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Abstract21

Genetic drift in infectious disease transmission results from randomness of transmission and host recovery or22

death. The strength of genetic drift for SARS-CoV-2 transmission is expected to be high due to high levels of23

superspreading, and this is expected to substantially impact disease epidemiology and evolution. However,24

we don’t yet have an understanding of how genetic drift changes over time or across locations. Furthermore,25

noise that results from data collection can potentially confound estimates of genetic drift. To address this26

challenge, we develop and validate a method to jointly infer genetic drift and measurement noise from time-27

series lineage frequency data. Our method is highly scalable to increasingly large genomic datasets, which28

overcomes a limitation in commonly used phylogenetic methods. We apply this method to over 490,00029

SARS-CoV-2 genomic sequences from England collected between March 2020 and December 2021 by the30

COVID-19 Genomics UK (COG-UK) consortium and separately infer the strength of genetic drift for pre-31

B.1.177, B.1.177, Alpha, and Delta. We find that even after correcting for measurement noise, the strength32

of genetic drift is consistently, throughout time, higher than that expected from the observed number of33

COVID-19 positive individuals in England by 1 to 3 orders of magnitude, which cannot be explained by34

literature values of superspreading. Our estimates of genetic drift will be informative for parameterizing35

evolutionary models and studying potential mechanisms for increased drift.36

Author Summary37

The transmission of pathogens like SARS-CoV-2 is strongly affected by chance effects in the contact process38

between infected and susceptible individuals, collectively referred to as random genetic drift. We have an39

incomplete understanding of how genetic drift changes across time and locations. To address this gap, we40

developed a computational method that infers the strength of genetic drift from time series genomic data that41

corrects for non-biological noise and is computationally scalable to the large numbers of sequences available42

for SARS-CoV-2, overcoming a major challenge of existing methods. Using this method, we quantified the43

strength of genetic drift for SARS-CoV-2 transmission in England throughout time and across locations.44

These estimates constrain potential mechanisms and help parameterize models of SARS-CoV-2 evolution.45

More generally, the computational scalability of our method will become more important as increasingly46

large genomic datasets become more common.47

Introduction48

Random genetic drift is the change in the composition of a population over time due to the randomness49

of birth and death processes. In pathogen transmission, births occur as a result of transmission of the50

pathogen between hosts and deaths occur as a result of infected host recovery or death. The strength of51

genetic drift in pathogen transmission is determined by the disease prevalence, the disease epidemiology52

parameters [1], the variance in offspring number (the number of secondary infections that result from an53

infected individual) [2], as well as host contact patterns [3]. Many diseases have been found to exhibit high54

levels of genetic drift, such as SARS, MERS, tuberculosis, and measles [2, 4, 5]. The strength of genetic55

drift affects how the disease spreads through the population [2, 3, 6] how new variants emerge [7, 8, 9, 10,56

11], and the effectiveness of interventions [12], making it an important quantity to accurately estimate for57

understanding disease epidemiology, evolution, and control.58

The effective population size is often used to quantify the strength of genetic drift; it is the population size59

in an idealized Wright-Fisher model (with discrete non-overlapping generations, a constant population size,60

and offspring determined by sampling with replacement from the previous generation) that would reproduce61

the observed dynamics [13]. In a neutral population, if the effective population size is lower than the true62

population size, it is an indication that there are additional sources of stochasticity beyond random sampling63

with replacement; thus, a lower effective population size indicates a higher level of genetic drift.64

Transmission of SARS-CoV-2 has been shown to exhibit high levels of superspreading (high variance in65

offspring number) [14, 15, 16] and high levels of genetic drift (low effective population sizes) [17, 18, 19] (see66

also Supplementary table S1). However, studies have focused on particular times and locations, and we lack67

systematic studies over time and space (see Ref. [20] for a recent first study that uses contact tracing data68
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to infer changes in SARS-CoV-2 superspreading over time in Hong Kong). Performing a systematic study69

may be most feasible with a large-scale surveillance dataset, such as that from the COVID-19 Genomics UK70

(COG-UK) consortium, which has sequenced almost 3 million cases of SARS-CoV-2 in both surveillance and71

non-surveillance capacities as of October 5, 2022. We focus specifically on this dataset, and specifically on72

England, due to its consistently large number of sequenced SARS-CoV-2 cases since early in the pandemic.73

A challenge to performing a systematic study of the strength of genetic drift for SARS-CoV-2 and other74

pathogens is how to handle measurement noise, or noise from the data collection process [21]. Measurement75

noise can arise from a variety of factors, including variability in the testing rate across time, geographic76

locations, demographic groups, and symptom status, and biases in contact tracing. Methods exist to infer77

measurement noise from time-series lineage or allele frequencies [22, 23, 24] (see the Supplementary informa-78

tion for a summary of other methods used for inferring genetic drift and additional references). Intuitively,79

in time-series frequency data, genetic drift leads to frequency fluctuations whose magnitudes scale with time,80

whereas measurement noise leads to frequency fluctuations whose magnitudes do not scale with time (Fig-81

ure 1a). Thus, this system has been mapped onto a Hidden Markov Model (HMM) where the processes of82

genetic drift and measurement noise determine the transition and emission probabilities, respectively [25, 26].83

Methods often assume uniform sampling of infected individuals from the population [27, 22, 23], but this84

assumption does not usually hold outside of surveillance studies. A recent study accounted for overdispersed85

sampling of sequences in the inference of fitness coefficients of SARS-CoV-2 variants, but assumes constant86

overdispersion over time [28]; in reality, the observation process may change over time due to changes in87

testing intensity between locations and subpopulations. Thus, to achieve the goal of systematically assess-88

ing the strength of genetic drift over time and space, there is a need to develop methods that account89

for time-varying overdispersed measurement noise to more accurately capture the noise generated from the90

observation process.91

In this study, we develop a method to jointly infer genetic drift and measurement noise that allows92

measurement noise to be overdispersed (rather than uniform) and for the strength of overdispersion to vary93

over time (rather than stay constant). This method makes use of all sequencing data, which is difficult94

to do with existing phylogenetic methods. By fitting this model to observed lineage frequency trajectories95

from simulations, we show that the effective population size and the strength of measurement noise can96

be accurately determined in most situations, even when both quantities are varying over time. We then97

apply our validated method to estimate the strengths of genetic drift and measurement noise for SARS-98

CoV-2 in England across time (from March 2020 until December 2021) and space using over 490,000 SARS-99

CoV-2 genomic sequences from COG-UK. We find high levels of genetic drift for SARS-CoV-2 consistently100

throughout time that cannot be explained by literature values of superspreading. We discuss how community101

structure in the host contact network may partially explain these results. Additionally, we observe that102

sampling of infected individuals from the population is mostly uniform for this dataset, and we also find103

evidence of spatial structure in the transmission dynamics of B.1.177, Alpha, and Delta.104

Results105

Scalable method for jointly inferring genetic drift and measurement noise from106

time-series lineage frequency data107

We first summarize the statistical inference method that we developed to infer time-varying effective popu-108

lation sizes from neutral lineage frequency time series that are affected by overdispersed measurement noise109

(more variable than uniform sampling). We explain the method more extensively in the Methods. We infer110

the effective population size that a well-mixed population would have to have to generate the magnitude of111

the fluctuations that are observed, which is the classical definition of effective population size [13]. Briefly,112

we use a Hidden Markov Model (HMM) with continuous hidden and observed states (a Kalman filter), where113

the hidden states are the true frequencies (ft, where t is time), and the observed states are the observed114

frequencies (fobs
t ) (Figure 1b) (see Methods).115

The transition probability between hidden states of the HMM is set by genetic drift, where the mean116

true frequency is the true frequency at the previous time E(ft+1|ft) = ft, and when the frequencies are117

rare the variance in frequency is proportional to the mean, Var(ft+1|ft) = ft
Ñe(t)

. Ñe(t) = Ne(t)τ(t) where118
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Figure 1: A Hidden Markov Model with continuous hidden and observed states (a Kalman filter) for inferring
genetic drift and measurement noise from lineage frequency time series. (a) Illustration of how genetic drift
and measurement noise affect the observed frequency time series. Muller plot of lineage frequencies from
Wright-Fisher simulations with effective population size 500 and 5000, with and without measurement noise.
In simulations with measurement noise, 100 sequences were sampled per week with the measurement noise
overdispersion parameter ct = 5 (parameter defined in text). All simulations were initialized with 50 lineages
at equal frequency. A lower effective population size leads to larger frequency fluctuations whose variances
add over time, whereas measurement noise leads to increased frequency fluctuations whose variances do not
add over time. (b) Schematic of Hidden Markov Model describing frequency trajectories. ft is the true
frequency at time t (hidden states) and fobs

t is the observed frequency at time t (observed states). The
inferred parameters are Ñe(t) ≡ Ne(t)τ(t), the effective population size scaled by the generation time, and
ct, the overdispersion in measurement noise (ct = 1 corresponds to uniform sampling of sequences from
the population). (c-f) Validation of method using Wright-Fisher simulations of frequency trajectories with
time-varying effective population size and measurement noise. (c) Simulated number of sequences. (d)
Simulated lineage frequency trajectories. (e) Inferred scaled effective population size (Ñe(t)) on simulated
data compared to true values. (f) Inferred measurement noise (ct) on simulated data compared to true
values. In (e) the shaded region shows the 95% confidence interval calculated using the posterior, and in (f)
the shaded region shows the 95% confidence interval calculated using bootstrapping (see Methods).

