a single flow cytometry
measurement and by plating the cultures on tetrazolium maltose (TM) plates
and counting for CFUs (3 independent plates per culture). (G) We compared
the S frequencies from the flow cytometer (fexp) to the average S frequen-
cies from CFUs (fcfu) and see that S is consistently over-represented in the
CFU measurements. (H) We hypothesized that there might be a multiplicative
bias a↵ecting frequencies. If this was true, then the true frequency would be
fS = nS/(nS + nL) where ni is the count of ecotype i; the biased frequency
would be f bias

S = bnS/(bnS + nL) where b is the multiplicative bias. Thus,
the odds ratio of the true and biased frequencies should be related linearly,
bfS/(1 � fS) = f bias

S /(1 � f bias
S ). We indeed see a linear relationship between

the odds ratio of the CFU and flow cytometry frequencies, where b̂ ⇡ 1.5. If we
trust the flow cytometry measurements more, at least because it more directly
measures cell counts and it is unbiased with the LTEE ancestor REL606, then
this would imply that measuring S/L frequencies with CFUs on TM plates in-
curs a significant multiplicative bias.



Figure S2: Flow cytometry and fluorescent protein labeling. Related

to Figure 1. (A) Example of raw flow cytometry data and gates, shown as
a 2D histogram of events. The lower left quadrant represents “noise” that is
present even when running blank media, and is thus excluded from further
analysis. The lower right and upper left quadrants represent events that were
called as either BFP or YFP positive, respectively. The upper right quadrant
is composed of events that are both BFP and YFP fluorescent; it appears that
these events happen when both a BFP and YFP positive cell pass in front of
the flow cytometry lasers and are counted as one event. This process appears to
be well-described as a poisson process; when we account for this, we appear to
recover the correct frequencies (Figure S1). The process by which we account
for “double positive” events is detailed in the Methods section. (B) The e↵ect of
varying dilution rate and flow rate in the flow cytometer on the average number
of cells that end up in front of the laser, i.e. the poisson mean �. The center line
represents the median of the data, the box represents the inter-quartile range
(IQR), and the whiskers extend out to 1.5 times the IQR. (C) Fitness e↵ects
of fluorescent protein labels. We competed fluorescently labeled versions of S
and L clones we used in our study against unlabeled versions, and measured
the fitness e↵ects via flow cytometry, with three biological replicates each. We
do not see any consistent fitness e↵ects of the fluorescent protein label across
strains. Figure is plotted on same scale as Figure 1B-E, to facilitate comparison.



Figure S3: Rediversification of S into SB in LB, and fitness in LB.

Related to Figure 1. (A) At day 0, we started S clones (picked from DM2000
plates) in 8 replicate 1mL LB cultures, each for S clones from 6.5k, 17k, and
40k LTEE generations. Every day thereafter, we diluted the culture 1:100 into
1mL fresh LB, and we plated the cultures on TA plates (to a final density of
around 100 colonies). We then recorded if we saw the appearance of the SB

morph in each of the cultures. We saw the appearance of SB in most of the
cultures across the S clones from the three LTEE timepoints. (B) Fitness of SB

clones in LB, relative to S . All SB and S clones were propagated for one day in
DM25, then mixed at approximately a 50-50 ratio, and transferred 1:100 to LB.
Frequency of SB was determined by counting colonies on TA plates. Fitness
is computed as the change in logit frequency. Error bars represent standard
errors.



Figure S4: Growth dynamics of cocultures over the course of one

twenty-four hour growth cycle. Related to Figure 2. Measurements were
taken approximately every hour via flow cytometry for the first eight hours after
transfer into new media. An additional measurement was taken approximately
24 hours after the start of the cycle. Mixed SB with S along with L with
S from the same LTEE generation, where ecotypes were mixed both in the
majority and minority of the population. All competitions involved SB used
clone 1. Di↵erent lines represent biological replicates. Plots in left column
represent experiments done with clones from 6.5k generations; 17k clones in the
middle column; 40k clones in the right column. (A-F) Frequency dynamics of
S against SB and against L. (G-L) Total cell count dynamics, separated by
each strain in the cocultures. (M-R) Growth rates over time for each strain in
the cocultures, calculated as the log-slope between adjacent timepoints, using
the second timepoint as the x-axis location. Insets represent growth rates in
stationary phase, from around 8 to 24 hours. All insets use the same y-axis
limits, set from -0.13 to 0.13 hr�1. Error bars represent standard errors.



Figure S5: Fitting growth curves to extract lag time estimates. Re-

lated to Figure 2. (A) Example of procedure to extract lag time estimates.
We used least-squares curve fitting to fit a generalized logistic curve (black line)
to all the growth curves for a given strain and condition (blue lines). We then
found the point of maximum growth rate (on a log scale), and extrapolated that
rate back in time (black dotted line). In accordance with previous approaches,S1

we designated the lag time as the time where the extrapolated line meets the
initial abundance (red dashed line). We used this procedure to compute lag
times for all conditions and strains from (B) 6.5k, (C) 17k, and (D) 40k gener-
ations. We computed error bars (95% CIs) via standard bootstrapping.



Figure S6: Further RNASeq Analysis. Related to Figure 5. (A)
Heatmap and clustering of gene expression patterns. Expression of individual
genes is clustered on the y-axis, expression of strains are clustered on the x-
axis. We used the variance-stabilized gene expression values from DESeq2, then
averaged the two biological replicates for each strain, and centered and scaled
the values. (B) Comparison of di↵erentially expressed KEGG pathways between
SB and L. Shown are the FDR-corrected p-values of each KEGG pathway, with
the name shown of significantly enriched pathway in either condition. With the
exception of the “Ribosome” and “Flagellar Assembly” pathways, the pathways
di↵erentially expressed in SB and L are mostly orthogonal to each other. (C)
KEGG gene set enrichment analysis for the two SB clones, showing the top ten
genes (sorted by FDR-corrected p-value) for each clone. (D) Volcano plot of
di↵erential expression, comparing di↵erent strains. The p-values on the y-axis
are calculated after a Benjamini-Hochberg FDR correction. The black dashed
line represents a p-value cuto↵ of 0.05.



Strain Name Internal Name Ancestor Notes

REL606 REL606 ara- LTEE ancestor
6.5k S 1 eJA046 REL11555 subclone
6.5k S 2 eJA047 REL11555 subclone
6.5k S 3 eJA048 REL11555 subclone
6.5k L 1 eJA027 REL11556 subclone
6.5k L 2 eJA028 REL11556 subclone
6.5k SB 1 eJA049 6.5k S 1 Rediversified in DM25
6.5k SB 2 eJA036 6.5k S 1 Sister to 6.5k SB 4*
6.5k SB 3 eJA395 6.5k S 1
6.5k SB 4 eJA037 6.5k S 1 Sister to 6.5k SB 2*
6.5k SB 5 eJA034 6.5k S 2
6.5k SB 6 eJA035 6.5k S 3 Rediversified in DM25
17k S 1 eJA052 REL11557
17k L 1 eJA031 REL11578
17k SB 1 eJA055 17k S 1
17k SB 2 eJA397 17k S 1
17k SB 3 eJA398 17k S 1
40k S 1 eJA172 REL10927 Isolated from mixed population
40k L 1 eJA174 REL10927 Isolated from mixed population
40k SB 1 eJA177 40k S 1
40k SB 2 eJA399 40k S 1
40k SB 3 eJA400 40k S 1

Table S1: Table of strains. Related to STAR Methods. *6.5k SB 2 and
4 were isolated from the same rediversification experiment culture–they come
from two di↵erent colonies from the same timepoint from the same plate.



Oligo Name Sequence Purpose

ja35 GAAGAGGAT
AAAACCGTGGA

Amplify arcA for genotyping

ja36 AGGTCAGGG
ACTTTTGTAC

Amplify arcA for genotyping

ja40 TTCGAAGCG
ACAGATGGC

Sanger sequence arcA for genotyping

ja37 CAGTTGTGACATA
CAGCTAACGCT

Amplify aspS for genotyping

ja38 GCTCATGGGAGTT
CACTCAGTTG

Amplify aspS for genotyping

ja42 ACTCTAACC
ACGTCAACACC

Sanger sequence aspS for genotyping

ja200 ATTCGCTAA
ACTGTgctagcatta
tacctaggactgagct
agctgtcaagctgtc
cataaaaccgccc

Gibson assembly primer to make pJA17/18

ja201 atgctagcACAGTTT
AGCGAATACGT
CATAGAGCATTA
AGGAGGTCATAG
atggtgagcaagggcgag

Gibson assembly primer to make pJA17/18

ja183 tccaagctcagctaattacttg
tacagctcgtccatgc

Gibson assembly primer to make pJA17

ja184 cgagctgtacaagtaattagct
gagcttggactcc

Gibson assembly primer to make pJA17

ja190 cttcgccgatcaggatgcg Downstream of glmS - amplify attTn7 junction with FP
ja191 tcgccctcgaacttcacctc In pJA17/18 - amplify attTn7 junction with FP
ja170 caaaatcggttacggttgag Downstream of glmS - sequence attTn7 junction with FP