Ne(t) is the effective population size and τ(t) is the generation time, and both quantities can vary over time;119

however, we are only able to infer the compound parameter Ne(t)τ(t).120

The emission probability between hidden and observed states of the HMM is set by measurement noise,121

where the mean observed frequency is the true frequency E(fobs
t |ft) = ft and when the frequencies are rare122

the variance in the observed frequency is proportional to the mean, Var(fobs
t |ft) = ct

ft
Mt

. Mt is the number123

of sequences at time t. ct is the variance over the mean of the observed number of positive cases of each124

lineage at time t given the true number of cases of each lineage at time t (see Materials and Methods). ct is125

expected to equal one if a random subsample of cases are sequenced, so that the observed number of cases126

of each lineage is approximately given by a Poisson distribution with the mean being the true number of127

cases of that lineage. In our analyses, we constrain ct ≥ 1 because realistically there must be at least Poisson128

sampling of cases for sequencing. Note that the constraint of ct ≥ 1 is still applicable when the number of129

sequenced cases is large as the variance already accounts for the number of sequences in the denominator.130

Our model assumes that the number of individuals and frequency of a lineage is high enough such that the131

central limit theorem applies (at least about 20 counts or frequency of 0.01); to meet this condition, we132
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created “coarse-grained lineages” where we randomly and exclusively grouped lineages together such that133

the sum of their abundances and frequencies was above this threshold (see Methods). Note that there are134

still sufficiently many coarse-grained lineages defined in the simulations and empirical analyses such that the135

assumption of the coarse-grained lineages being rare is true (needed for the defined transition and emission136

probabilities).137

Using the transition and emission probability distributions (see Methods) and the HMM structure, we138

determine the likelihood function (Equation 13 in Methods) describing the probability of observing a par-139

ticular set of lineage frequency time-series data given the unknown parameters, namely the scaled effective140

population size across time Ñe(t) and the strength of measurement noise across time ct. We then maximize141

the likelihood over the parameters to determine the most likely parameters that describe the data. Because142

we are relying on a time-series signature in the data for the inference, we need to use a sufficiently large143

number of timesteps of data; on the other hand, the longer the time series, the more parameters would need144

to be inferred (since both Ñe(t) and ct are allowed to change over time). To balance these two factors, we145

assumed that the effective population size stays constant over a time period of 9 weeks (a form of “regular-146

ization”). We then shift this window of 9 weeks across time to determine how Ñe(t) changes over time (see147

Methods), but this effectively averages the inferred Ñe(t) over time. ct is still allowed to vary weekly.148

To validate our model, we ran Wright-Fisher simulations with time-varying effective population size and149

time-varying measurement noise (Figure 1c-f). Because a substantial number of lineages would go extinct150

over the simulation timescale of 100 weeks, we introduced new lineages with a small rate (a rate of 0.01151

per week per individual of starting a new lineage) to prevent the number of lineages from becoming too152

low. We then did inference on the simulated time-series frequency trajectories (Figure 1d). The inferred153

Ñe(t) and ct closely follow the true values (Figure 1e-f), and the 95% confidence intervals (see Methods154

for how they are calculated) include the true value in a median (across timepoints) of 95% of simulation155

realizations (Figure S5). The error in ct is higher when the variance contributed to the frequency trajectories156

by measurement noise is lower than that of genetic drift, which occurs when the effective population size157

is low or number of sequences is high (more clearly seen in Figure S6, where the effective population size158

is held constant). However, the error on Ñe(t) seems to be unchanged or even slightly decrease when the159

error on ct is increased because the contribution to the variance due to genetic drift is higher. We also160

observe that the inferred Ñe(t) is smoothed over time due to the assumption of constant Ñe(t) over 9 weeks161

(Figure S7); this is a potential drawback when there are sharp changes in the effective population size over162

time. Importantly, we observed that the inferred Ñe(t) will be underestimated if sampling is assumed to be163

uniform when it is actually overdispersed (Figure 1e). This is because variance in the frequency trajectories164

due to measurement noise is incorrectly being attributed to genetic drift. The underestimation is strongest165

when the variance contributed due to measurement noise is high, either due to high measurement noise166

overdispersion, a low number of sampled sequences, or a high effective population size. In this situation,167

joint inference of measurement noise and Ñe(t) from the data is necessary for accurate inference of Ñe(t).168

In summary, we developed a method to infer the strength of genetic drift and measurement noise from169

lineage frequency time series data and validated the accuracy of the method with simulations. This method170

has the potential to scale well with large amounts of genomic data as it only relies on lineage frequency time171

series data.172

Inference of genetic drift in SARS-CoV-2 transmission in England173

We next applied this method to study the effective population size and strength of measurement noise for174

SARS-CoV-2 in England, where hundreds of thousands of SARS-CoV-2 genomes have been sequenced. Be-175

cause our method assumes that lineages are neutral with respect to one another (no selection), we performed176

separate analyses on groups of lineages that have been shown to exhibit fitness differences or deterministic177

changes in frequency: lineages pre-B.1.177, B.1.177, Alpha, and Delta [28, 17, 32, 33]. We checked that178

the assumption of neutrality within each of these groups does not significantly affect our results, and this is179

described below.180

To obtain lineage frequency time series data for SARS-CoV-2 in England, we downloaded genomic meta-181

data from the COVID-19 Genomics UK Consortium (COG-UK) [34] (Figure 2b) and the associated phy-182

logenetic trees that were created at different points in time. To minimize potential bias, we used only183

surveillance data (labeled as “pillar 2”). For sequences pre-B.1.177, we used the pangolin lineages assign-184
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Figure 2: The inferred effective population size and overdispersion of measurement noise in England compared
with the number of positive individuals. (a) Schematic of lineage construction for B.1.177, Alpha, and Delta
from the COG-UK phylogenetic tree. The filled circles represent the sequences of a focal variant sampled in
England, while the unfilled squares represent other sequences, which are of other variants or sampled in other
countries. The phylogenetic tree is cut at a certain depth d = dcut, and each branch cut by the line d = dcut
defines a lineage. Lineages pre-B.1.1.7 are defined using the pango nomenclature [29, 30]. (b) Muller plot
of lineage frequency time series for lineages pre-B.1.177, of B.1.177, of Alpha, of Delta. (c) Inferred scaled
effective population size (Ñe(t) ≡ Ne(t)τ(t)) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta, compared
to the estimated number of people testing positive for SARS-CoV-2 in England at the community level, as
measured by the COVID-19 Infection Survey [31], for all lineages and by variant or group of lineages. To
simplify the plot, only data where the number of positive individuals for a given variant or group of lineages
was higher than 103 in a week are shown. The inferred Ñe(t) is considerably lower than the number of
positive individuals for all times and for all variants or group of lineages. (d) Inferred measurement noise
overdispersion (ct) for pre-B.1.177 sequences, B.1.177, Alpha, and Delta.

ments from COG-UK [29, 30]. However, B.1.177, Alpha, and Delta were subdivided into only one or a few185

pangolin lineages, since a new lineage is defined by sufficiently many mutations and evidence of geographic186

importation. However, for our purposes we only need resolution of neutral lineages within a variant. Thus,187

we created additional neutral lineages by cutting the phylogenetic tree at a particular depth and grouping188

sequences downstream of the branch together into a lineage (see Figure 2a and Methods). Note that as a189

result, the “lineages” that we define here are not necessarily the same as the lineages defined by the Pango190

nomenclature. The trees were created by COG-UK and most sequenced samples were included in the trees191

(Figure S8). However, in some instances downsampling was necessary when the number of sequences was192

very large. In these situations, any downsampling (performed by COG-UK) was done by trying to preserve193

genetic diversity. Most sequences in the tree were assigned to lineages (see Methods), and we corrected for194

the fraction of sequences that were not assigned to lineages in our inference of Ñe(t) (see Methods). This195

yielded 486 lineages for pre-B.1.177, 4083 lineages for B.1.177, 6225 lineages for Alpha, 24867 lineages for196

Delta.197

The inferred scaled effective population size (Ñe = Neτ , effective population size times generation time,198

where the generation time is the time between infections in infector-infectee pairs) is shown in Figure 2c. The199

generation time is around 4-6 days (0.6-0.9 weeks) depending on the variant [35, 36], but we leave the results200
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in terms of the scaled effective population size (rather than effective population size) because the generation201

time may change over time [35], has a high standard deviation [35], and is close to one week so is expected to202

not drastically change the result; additionally, as we show below, the null model estimate that we compare203

to is also multiplied by the generation time, which cancels when we look at the ratio (described below). The204

scaled inferred effective population size was lower than the number of positive individuals in the community205

(estimated by surveillance testing from the COVID-19 Infection Survey [31] and see Methods) by a factor206

of 20 to 1060 at different points in time. The most notable differences between the changes over time in the207

number of positives in the community and that of the scaled effective population size were: the inferred scaled208

effective population size of lineages pre-B.1.177 peaked slightly before the number of pre-B.1.177 positives209

peaked, the inferred scaled effective population size of Alpha decreased slower than the number of positives210

decreased after January 2021, and the shoulder for the inferred scaled effective population size of Delta211

occurred earlier than in the number of positives. We checked that the inferred scaled effective population212

size is not sensitive to the depth at which the trees are cut to create lineages (Figure S9, S10, S11), the213

threshold counts for creating coarse-grained lineages (Figure S12), or the number of weeks in the moving214

time window (Figure S13). Additionally, we checked that the gaussian form of the transition and emission215

probabilities in the HMM are a good fit to the data (Figure S14).216

The inferred measurement noise for each group of lineages is shown in Figure 2d. The inferred measure-217

ment noise overdispersion was mostly indistinguishable from 1 (uniform sampling), but at times was above 1218

(sampling that is more variable than uniform sampling). There were also at times differences in the strength219

of measurement noise between variants when they overlapped in time. In particular, measurement noise for220

lineages pre-B.1.177 peaked in October 2020 despite measurement noise being low for B.1.177 at that time.221

To better interpret the observed levels of genetic drift, we compared the inferred Ñe(t) to that of an SIR222

null model, which includes a susceptible, infectious, and recovered class. The Ñe(t) for an SIR model was223

derived in Ref. [37, 38, 39] and is given by224

Ñe
SIR

(t) =
I(t)

2RtγI
(1)

where I(t) is number of infectious individuals, Rt is the effective reproduction number, and γI is the rate at225

which infectious individuals recover. For the number of infectious individuals, we used the number of positive226

individuals estimated from the UK Office for National Statistics’ COVID-19 Infection Survey [31], which is227

a household surveillance study that reports positive PCR tests, regardless of symptom status. We used the228

measured effective reproduction number in England reported by the UK Health Security Agency [40]. We229

used γ−1
I = 5.5 days [41, 42], and our results are robust to varying γI within a realistic range of values230

(Figure S15). We found that Ñe
SIR

(t) is very similar to the number of positives because the effective231

reproduction number in England was very close to 1 across time and γI is also very close to 1 in units of232

weeks−1. To calculate Ñe
SIR

(t) for each variant or group of lineages, we rescaled the population-level I(t) and233

Rt based on the fraction of each variant in the population and the relative differences in reproduction numbers234

between variants (see Methods). We then calculated the scaled true population size, Ñ(t) ≡ N(t)τ(t), for235

the SIR model by multiplying by the variance in offspring number, σ2, for the SIR model [43]236

ÑSIR(t) = Ñe
SIR

(t){σ2}SIR (2)

{σ2}SIR = 2. (3)

Overall, the inferred Ñe(t) is lower than ÑSIR(t) by a time-dependent factor that varies between 20 and237

590 (Figures 3c and S16), suggesting high levels of genetic drift in England across time. We find similar238

results when using an SEIR rather than an SIR model which additionally includes an exposed class and239

may be more realistic (Methods, Supplementary information, and Figure S17). The ratio of ÑSIR(t) to the240

inferred Ñe(t) was similar across variants and across time, except that for Alpha the ratio initially peaked241

and then decreased over time.242

Because non-neutral lineages could potentially bias the inferred effective population size to be lower in a243

model that assumes all lineages are neutral, we checked the assumption that lineages are neutral with respect244

to one another within a group or variant (pre-B.1.177, B.1.177, Alpha, and Delta) by detecting deterministic245

changes in lineage frequency. We used a conservative, deterministic method that ignores genetic drift, which246
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Deme

Figure 3: Potential mechanisms that can generate a low effective population size. (a) Superspreading, where
the distribution of the number of secondary cases (Z) from a single infected individual is broadly distributed
(variance greater than mean). The superspreading individuals are indicated in blue. (b) Deme structure
without superspreading, due to heterogeneity in the host network structure, where the distribution of the
number of secondary cases is not broadly distributed (variance approximately equal to mean). (c) The ratio
between the ÑSIR(t) (the scaled population size calculated from an SIR model using the number of observed
positive individuals and the observed effective reproduction number) and the inferred Ñe(t) for each variant.
Only data where the error in the SIR model ÑSIR(t) is less than 3 times the value are shown, because
larger error bars make it challenging to interpret the results. The inferred Ñe(t) is lower than the ÑSIR(t)
(which assumes well-mixed dynamics and no superspreading) by a factor of 16 to 589, indicating high levels
of genetic drift. The variance in offspring number from the literature [44, 45] does not entirely explain
the discrepancy between the true and effective population sizes. (d) Simulations of deme structure without
superspreading can generate high levels of genetic drift via jackpot events. SEIR dynamics are simulated
within demes (with Rt = 10, i.e. deterministic transmission) and Poisson transmission is simulated between
demes (Rt ≪ 1, i.e. stochastic transmission) such that the population Rt ∼ 1 (see Methods). Simulation
parameters are: mean transition rate from exposed to infected γE = (2.5 days)−1, mean transition rate from
infected to recovered γI = (6.5 days)−1, total number of demes Dtotal = 5.6 × 105. The ratio between the
number of infected individuals and the inferred effective population size is found to scale linearly with the
deme size and not with the number of infected demes. This scaling results because of jackpot events where a
lineage that happens to infect a susceptible deme grows rapidly until all susceptible individuals in the deme
are infected.

is expected to overestimate the number of non-neutral lineages. We found that 50% of lineages had absolute247

fitness above 0.09 (above the 50th percentile) and 10% of lineages had absolute fitness above 0.27 (above the248

90th percentile). Very likely, some of these lineages are detected as having non-zero fitness simply because249

the model does not correctly account for strong genetic drift which would also lead to changes in lineage250

frequency. Excluding non-neutral lineages with absolute fitness values above the 50th (|s| > 0.09), 75th251

(|s| > 0.16), and 90th (|s| > 0.27) percentiles, leads to only slight changes in the inferred effective population252

size (Figure S18). This result shows that conservatively excluding lineages that could be non-neutral does253
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not change the result that the inferred effective population size is one to two order of magnitudes lower than254

the SIR or SEIR model effective population size.255

We also tested whether background selection (selection against deleterious mutants) in SARS-CoV-2256

could be responsible for a substantial fraction of the reduction in effective population size. We simulated the257

lineage frequency dynamics using the empirically estimated distribution of deleterious fitness effects from258

Ref. [46] (Figure S19 and Methods) and found that the inferred effective population size is consistent with259

the true effective population size to within the error bars (Figure S20) and lower than the inferred effective260

population size in a simulation with only neutral mutations (Figure S21) by no more than a factor of 2261

(Figure S22). Analytical estimates for the expected decrease in effective population size due to the empirical262

distribution of deleterious fitness effects also predict at most a factor of at most 2 decrease in effective263

population size that is not sufficient to explain the two orders of magnitude lower effective population size264

that we observe compared to the expectation (Supplementary Information).265

We also probed the spatial structure of transmission by inferring the scaled effective population size266

separately for each region within England. We find that the scaled effective population size in the regions of267

England is substantially smaller than that in England as a whole for B.1.177, Alpha, and Delta (Figure S1),268

suggesting that the transmission was not well-mixed at that time. Additionally, the discrepancy between269

the inferred regional scaled effective population size and the observed number of positive individuals in a270

region was comparable to that seen in England as a whole (Figure S3), which is consistent with spatially271

segregated dynamics with similar levels of genetic drift in each region. We further describe these results in272

the Supplementary Information.273

Discussion274

Here, we systematically studied the strength of genetic drift of SARS-CoV-2 in England across time and275

spatial scales. To do this, we developed and validated a method for jointly inferring time-varying genetic drift276

and overdispersed measurement noise using lineage frequency time series data (Figure 1), allowing these two277

effects to be disentangled, which overcomes a major challenge in the ability to infer the strength of genetic278

drift from time-series data. Additionally, this method makes use of all sequencing data, overcoming the279

need to subsample data, which is a challenge with current phylogenetic methods. Our approach was able to280

reproduce the expected decrease in effective population size during the decline of pre-B.1.177, B.1.177, and281

Alpha, as well as the increase in effective population size during the emergence of B.1.177, Alpha, and Delta282

(Figure 2c). We did not have enough sequences during the time when Delta was going extinct to infer the283

effective population size during that time period.284

We find that the effective population size of SARS-CoV-2 in England was lower than that of an SIR null285

model true population size (using the observed number of positives) by a time-dependent factor ranging from286

20 to 590 (Figure 3c), suggesting that there were higher levels of genetic drift than expected from uniform287

transmission. We also find evidence for spatial structure in the transmission dynamics during the B.1.177,288

Alpha, and Delta waves, as the inferred Ñe(t) was substantially lower in regions compared to that of all289

England (Figure S1). These findings are consistent with other studies that have found spatial structure in290

transmission of B.1.177 [47], Alpha [48], and Delta [49].291

We observed that with a few exceptions, the amount by which genetic drift was elevated compared to the292

number of positives did not change substantially over time or across variants outside the range of the error293

bars (Figure 3c), despite changes in lockdowns and restrictions (which we may expect to decrease behavior294

that leads to superspreading). This may be due to not having enough statistical power due to the dataset295

size. On the other hand, we note that restrictions affect the mobility network structure in a complex way,296

decreasing some types of mobility while increasing others [50], so lockdowns and restrictions may not affect297

the effective population size in a predictable way. One exception was that Alpha had significantly higher298

genetic drift compared to Delta and the strength of genetic drift in Alpha first peaked then slowly decreased299

over time. This may be either due to differences in the properties of the virus or differences in host behavior.300

For instance, it may suggest that the stochasticity in the transmission of Alpha sharply increased then slowly301

decreased over time. Alternatively, this may be driven by Alpha’s expanding geographic range combined302

with reimported cases of Alpha into the UK (observed from February 2021 onwards), which could both also303

decrease the effective population size [51].304

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2022.11.21.517390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517390
http://creativecommons.org/licenses/by-nc/4.0/


It is important to distinguish measurement noise from genetic drift as measurement noise is a function of305

the observation process and will not affect disease spread, extinction, and establishment of new mutations.306

We observe that measurement noise of SARS-CoV-2 is mostly indistinguishable from uniform sampling, but307

data from some variants at some times do exhibit more elevated measurement noise than uniform sampling.308

Thus, we expect that assuming uniform sampling, as many methods do, or constant overdispersion will lead309

to accurate estimates for this dataset [27, 22, 23, 28]. The number of SARS-CoV-2 sequences from England310

is extremely high and sampling biases are expected to be low, because of efforts to reduce sampling biases by311

sampling somewhat uniformly from the population through the COVID-19 Infection Survey [31] (from which312

a subset of positives are sequenced and included in the COG-UK surveillance sequencing data that we use).313