Table S2: Table of oligonucleotides. Related to STAR Methods.



strain position mutation annotation gene

6.5k SB 1 242,204 (G)9→10 pseudogene (194/373 nt) ECB 00212 →
6.5k SB 1 942,720 (C)7→8 intergenic (+464/+235) clpA → / ← serW
6.5k SB 1 1,292,775 A→G intergenic (-48/-556) hns ← / → tdk
6.5k SB 1 1,368,422 (T)8→9 intergenic (+40/-172) pspE → / → ycjM
6.5k SB 1 1,444,298 C→T R136R (CGC→CGT) ydbC →
6.5k SB 1 1,829,779 G→A intergenic (+11/+82) pncA → / ← ydjE
6.5k SB 1 2,034,188 A→G Y26Y (TAT→TAC) manC ←
6.5k SB 1 2,165,552 (C)5→6 pseudogene (306/1685 nt) yehU ←
6.5k SB 1 2,704,655 T→C F41F (TTT→TTC) ygaX →
6.5k SB 1 2,771,495 T→C T51A (ACC→GCC) cysN ←
6.5k SB 1 2,998,766 G→A intergenic (+40/-66) yqgA → / → pheV
6.5k SB 1 3,937,360 A→G D43G (GAC→GGC) r↵T →
6.5k SB 2 752,223 C→T intergenic (+723/-124) ybgG → / → cydA
6.5k SB 2 942,720 (C)7→8 intergenic (+464/+235) clpA → / ← serW
6.5k SB 2 1,186,311 G→A L754F (CTT→TTT) mfd ←
6.5k SB 2 2,195,273 (C)9→8 coding (110/837 nt) yeiG →
6.5k SB 2 2,762,201 +T coding (875/1365 nt) ygbN →
6.5k SB 4 752,223 C→T intergenic (+723/-124) ybgG → / → cydA
6.5k SB 4 942,720 (C)7→8 intergenic (+464/+235) clpA → / ← serW
6.5k SB 4 1,186,311 G→A L754F (CTT→TTT) mfd ←
6.5k SB 4 1,995,685 (C)8→9 intergenic (+103/+351) yeeN → / ← asnW
6.5k SB 4 2,004,021 -1258 bp 1258 bp deletion
6.5k SB 4 3,213,279 A→G A20A (GCA→GCG) yhaV →
6.5k SB 4 4,598,479 T→C intergenic (+28/+279) nadR → / ← yjjK

6.5k SB 5 242,204 (G)9→10 pseudogene (194/373 nt) ECB 00212 →
6.5k SB 5 1,422,705 INV 179,806 bp inversion
6.5k SB 5 2,567,537 T→C L658L (CTA→CTG) pbpC ←
6.5k SB 5 4,606,996 C→T A151V (GCC→GTC) creC →
6.5k SB 6 508,855 A→G G32G (GGA→GGG) glxR →
6.5k SB 6 751,910 IS1 (–) +8 bp intergenic (+410/-430) ybgG → / → cydA
6.5k SB 6 1,038,663 A→G V141V (GTA→GTG) yccR →
6.5k SB 6 1,140,567 +771 bp 771 bp insertion
6.5k SB 6 1,422,704 INV 179,807 bp inversion
6.5k SB 6 1,184,045 A→G R312R (CGT→CGC) ycfS ←
6.5k SB 6 1,480,910 (A)8→7 coding (786/1407 nt) ydcR →
6.5k SB 6 2,178,109 G→A S140L (TCG→TTG) yohF ←
6.5k SB 6 3,726,210 T→C intergenic (-70/+10) cysE ← / ← gpsA
6.5k SB 6 4,288,802 A→G intergenic (-24/+35) alsB ← / ← rpiR