On the other hand, other countries may have higher sampling biases, so jointly estimating measurement314

noise and genetic drift may be more crucial in those settings. It may also be interesting to use this method315

to test whether genomics data taken from wastewater has lower levels of measurement noise as compared to316

sequenced cases.317

We find that constant selection is unlikely to explain our results, as liberally excluding potentially non-318

neutral lineages does not significantly change the inferred effective population size. Our method is not able319

to precisely pinpoint how many lineages are under selection, but it appears that there is relatively little320

within-variant selection in the time period we investigated, and our method is robust to slight deviations321

from neutrality. Additionally, background selection is unlikely to explain our results as the empirically322

estimated distribution of deleterious fitness effects for SARS-CoV-2 decreased the effective population size323

by at most a factor of 2 from that of the completely neutral scenario.324

Accurately estimating the strength of genetic drift allows us to better understand disease spread and325

extinction, as well as to better parameterize evolutionary models and understand how mutations will establish326

in the population. The establishment probability is the probability that a new mutation will rise to a327

high enough frequency to escape stochastic extinction. For weakly beneficial mutations, the establishment328

probability is linearly related to the effective population size [52]. For strongly beneficial mutations, the329

impact of the effective population size on the establishment probability is quantitatively less straightforward330

and depends on the host network structure [3]. In the absence of clonal interference, the fixation probability,331

or the probability that the mutation will fix in a population, is the same as the establishment probability;332

if there is clonal interference, the fixation probability will depend on additional factors like the mutation333

rate [53, 54]. The low effective population sizes that we observe suggest low establishment probabilities;334

the probability that any newly arisen beneficial mutant rises to a significant frequency will be small. More335

generally, our results give an order of magnitude estimate for the effective population sizes that can be used336

to more accurately parameterize evolutionary models for SARS-CoV-2 as well as an approach to infer the337

effective population size in more specific contexts.338

Potential mechanisms that can contribute to the high levels of genetic drift339

Two potential mechanisms that can contribute to the observed high levels of genetic drift are: (1) variability340

at the individual level through superspreading (Figure 3a), and (2) host population structure (Figure 3b).341

We investigate each of these mechanisms in turn and compare it to our results. While in reality, both342

mechanisms (and others not explored here) are likely at play, it is challenging to tease them apart given our343

limited data. Therefore, in order to gain intuition about how each of these phenomena drives the strength344

of genetic drift in this system, we consider each in turn.345

Infected individuals that cause an exceptional numbers of secondary cases (superspreaders) are one reason346

for an increased level of allele frequency fluctuations. The expected decrease in effective population size is347

given by the per-generation variance in secondary cases, which is sensitive to superspreaders broadening the348

tail of the offspring distribution. Direct measurements of the offspring distribution through contact tracing349

yield variances substantially smaller than our inferred reduction in effective population size [55, 56, 57, 58]350

(Table S1). This could indicate that the tail of the offspring distribution is not well measured by contact351

tracing efforts or that other factors are at play that could decrease the effective population size.352

Primary factors that could further increase fluctuations are selection and spatial structure. While both353

positive and background selection have some effect, we estimate their contribution to not exceed a factor354

of 2 (see above and Supplementary information). We now show that, by contrast, a pronounced host deme355

structure can easily decrease the effective population size by orders of magnitude, even without individual356
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super spreaders.357

Consider a model in which individuals within a deme are very well-connected to one another (i.e. house-358

holds or friend groups, also known as “communities” in network science [59]), but there are few connections359

between demes (Figure 3b). It is possible for deme structure to occur without superspreading. Because360

individuals are very well-connected within a deme, once the pathogen spreads to a susceptible deme, it will361

spread rapidly in a deme until all individuals are infected (a jackpot event). In this way, deme structure can362

lower the effective population size by lowering the effective number of stochastic transmissions events. For363

instance, in the example in Figure 3b, there are 20 individuals, but only 3 potential stochastic transmissions364

events. Deme structure may also arise from correlations in the number of secondary infections over a series365

of hosts (i.e. a series of high numbers of secondary infections in a transmission chain, or conversely low366

numbers of secondary infections in a transmission chain) [60]. This may arise, for instance, if individuals in367

a transmission chain have similar behavior, due to geographical proximity, or similar value systems on risk368

aversion. A recent study has found that individuals infected by superspreading tend to be superspreaders369

themselves more often than expected by chance [61], which would be consistent with this phenomenon.370

To check our intuition that deme structure can decrease the effective population size and increase genetic371

drift, we ran simulations of a simplified deme model (see Methods): all demes have the same number of372

individuals, and there is a sufficiently large enough number of demes that the total number of demes does373

not matter. Initially a certain number of demes are infected, and transmission occurs such that the overall374

effective reproduction number in the population is around 1. From our simulations, we find that when the375

number of individuals in a deme increases, the ratio between the number of infected individuals and the376

inferred effective population size increases (Figure 3d); in other words, the more individuals there are in a377

deme, the higher the level of genetic drift we observe compared what is expected from the number of infected378

individuals. This is because while the number of infected individuals increases when the deme size increases379

(Figure S24a), the inferred effective population size (and thus the level of stochasticity) stays the same as a380

function of deme size (it is more dependent on the number of infected demes) (Figure S24b). However, the381

exact ratio of the number of infected individuals to the inferred effective size depends on the parameters of382

the model.383

Studies that inferred the overdispersion parameter for the offspring number distribution using modeling384

rather than direct contact tracing and found a high variance in offspring number (see Table S1; for example,385

Ref. [44]) may actually be consistent with our results as the high variance may be partly due to superspreading386

events from, for example, host deme structure.387

In reality, both superspreading and host structure are likely at play. Additionally, they could interact388

with each other. For instance, there could be superspreading within a deme. Future work can try to tease389

apart the contribution of these two mechanisms, which for instance may be possible with better transmission390

network data, building on previous work on transmission networks [62], or with time-resolved contact tracing391

data [20]. This will be important because the relative contributions of the two mechanisms of superspreading392

and host population structure to genetic drift can affect the establishment of new variants in the population393

in different ways [3]. If our interpretation is correct that deme structure and jackpot events strongly affect394

the effective population size, then managing superspreading events will be important to decrease the strength395

of genetic drift; nonpharmaceutical interventions should try to reduce these types of events.396

Limitations of the study and opportunities for future directions397

First, the quantity of effective population size is a summary statistic that is influenced by many factors,398

making its interpretation challenging. The effective population size describes the population size under a399

well-mixed Wright-Fisher model, whereas in reality, this assumption is broken by selection, migration, host400

structure, broad offspring number distributions, mutation, within-host evolution, and many other evolution-401

ary and demographic processes. While many of these processes jointly contribute to the strength of genetic402

drift at the transmission level (broad offspring number distributions, host structure), which is what we are403

interested in inferring in this study, some other processes may confound the inference of genetic drift at the404

transmission level (selection, migration, within-host evolution, etc). While it would have been computation-405

ally intractable to jointly infer all possible processes, we addressed the processes that we thought were most406

likely to affect the effective population size in this system besides genetic drift at the transmission level.407

We checked that constant selection could not lower the effective population size as much as we observed.408
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We did not test for more complex forms of selection, such as fluctuating selection, because including more409

complex forms of selection quickly increases the number of parameters in the model such that it becomes410

intractable. However, we note that fluctuating selection that occurs on a fast enough time scale will act effec-411

tively like genetic drift in increasing stochasticity in transmission. We ignored importation of SARS-CoV-2412

into England and exportation of SARS-CoV-2 out of England. Migration can substantially change frequen-413

cies that are locally rare, but we expect importations to only weakly influence the frequency fluctuations of414

abundant variants, on which we have focused in this work. Host migration within the population can lead to415

gene flow; however, this will only affect the effective population size if it results in jackpot events [13]. Our416

model of host deme structure does indeed incorporate gene flow within the population with jackpot events,417

and we find that this type of host deme structure can substantially decrease the effective population size.418

Empirically measured SARS-CoV-2 offspring distributions that take into account superspreaders (see419

references in Table S1) have been described by a negative binomial distribution, which has a finite mean420

and variance and thus can be described by the Wright-Fisher model. We focused on standing variation421

that existed at a particular depth in the phylogenetic tree and ignored de novo mutations subsequently422

arising during the time series. However, we don’t think this should substantially affect our results because423

introducing mutations in the form of new lineages with a small rate in the simulations did not have a large424

effect on the method performance (Figure 1e). While within-host dynamics may in principle impact the425

lineage frequency trajectories, this effect is likely small for our analysis because we focus on acute infections426

(infections in the community rather than in hospitals and nursing homes). Acute infections of SARS-CoV-2427

are thought to generate little within-host diversity that is passed on due to the short infection duration428

and small bottleneck size between hosts [63, 64]; while new mutations arising within acute hosts have been429

observed to be transmitted, these events are rare [63].430

Thus, we think to the best of our knowledge that the low effective population sizes that we observe are431

due to increased levels of genetic drift at the transmission level, which can be due to a variety of mechanisms,432

including the two that we highlight above, superspreading and host deme structure. However, future work433

should explore joint inference of selection, migration, and/or mutation in the model, as is appropriate for434

the pathogen of interest, building on previous work in this area [65, 66, 26, 67].435

Second, there may be biases in the way that data are collected that are not captured in our model. While436

our method does account for sampling biases that are uncorrelated in time, sampling biases that remain over437

time cannot be identified as such (i.e. if one geographical region was dominated by a particular lineage and it438

consistently had higher sequencing rates compared to another geographical region), and this can potentially439

bias the inferred effective population size; although, this is also a problem in phylogenetic methods. One440

approach to this problem that was utilized by some early methods during the pandemic is to develop sample441

weights based on geography, time, and number of reported cases. Future work should study the effect of442

different sampling intensities between regions on uncorrelated and correlated sampling noise. Additionally,443

we assume that the measurement noise overdispersion is identical for all lineages within a variant; in reality,444

there may be differences in sampling between lineages. However, we do not expect this to have a large effect445

on our results as we observed that measurement noise overdispersion was close to 1 for most timepoints in446

this dataset. Future work can test the effect of lineage-specific measurement noise overdispersion on overall447

method performance across different datasets.448

Third, the use of a sliding window of 9 weeks on the lineage frequency data will lead to smoothing of449

sharp changes in effective population size. In our analysis, shortening the time window did not substantially450

affect our results. It may be interesting in future work to develop a continuous method that uses a prior to451

condition on changes in effective population size, similar to those that have been developed for coalescence-452

based methods [1, 68]. This would allow us to infer continuous changes in effective population size without453

needing to use a sliding window.454

Fourth, we have defined lineages by cutting the phylogenetic tree at a particular depth; we chose this455

approach because a tree available for these sequences from COG-UK and we wanted to be somewhat consis-456

tent with the existing pango nomenclature for SARS-CoV-2 lineages, which were defined using a tree. One457

concern is that errors in the constructed tree may introduce additional fluctuations to the lineage frequencies.458

This may particularly be a problem for SARS-CoV-2 given the low mutation rate. As one check, we tested459

that cutting the tree at different depths did not affect the results (Figure S9), suggesting that our results460

were not sensitive to differences in lineage definitions at those depths. However, lineages defined using the461

two cut depths may both have errors in the groupings, so to be more robust, future work could systematically462
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investigate the sensitivity of our method to errors in the tree or compare the results using lineage frequencies463

and allele frequencies (defined using mutations). Recent advances have made building trees for large datasets464

more tractable [69], but we can potentially increase the scalability of our approach even further by making465

the method tree-free. For example, one idea is to cluster the sequences based on a distance metric and466

use cluster frequencies over time or another idea is to use allele frequencies (the frequencies of individual467

mutations). Future work should evaluate the feasibility and accuracy of using these different approaches to468

process the data for inferring the effective population size.469

While we have focused on SARS-CoV-2 in this study, our simulations point to the generalizability of our470

approach, and the method developed here can be extended to study genetic drift in other natural populations471

that are influenced by measurement noise and where genomic frequency data are available. We think that472

this approach would be best suited for large datasets with a long period of sampling, and for pathogens this473

includes HIV, Ebola, and potentially seasonal influenza. It may also be interesting to adapt this approach to474

study data from field studies and ancient DNA [70, 71, 72]. More generally, ongoing methods development475

that integrates genomics, epidemiological, and other data sources is crucial for being able to harness the476

large amounts of data that have been generated to better understand and predict evolutionary dynamics.477
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Materials and Methods478

Data sources and processing479

We downloaded sequence data from the COVID-19 Genomics UK Consortium (COG-UK) [34]. We only480

used surveillance data (labeled as “pillar 2”); this dataset is composed of a random sample of the positive481

cases from the COVID-19 Infection Survey, which is a surveillance study of positive individuals in the482

community administered by the Office for National Statistics (see below). For lineages that appeared before483

B.1.177, we downloaded the metadata from the COG-UK Microreact dashboard [73], which included the time484

and location of sample collection (at the UTLA level), as well as the lineage designation using the Pango485

nomenclature [29, 30]. For B.1.177, Alpha, and Delta sequences, because the Pango nomenclature classified486

them into very few lineages, we created our own lineages from the phylogenetic trees (see below). We487

downloaded the publicly available COG-UK tree on February 22, 2021 for B.1.177; June 20, 2021 for Alpha;488

and January 25, 2022 for Delta. Additionally sensitively analyses shown in the Supplementary Figures used489

trees downloaded on June 1, 2021 for Alpha and March 25, 2022 for Delta. The publicly available trees were490

created by separating sequences into known clades, running fasttree [74] separately for each clade, grafting491

together the trees of different clades, and then using usher [69] to add missing samples (code available at492

https://github.com/virus-evolution/phylopipe). We also downloaded the COG-UK metadata for all493

lineages on January 16, 2022, which included the time and location (at the UTLA level) of sample collection.494

Additional sensitivity analyses shown in the Supplementary Figures used metadata downloaded on March495

25, 2022. For the data of B.1.177, Alpha, and Delta, the data was deduplicated to remove reinfections in496

the same individual by the same lineage, but reinfections in the same individual by a different lineage were497

allowed. This yielded a total of 490,291 sequences.498

The lineage frequency time-series is calculated separately for each variant or group of lineages (pre-499

B.1.177, B.1.177, Alpha, and Delta). First, the sequence metadata are aggregated by epidemiological week500

(Epiweek) to average out measurement noise that may arise due to variations in reporting within a week.501

Then, the lineage frequency is calculated by dividing the number of sequences from that lineage in the502

respective tree by the total number of sequences of that variant (or group of lineages) that were assigned to503

any lineage in the respective tree.504

Because our model describes birth-death processes when the central limit theorem can be applied, we505

need the lineage frequencies to be sufficiently high. Thus, we randomly combine rare lineages into “coarse-506

grained lineages” that are above a threshold number of counts and threshold frequency in the first and last507

timepoint of each trajectory. The motivation of having a cutoff for both counts and frequency is to account508

for the fact that the total number of counts (number of sequences) varies over time. For the threshold,509

we chose 20 counts and frequency of 0.01. The motivation for combining lineages together randomly was510

to further remove any potential effects due to selection. We also tested that creating lineages by cutting511

the tree closer to the root of the tree did not substantially affect the results (Figure S9, S10); this shows512

that grouping lineages together based on genetic similarilty would not have had a substantial affect on our513

results. Sensitivity analyses showed that the choice of the coarse-grained lineage count threshold does not514

substantially affect the results (Figure S12). Coarse-grained lineages are non-overlapping (i.e. each sequence515

belongs to exactly one coarse-grained lineage).516

The estimated number of people testing positive for COVID-19 in England and each region of England517

was downloaded from the UK Office for National Statistics’ COVID-19 Infection Survey [31]. The COVID-19518

Infection Survey includes households that are semi-randomly chosen, and individuals are tested regardless519

of whether they are reporting symptoms. Infections reported in hospitals, care homes, and other communal520

establishments are excluded. Thus the dataset provides a representative number of positive individuals in521

the community setting. The reported date of positive cases is the date that the sample was taken. The error522

on the number of positive individuals from April 17, 2020 to July 5, 2020 is reported as the 95% confidence523

interval, and after July 5, 2020 is reported as the 95% credible interval. The regional data reported the524

positivity rate over two week intervals. To get the number of positives, we multiplied by the number of525

individuals in the community setting in the region (excluding hospitals, care homes, and other communal526

establishments). As the data was reported over two week intervals, we obtained the number of positives for527

each week using linear interpolation.528

The observed effective reproduction numbers for England and each region of England were downloaded529
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from the UK Health Security Agency [40]. Only times where the certainty criteria are met and the inference530

is not based on fewer days or lower quality data are kept. The error on the effective reproduction number is531

reported as the 90% confidence interval. Although not reported in the dataset, we choose the point estimate532

of the effective reproduction number to be the midpoint between the upper and lower bounds of the 90%533

confidence interval.534

Creating lineages in B.1.177, Alpha, and Delta535

For B.1.177, Alpha, and Delta, we divided each of them into neutral lineages based on phylogenetic distance.536

Specifically, for B.1.177 and Alpha, we cut a phylogenetic tree (in units of number of mutations from the root537

of the tree) at a certain depth, d = dcut. Each of the internal or external branches that are cut by the line538

d = dcut defines a lineage (Figure 2a). The (observed) frequency of a lineage at a given time point in England539

was computed by counting the number of England sequences (leaf nodes) belonging to the lineage and by540

normalizing it by the total number of sequences in all assigned lineages of the focal variant in England at541

that time point. Lineage frequencies at the regional level were similarly computed by counting the number542

of sequences separately for each region.543

The choice of dcut is arbitrary to some extent. Because we wanted a sufficiently high resolution of lineages544

from the early phase of spreading of a variant and because the evolutionary distance correlates with the actual545

sample date (Figure S25), for each focal variant, we chose the depth dcut that roughly corresponds to the546

time point when it began to spread over England.547

For the Delta variant, the sequences form two distinct groups along the depth direction, as seen from the548

last panel of Figure S25. Therefore, to divide the Delta variant into lineages with small frequencies, we cut549

the phylogenetic tree at two depths sequentially; we first cut the tree at d
(1)
cut, which resulted in lineages with550

small frequencies plus a lineage with O(1) frequency. Then, to divide the latter lineage further, we took the551

subtree associated with this lineage and cut the subtree at d
(2)
cut.552

For the results presented in the main text, we used (in units of substitutions per site, with the reference553

d=0 being the most recent common ancestor) dcut = 2.323 · 10−2 for B.1.177, dcut = 2.054 · 10−3 for Alpha,554

and d
(1)
cut = 1.687 · 10−3 and d

(2)
cut = 1.954 · 10−3 for Delta. We confirmed that our results are robust to the555

choice of dcut as well as the choice of the phylogenetic tree data we used (Figure S9, S10, S11).556

Model for inferring effective population size from lineage frequency time series557

We use a Hidden Markov Model with continuous hidden and observed states to describe the processes of558

genetic drift and sampling of cases for sequencing (a Kalman filter) (Figure 1A). The hidden states describe559

the true frequencies of the lineages and the observed states describe the observed frequencies of the lineages560

as measured via sequenced cases. We adopt Gaussian approximations for the transmission and emission561

probabilities developed in [75] in order to get analytically tractable forms for the likelihood function, which562

will greatly speed up our computations.563

The transition probability between the true frequencies ft (the hidden states) due to genetic drift when564

1
Ñe(t)

≪ f ≪ 1 has been shown in [75] to be well-described by the following expression, which we use as our565

transition probability,566

p(ft+1|ft, Ñe(t)) =
1

2

√√√√ 2f
1/2
t

πf
3/2
t+1(Ñe(t))−1

exp

(
−

2(
√
ft+1 −

√
ft)

2

(Ñe(t))−1

)
. (4)

Ñe(T ) ≡ Ne(t)τ(t) where Ne(t) is the time-dependent effective population size and τ(t) is the time-dependent567

generation time, which is defined as the mean time between two subsequent infections per individual (i.e.568

the time between when an individual becomes infected and infects another individual, or the time between569

two subsequent infections caused by the same individual). This transition probability gives the correct first570

and second moments describing genetic drift when f ≪ 1, E(ft+1|ft) = ft and Var(ft+1|ft) = ft
Ñe(t)