17k SB 1 794,722 (G)10→9 pseudogene (282/462 nt) ECB 00735 →
17k SB 1 1,292,373 IS1 (–) +9 bp coding (346-354/414 nt) hns ←
17k SB 1 1,603,015 T→C I90V (ATC→GTC) ECB 01505 ←
17k SB 1 1,680,075 +770 bp 770 bp insertion
17k SB 1 1,796,607 (C)10→9 intergenic (-53/+55) celF ← / ← celD
17k SB 1 2,032,376 G→A T405T (ACC→ACT) manB ←
17k SB 1 2,104,764 (CCAG)21→20 pseudogene (238-241/272 nt) ECB 01992 →
17k SB 1 4,447,544 +34 bp pseudogene (636/1388 nt) treB ←

Table S3: Mutations in SB clones relative to their ancestor. Re-

lated to Figure 5. All comparison tables generated with (1) minimap2S2

and snifflesS3 for structural variants, and (2) breseqS4 for all other variants.
Please note that the tables only document mutations of SB clones relative to
their immediate S ancestor. The various S clones also di↵er between one an-
other, e.g. both 6.5k S 2 and 3 have (C)7→8 mutations at position 942,720.
Illumina sequencing sometimes has issues with homopolymer tracts,S5 so ex-
pansions and contractions of homopolymer tracts may not reflect the presence
of true mutations.



Generation Media SB clone or L Mean fitness e↵ect, s FDR, s 6= 0 Significant

6.5k Acetate 1 0.33941992 0.00123886 y
6.5k Acetate 2 -0.0678909 0.16952222
6.5k Acetate 3 0.77471854 0.02828481 y
6.5k Acetate L 0.90360717 0.00047829 y
6.5k CasAA 1 -0.2227881 0.00302507 y
6.5k CasAA 2 -0.1521415 0.04057528 y
6.5k CasAA 3 0.699906 0.06634847
6.5k CasAA L 0.1856107 0.01344624 y
6.5k Glycerol 1 0.39714395 0.00491058 y
6.5k Glycerol 2 -0.3678152 0.02107772 y
6.5k Glycerol 3 0.76054915 0.1582816
6.5k Glycerol L 0.55867873 0.00047829 y
6.5k Pyruvate 1 -0.2905477 0.00123886 y
6.5k Pyruvate 2 -0.0361562 0.13061226
6.5k Pyruvate 3 1.35323686 0.01668868 y
6.5k Pyruvate L 1.81943367 0.00047829 y
17k Acetate 1 -0.7378141 0.00700758 y
17k Acetate 2 -0.1450888 0.34500569
17k Acetate 3 -0.0288927 0.44826275
17k Acetate L 0.16207076 0.01668868 y
17k CasAA 1 1.87108396 0.00307499 y
17k CasAA 2 1.69034966 0.02196037 y
17k CasAA 3 1.52119526 0.01668868 y
17k CasAA L 1.09350998 0.00075765 y
17k Glycerol 1 0.5302828 0.03111336 y
17k Glycerol 2 2.00514665 0.03854516 y
17k Glycerol 3 1.87593382 0.03111336 y
17k Glycerol L 0.01028681 0.10462645
17k Pyruvate 1 -1.8367082 0.00066473 y
17k Pyruvate 2 0.39755245 0.0746602
17k Pyruvate 3 0.97834684 0.03971706 y
17k Pyruvate L 0.78560192 0.00047079 y
40k Acetate 1 1.64176166 0.02107772 y
40k Acetate 2 -0.0352703 0.35777264
40k Acetate 3 -0.5421621 0.01119657 y
40k Acetate L 0.18952022 0.09300927
40k CasAA 1 -1.0206621 0.06088943
40k CasAA 2 -1.171821 0.0496925 y
40k CasAA 3 -1.1075316 0.00491058 y
40k CasAA L -0.8815546 0.00307499 y
40k Glycerol 1 0.23601119 0.03111336 y
40k Glycerol 2 0.15847985 0.32312438
40k Glycerol 3 0.13744615 0.35777264
40k Glycerol L 1.07114232 0.02196037 y
40k Pyruvate 1 0.39831846 0.10462645
40k Pyruvate 2 0.20900129 0.08263866
40k Pyruvate 3 -0.312443 0.04122104 y
40k Pyruvate L 1.12839991 0.02107772 y

Table S4: Growth traits in novel environments. Related to Figure 3.
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