, and571

is a good approximation when the central limit theorem can be applied, which is the case when f ≫ 0.572

By assuming that ft+1 ≈ ft, and defining ϕt ≡
√
ft, Equation 4 can be approximated as a simple normal573
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distribution574

p(ϕt+1|ϕt, Ñe(t)) = N
(
ϕt,

1

4Ñe(t)

)
. (5)

We describe the emission probability from the true frequency ft to the observed frequency fobs
t (the575

observed states), defining ϕobs
t ≡

√
fobs
t , as576

p(ϕobs
t |ϕt, ct) = N

(
ϕt,

ct
4Mt

)
(6)

whereMt is the number of input sequences. Again, this distribution is generically a good description when the577

number of counts is sufficiently large such that the central limit theorem applies (above approximately 20).578

The first and second moments of this emission probability are E(fobs
t |ft) = ft and Var(fobs

t |ft) = ct
Mt

ft, or579

equivalently considering the number of sequences nobs
t = fobs

t Mt and the true number of positive individuals580

nt, E(n
obs
t |nt) = nt and Var(nobs

t |nt) = ctnt. Thus, ct describes the strength of measurement noise at time581

t. When ct = 1, the emission probability approaches that describing uniform sampling of sequences from582

the population of positive individuals (i.e. can be described by a Poisson distribution in the limit of a large583

number of sequences), namely Var(nobs
t |nt) = nt or equivalently Var(fobs

t |ft) = ft
Mt

. This is the realistic584

minimum amount of measurement noise. When ct > 1, it describes a situation where there is bias (that585

is uncorrelated in time) in the way that sequences are chosen from the positive population. The case of586

0 < ct < 1 describes underdispersed measurement noise, or noise that is less random than uniform sampling.587

The case of ct = 0 describes no measurement noise (for instance, when all cases are sampled for sequencing).588

These last two situations are unlikely in our data, and thus as we describe below, we constrain ct ≥ 1 in the589

inference procedure. In addition to being a good description of measurement noise, defining the emission590

probability in the same normal distribution form as the transmission probability allows us to easily derive591

an analytical likelihood function, described below (Note: see Ref. [26] for a method to derive an analytical592

likelihood function for arbitrary forms of the transition and emission probabilities).593

We derive the likelihood function (up to a constant) for the Hidden Markov Model using the forward594

algorithm, although it can alternatively be derived by marginalizing over all hidden states. We assume an595

(improper) uniform prior on ϕ0 (i.e. no information about the initial true frequency of the lineage).596

p(ϕ0, ϕ
obs
0 , θ0) = p(ϕobs

0 |ϕ0, c0)p(ϕ0) (7)

p(ϕ0) ∝ 1 (8)

p(ϕt, ϕ
obs
0:t , θ0:t) = p(ϕobs

t |ϕt, ct)

∫ ∞

−∞
p(ϕt|ϕt−1, Ñe(t))p(ϕt−1, ϕ

obs
0:t−1, θ0:t−1)dϕt−1, 0 < t ≤ T (9)

p(ϕobs
0:T , θ0:T ) =

∫ ∞

−∞
p(ϕT , ϕ

obs
0:T , θ0:T )dϕT (10)

L(ϕ⃗obs
0:T |θ0:T ) =

∏
α

p({ϕobs
0:T }α, θ0:T )p(θ0:T ) (11)

p(θ0:T ) ∝ 1 (12)

L(ϕ⃗obs
0:T |θ0:T ) =

∏
α

p({ϕobs
0:T }α, θ0:T ) (13)

where ϕobs
0:t ≡ {ϕobs

0 , ..., ϕobs
t }, θ0:t ≡ {Ñe(0), ..., Ñe(t), c0, ..., ct}, and the subscript α indicates a particular597

lineage. We use a uniform prior on the parameters. The parameters θ0:T are inferred by maximizing the598

likelihood (described below).599

The forward algorithm has an analytical form for the simple case of Gaussian transition and emission600

probabilities. We use the identity for the product of two normal distributions N(x, µ, v), where µ is the601

mean and v is the variance:602

N(x, µ1, v1)N(x, µ2, v2) = N(µ1, µ2, v1 + v2)N(x, µ12, v12) (14)

µ12(µ1, µ2, v1, v2) =
µ1v2 + µ2v1

v1 + v2
(15)

v12(v1, v2) =
1

1
v1

+ 1
v2

. (16)
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Solving the forward algorithm recursively, we have603

p(ϕobs
0:T , θ0:T ) =

T∏
i=1

N(ϕobs
i , µi,

ci
4Mi

+ vi) (17)

where604

µ1 = ϕobs
0 (18)

v1 =

1
Ñe(t)

+ c0
M0

4
(19)

µi+1 = µ12(µi, ϕ
obs
i , vi,

ci
4Mi

) (20)

vi+1 = v12(
ci

4Mi
, vi) +

1

4Ñe(t)
. (21)

Equation 17 can be substituted into Equation 13 to obtain the full analytical likelihood function.605

Fitting the model to data606

We split the time series data into overlapping periods of 9 Epiweeks, over which the effective population607

size is assumed to be constant. We first use the moments of the probability distributions combined with608

least squares minimization to get an initial guess for the parameters. Then, we perform maximum likelihood609

estimation using the full likelihood function. To capture uncertainties that arise from the formation of610

coarse-grained lineages from lineages, we create coarse-grained lineages randomly 100 times (except where611

indicated otherwise). We infer the strength of measurement noise and the effective population size for each612

coarse-grained lineage combination (described below).613

Determining the initial guess for the parameters using method of moments approach614

Combining the transition and emission probabilities, and marginalizing over the hidden states we have615

p(fobs
j |fobs

i ) ∝
√

1

(fobs
j )3/2

exp

(
−

2
(√

fobs
j −

√
fobs
i

)2
4κi,j

)
(22)

p(ϕobs
j |ϕobs

i ) = N (ϕobs
i , κi,j) (23)

κi,j ≡
ci

4Mi
+

cj
4Mj

+
(j − i)

4Ñe(t)
. (24)

The first two terms of κi,j are the contribution to the variance from measurement noise at times i ad j, and616

the third term is the contribution to the variance from genetic drift.617

We calculate the maximum likelihood estimate of κi,j , κ̂i,j , which is simply the mean squared displacement618

κ̂i,j =
〈
(ϕobs

j − ϕobs
i )2

〉
. (25)

The standard error is given by619

∆κ̂i,j =

√√√√〈[(ϕobs
j − ϕobs

i )2 − κ̂i,j

]2〉
Z

(26)

where Z is the number of coarse-grained lineages.620

By looking across all pairs of timepoints i and j, we get a system of linear equations in κi,j that depend621

on the parameters ct and Ñe(t). To determine the most likely values of the parameters, we minimize622
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ln
∑
i,j

(κ̂i,j − κi,j)
2

∆κ̂i,j
(27)

using scipy.optimize.minimize with the L-BFGS-B method and the bounds 1 ≤ ct ≤ 100 and 1 ≤ Ñe(t) ≤ 107.623

While underdispersed measurement noise (ct < 1) is in principle possible, we constrain ct ≥1 because624

realistically, the lowest amount of measurement noise will be from uniform sampling of sequences. An625

example of inferred parameters using the methods of moments approach on simulated data is shown in626

Figure S26.627

Maximum likelihood estimation of the parameters628

For each set of coarse-grained lineages, we use the inferred measurement noise values (ct) and inferred scaled629

effective population size from above (Ñe(t)) as initial guesses in the maximization of the likelihood function630

in Equation 13 over the parameters. For the optimization, we use scipy.optimize.minimize scalar with the631

Bounded method and the bounds 1 ≤ ct ≤ 100 and 1 ≤ Ñe(t) ≤ 1011. The time t in the inferred Ñe(t) is632

taken to be the midpoint of the 9 Epiweek period. The reported Ñe(t) is the median inferred Ñe(t) across all633

coarse-grained lineage combinations where Ñe(t) < 105 (values above 105 likely indicate non-convergence of634

the optimization, because most values above 105 are at 1011, see Figure S27). The reported errors on Ñe(t)635

are the 95% confidence intervals (again taking the median across all coarse-grained lineage combinations636

where Ñe(t) < 105) which are calculated by using the likelihood ratio to get a p-value [76, 77]. We replace637

the likelihood with the profile likelihood, which has the nuisance parameters c0:T profiled out:638

p > 0.05 (28)

p =

∫
I

[
LÑe

(ĉ0:T |ϕ⃗obs
0:T )

LÑ ′
e
(ĉ0:T |ϕ⃗obs

0:T )
> 1

]
PÑ ′

e
(ĉ0:T |ϕ⃗obs

0:T )dÑ
′
e (29)

ĉ0:T = argmax
c0:T

LÑe
(c0:T |ϕ⃗obs

0:T ) (30)

PÑ ′
e
(ĉ0:T |ϕ⃗obs

0:T ) ∝ LÑ ′
e
(ĉ0:T |ϕ⃗obs

0:T )p(Ñe) (31)

p(Ñe) ∝ 1 (32)

where I is an indicator function that equals one when the argument is true and zero otherwise, LÑe
(ĉ0:T |ϕ⃗obs

0:T )639

is the profile likelihood with the nuisance parameters (in this case) c0:T profiled out, PÑ ′
e
(ĉ0:T |ϕ⃗obs

0:T ) is the640

posterior where we have used a uniform prior. We also tried a Jeffreys prior which is used for variance641

parameters, but it gave similar results on simulated data because it looked relatively flat over the values of642

Ñe(t) of interest. As the Jeffreys prior was more computationally expensive than the uniform prior and the643

two priors gave similar results, we used the uniform prior for the analyses.644

The reported values of ct are the median across all coarse-grained lineage combinations and across all time645

series segments where the timepoint appears. The reported errors on ct are the 95% confidence intervals as646

calculated by the middle 95% of values across coarse-grained lineage combinations and time series segments.647

We checked that if we allow ct ≥ 0, the results are similar to if we constrain ct ≥ 1 (compare Figure 2648

and S28).649

An example of inferred parameters on simulated data using the maximum likelihood estimation approach,650

compared to the initial guesses of the parameters from the methods of moments approach, is shown in651

Figure S26.652

Correcting for the number of sequences assigned to lineages653

Because some sequences occur before the cut point in the tree that is used for creating lineages, they are654

not included in any lineages. As a result, the number of sequences assigned to lineages is lower than the655

number of sequences in the tree (Figure S29). This will bias the inferred Ñe(t) to be lower than in reality656

when the omitted sequences are from a particular part of the tree even when the dynamics are neutral (i.e.657

a certain part of the population is being left out of the analysis). To correct for the bias in inferred effective658
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population size that results from leaving out sequences from parts of the tree, we divide the inferred effective659

population size by the fraction of sequences in the tree that are assigned to a lineage. We note that while660

the number of sequences in the tree is less than the total number of sampled sequences, the sequences in the661

tree were chosen to be a representative fraction of the total sampled sequences. Thus, we do not need to662

additionally correct for the downsampling of sequences that were included in the tree. To test that randomly663

subsampling sequences for the analysis does not affect the results, we randomly subsampled half of the Delta664

sequences, and reran the analyses; the inferred effective population size was very similar to that from the665

full number of sequences (Figure S30).666

Simulations for validating method667

For the model validation, we perform simulations of the lineage trajectories using a discrete Wright-Fisher668

model. 500 lineages are seeded initially, and the initial frequency of lineages is taken to be the same across all669

lineages. In each subsequent Epiweek, the true number of counts for a lineage is drawn from a multinomial670

distribution where the probabilities of different outcomes are the true frequencies of the lineages in the671

previous Epiweek and the number of experiments is the effective population size. The true frequency is672

calculated by dividing the true number of counts by N . The observed counts are drawn from a negative673

binomial distribution,674

p(nobs
t |ft) = NB(r, q) ≡

(
nobs
t + r − 1

r − 1

)
qr(1− q)n

obs
t (33)

r =
ftMt

ct − 1
(34)

q =
1

ct
(35)

which has the same mean and variance as the emission probability in Equation 6. The total number of675

observed sequences in each timepoint is calculated empirically after the simulation is completed, as it may676

not be exactly Mt. The simulation is run for 10 weeks of “burn-in” time before recording to allow for677

equilibration. Coarse-grained lineages are created in the same way as described above.678

For long time series simulations, some lineages will go extinct due to genetic drift, making it challenging679

to have sufficient data for the analysis. To be able to have a high enough number of lineages for the entire680

time series, we introduce mutations that lead to the formation of a new lineage with a small rate µ = 0.01681

per generation per individual.682

Simulations for testing the effect of balancing selection683

For the simulations that test for the effect of balancing selection, the simulations described above were684

modified as follows. Initially, each individual has a fitness drawn from the empirical distribution of deleterious685

fitness effects. Additionally, each individual forms a single lineage. To model selection, the probability of686

being drawn in the multinomial distribution is weighted by es, where s is the fitness coefficient. Mutations687

occur on the background of each individual in each generation with probability 0.01 and the mutants have688

a fitness that is the sum of that of the parent and a newly drawn fitness from the distribution of deleterious689

fitness effects. The burn-in period ends when the number of lineages reaches the threshold of 100 lineages, and690

recording begins. No new lineages are created in the simulation, so lineages are defined as the descendants691

of the individuals that are initially in the simulation.692

Calculating the effective population size for an SIR or SEIR model693

The effective population size times the generation time in an SIR model is given by Refs. [43, 37]694

Ñe
SIR

(t) ≡ NSIR
e (t)τ(t) =

I(t)

2RtγI
. (36)

The variance in offspring number for an SIR model is approximately 2.695
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For an SEIR model, we calculated Ñe(t) following the framework from Ref. [38]. Using this framework,696

we were only able to consider a situation where the epidemic is in equilibrium. We test how well this697

approximates the situation out of equilibrium using simulations (see Supplementary Information).698

We first considered how the mean number of lineages, A, changes going backwards in time, s, which is699

given by700

dA

ds
= −fpc (37)

where f is the number of transmissions per unit time and pc is the probability that a transmission results701

in a coalescence being observed in our sample. pc is given by the number of ways of choosing two lineages702

divided by the number of ways of choosing two infectious individuals703

pc =

(
A(s)
2

)(
N(s)
2

) =
limN(s)→∞

(
A(s)

2

)
2

N(s)2
. (38)

where the limit assumes that the number of infectious individuals, N(s), is large. In the Kingman coalescent704

we also have705

dA

ds
= −

(
A(s)

2

)
1

Ñe(t)
. (39)

Combining Equations 37, 38, and 39, we have706

Ñe(t) =
N(s)2

2f
. (40)

Thus by determining the number of transmissions per unit time, f , and the number of infectious individuals,707

N(s), in an SEIR model, we can find an expression for Ñe(t).708

These quantities can be derived from the equations describing the number of susceptible (S), exposed709

(E), infectious (I), and recovered (R) individuals in an SEIR model710

dS

dt
= −βI

S

NH
(41)

dE

dt
=

βIS

NH
− γEE − δEE (42)

dI

dt
= γEE − γII − δII (43)

dR

dt
= γII (44)

where β is the number of transmissions per infectious individual per unit time (the number of contacts711

made by an infectious individual per unit time multiplied by the probability that a contact results in a712

transmission), NH is the total population size (NH = S + E + I + R), γE is the rate that an exposed713

individual becomes infectious, δE is the rate of death for an exposed individual, γI is the rate than an714

infectious individual recovers, and δI is the rate of death for an infectious individual.715

The number of infectious individuals in a generation, N(s), is given by the instantaneous number of infec-716

tious individuals plus the number of exposed individuals that will become infectious in that generation [43].717

Thus,718

N(s) =
γE

γE + δE
E + I. (45)

The number of transmissions per unit time is given by719

f = βI
S

NH
. (46)

We rewrite f in terms of the effective reproduction number (for which data are available) which is given by720

the number of transmissions per unit time (f) divided by the number of recoveries and deaths per unit time721

Rt =
f

(γI + δI)I + δEE
. (47)
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Putting everything together, we have that Ñe(t) for an SEIR model in equilibrium is given by722

Ñe
SEIR,eq

(t) =

[(
γE

γE+γI

)
E + I

]2
2Rt[(γI + δI)I + δEE]

. (48)

For SARS-CoV-2, the death rates are much lower than the rate at which exposed individuals become in-723

fectious and the rate at which infectious individuals recover (δE , δI ≪ γE , γI). In this limit, Equation 48724

simplifies to725

Ñe
SEIR,eq

(t) =
(E + I)2

2RtγII
. (49)

To calculate the Ñe for an SIR or SEIR model, we use the estimated number of positives from the726

COVID-19 Infection Survey for I(t). This number is an estimate of the number of positive individuals in727

the community as measured by surveillance and includes both symptomatic and asymptomatic individuals.728

While the estimated number of positives does not include cases from hospitals, care homes, and other com-729

munal establishments, community cases likely contribute the most to transmission. We used the measured730

effective reproduction number from the UK Health Security Agency for Rt.731

To calculate the number of exposed individuals for the SEIR model, we solved for E in Equation 43732

(taking δE ≪ γE)733

E =
1

γE

(dI
dt

+ γII
)
. (50)

dI
dt was calculated numerically as I(t+∆t)−I(t−∆t)

2∆t where ∆t = 1 week. The parameter values used were γ−1
E734

= 3 days and γ−1
I = 5.5 days [41, 42]. We checked that varying the value used for γI does not substantially735

affect the results (Figure S15). The error on E was calculated by taking the minimum and maximum possible736

values from the combined error intervals of I(t +∆t) and I(t −∆t) (note that this does not correspond to737

a specific confidence interval size).738

The error on Ñe(t) for the SIR or SEIR model was calculated similarly by taking the minimum and739

maximum possible values from the combined error intervals of E, I, and Rt. Only time points where the740

error interval of Ñe(t) was less than 3 times the point estimate were kept.741

Calculating the effective population size for an SIR or SEIR model by variant742

To calculate the effective population size for an SIR or SEIR model by variant, we needed to determine743

the variant-specific: number of infectious individuals I(t), number of exposed individuals E(t), effective744

reproduction number Rt, and rate than an infectious individual recovers γI . We assumed that γI is constant745

between variants. We calculated the number of infectious individuals I(t) by multiplying the total number746

of positives by the fraction of each variant in the reported sequences. This should be a good representation747

of the fraction of the variant in the population as the sequences are a random sample of cases detected748

via surveillance. We calculated the number of variant-specific exposed individuals E(t) in the same way as749

described above using the variant-specific number of infectious individuals. We assumed that the rate an750

exposed individual becomes infectious γE is constant between variants.751

We calculated the variant-specific effective reproduction number by rescaling the measured effective752

reproduction number for the whole population753

Rv
t = Rt

Rv
0∑

w Rw
0 f

w
(51)

where Rw
0 is the basic reproduction number of the variant w and fw is the fraction of the infectious population754

with variant w. The values of R0 when rescaled to Rpre−B.1.177
0 that are used for the data presented in the755

main text are
Rpre−B.1.177

0

Rpre−B.1.177
0

=
RB.1.117

0

Rpre−B.1.177
0

= 1,
RAlpha

0

Rpre−B.1.177
0

= 1.7 (Ref. [17]),
RDelta

0

Rpre−B.1.177
0

= 1.97 (Ref. [78]). We756

assumed the same R0 for pre-B.1.177 and B.1.177 since the B.1.177 variant was shown to have increased in757

frequency due to importations from travel rather than increased transmissibility [47]. Varying the variant758

R0 within the ranges reported in the literature does not substantially affect the results (Figure S31).759

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2022.11.21.517390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517390
http://creativecommons.org/licenses/by-nc/4.0/


Inference of fitness from lineage frequency time series760

We sought to infer the fitness effects of individual lineages, so that we could then determine if putatively761

selected lineages are influencing the estimation of the time-varying effective population sizes. We first used762

a deterministic method to estimate lineage fitness effects, similar to the method described in [79].763

On average, when the frequency of lineage i is sufficiently small ft,i ≪ 1, the frequency dynamics will764

exponentially grow/decay according to the lineage fitness effect, si,765

⟨ft,i⟩ = f0,ie
sit

The two sources of noise–genetic drift and measurement noise–both arise from counting processes, so the766

combined noise will follow var (ft,i) ∝ ⟨ft,i⟩. To account for the inherent discreteness of the number of cases767

in a lineage–especially important to accurately model lineages at low frequencies–we modeled the observed768

counts at Epiweek t of lineage i, rt,i, as a negative binomial random variable,769

rt,i|si, f0,i ∼ NB(µt,i, ζt) (52)

⟨rt,i⟩ = µt,i (53)

var (rt,i) = ζt⟨rt,i⟩ (54)

µt,i = Mtf0,ie
sit (55)

Where Mt is the total number of sequences, and ζt is a dispersion parameter. We took ζt as the total770

marginal variance at a given time-point, i.e. ζt = ct +Mt/Ne(t), where we computed estimates of ct and Ne771

as previously described (section “Maximum likelihood estimation of the parameters”). The final likelihood772

for the fitness, si, of lineage i is obtained by combining the data from all the relevant the time-points,773

P (ri|si, f0,i) =
∏
t

Γ
(
rt,i +

µt,i

ζt−1

)
Γ
(

µt,i

ζt−1

)
Γ (rt,i + 1)

(ζt − 1)rt,i

ζ
rt,i+

µt,i
ζt−1

t

(56)

The point estimate of the lineage fitness, ŝi, is then numerically computed as the maximum likelihood,774

ŝi = argmax
si

logP (ri|si, f0,i). (57)

Stochastic simulations of SEIR model775

The stochastic simulations of an SEIR model were performed using a Gillespie simulation with 4 states:776

susceptible, exposed, infectious, and recovered, where the number of individuals in each state are denoted777

by S(t), E(t), I(t), and R(t) respectively. There are 3 types of events that lead to the following changes in778

the number of individuals in each state779

1. Infection of an susceptible individual with probability βI(t)S(t)
N(t)780

S(t) = S(t)− 1 (58)

E(t) = E(t) + 1 (59)

2. Transition of an exposed individual to being infectious with probability γEE(t)781

E(t) = E(t)− 1 (60)

I(t) = I(t) + 1 (61)

3. Recovery of an infectious individual with probability γII(t)782

I(t) = I(t)− 1 (62)

R(t) = R(t) + 1 (63)

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2022.11.21.517390doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517390
http://creativecommons.org/licenses/by-nc/4.0/


where β ≡ R0γI , R0 is the basic reproduction number, γE is the rate that exposed individuals become783

infectious, and γI is the rate that infectious individuals recover. As in the rest of this work, we assume that784

the birth rate of susceptible individuals, background death rate, and the death rate due to disease are much785

slower compared to the rates of the above processes and thus can be neglected from the dynamics.786

The time until the next event is drawn from an exponential distribution with rate given by the inverse787

of the sum of the above probabilities, and the type of event is randomly drawn weighted by the respective788

probabilities.789

Because the time of the events occurs in continuous time, but the inference method of the effective790

population size works in discrete time, we must convert from continuous to discrete time. To perform this791

conversion, we calculate the net number of events of each type in each chosen unit of discrete time (1 week)792

and perform the changes in the number of individuals of each state as described above. Thus, for example, if793

within the same week an individual becomes exposed and then becomes infectious, it will cause the number794

of susceptible individuals to decrease by 1, no change in the number of exposed individuals, and the number795

of infectious individuals to increase by 1.796

The infected (or infected and exposed) individuals are randomly assigned a lineage at a given time after797

the start of the epidemic. For our simulations, we chose the lineage labeling time as 75 days or 10.7 weeks798

since the approximate number of infectious individuals was high enough at that time to generate sufficient799

diversity in lineages, and we chose the number of different types of lineages as 100. The other parameters that800

we used for the simulations were R0 = 2, γ−1
E = 3 days, γ−1

I = 5.5 days, N(t) = S(t)+E(t)+I(t)+R(t) = 106.801

The initial condition of the simulation is S(t) = N(t)− 1, E(t) = 1, and I(t) = R(t) = 0.802

To test the sensitivity of the results to whether the reported PCR positive individuals are infectious or803

whether they can also be from the exposed class, we recorded the results in two ways. In the first case, only804

the infectious individuals we recorded as positive (Figure S32), and in the second case both the exposed and805

infectious individuals were recorded as positive (Figure S33). Inference of Ñe(t) was subsequently done on806

the lineage frequency trajectories of the recorded positive individuals. The SIR or SEIR model Ñe(t) were807

calculated analytically using the true numbers of infectious and exposed individuals and numerically using808

the number of positive individuals as described above in “Calculating the effective population size for an809

SIR or SEIR model”.810

Deme simulations811

To better understand the effect of host population structure on the effective population size, we simulated812

a simple situation where there are “demes”, or groups, of individuals with very high rates of transmission813

between individuals in that deme, but the rate of transmission between individuals from different demes814

is very low. In a given simulation, all demes have the same number of individuals (10, 50, 100, or 200).815

The total number of demes is chosen to be very high (5.6 × 106). Initially, a certain number of demes816

(100, 1000, 2000, or 5000) are each seeded by a single infectious individual infected by a randomly chosen817

lineage (200 different lineages). We simulated deterministic SEIR dynamics within demes with R0 = 10,818

γE = (2.5 days)−1, γI = (6.5 days)−1. We simulated Poisson transmission dynamics between demes. In819

order to calibrate the overall population dynamics to be roughly in equilibrium (the number of infectious820

individuals is not deterministically growing or shrinking), we draw the number of between-deme infections821

caused by a given deme from a Poisson distribution with mean 1. The time of the between-deme infection822

event is randomly chosen, weighted by the number of infected individuals within a deme at a given time. The823

number of infectious individuals in each lineage is recorded every 1 week, and the frequency of the lineage824

is calculated by dividing by the total number of infectious individuals from all lineages in that week. The825

lineage frequency data from a period of 9 weeks starting in week 42 is used for the inference of effective826

population size. In this time period, only a small number of demes have been infected such that the total827

number of demes did not matter. The effective population size inference is performed as above except in the828

absence of measurement noise, so there is no emission step in the HMM.829

Data and code availability830

Data and code to reproduce the analyses in this manuscript are available at https://github.com/qinqin-831

yu/sars-cov-2 genetic drift.832
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Supplementary Information1082

Summary of existing methods for inferring the strength of genetic drift1083

There are currently four main types of methods for estimating the strength of genetic drift in pathogen1084

transmission, which we summarize here for giving context to this study.1085

1. Contact tracing can directly measure superspreading by following the close contacts of infected1086

individuals to measure the distribution of the number of secondary cases (the offspring number distri-1087

bution) [2]. However, some secondary cases may be missed which can lead to measurement bias [20].1088

Additionally, it is challenging to trace multiple generations of transmission, so we miss important1089

information on host contact network structure.1090

2. Another type of method fits disease prevalence over time to branching process models [44]. These1091

models assume a particular distribution for the offspring number distribution (often a negative binomial1092

distribution) and estimate the combination of parameters of the offspring number distribution along1093

with growth rate that best fit the observed disease prevalence. External information about the growth1094

rate can be used to constrain the parameters of the offspring number distribution.1095

3. Phylogenetics methods arrange genomics sequences into a tree based on genomic distance and either1096

measure the distribution of lineage sizes (number of sequences in different parts of the tree) [19] or fit1097

the rate at which branches in the tree coalescence to determine the effective population size [27, 80, 1,1098

81]. The effective population size is the population size that would reproduce the observed population1099

dynamics under the idealized conditions of Wright-Fisher dynamics (discrete non- overlapping gener-1100

ations, a constant population size, and offspring determined by sampling with replacement from the1101

previous generation). In neutral populations, a lower effective population size indicates a higher level1102

of genetic drift.1103

4. Time series frequency methods make use of a signature that genetic drift leaves in time series data,1104

which is that it causes fluctuations in the lineage abundances. Higher amounts of genetic drift (lower1105

effective population size) lead to larger fluctuations, and the magnitude of the fluctuations can be fit1106

to determine the effective population size [82, 24] (Figure 1a). Time series methods have also been1107

used extensively in population genetics [22, 83, 65, 23, 26, 25] and to estimate within-host effective1108

population size [84] and between-host transmission bottleneck sizes [85].1109

Comparison to SEIR null model1110

In the main text, we compared the inferred Ñe(t) to an SIR model. However, there are likely more complex1111

epidemiological dynamics describing SARS-CoV-2. Here we check the results for an SEIR model which1112

includes a susceptible, exposed, infectious, and recovered class. The SEIR model is a good representation of1113

the epidemiology of SARS-CoV-2 when PCR test positivity is closely associated with an infected host being1114

infectious; the literature suggests that this is a good assumption for SARS-CoV-2 [16], but we also test this1115

assumption below. The exposed class thus represents individuals before they are infectious and test positive.1116

Ñe(t) for an SEIR model in equilibrium (number of infectious individuals is constant over time) is given by1117

(see Methods for derivation):1118

Ñe
SEIR,eq

(t) ≡ {Ne(t)τ(t)}SEIR,eq =
(E(t) + I(t))2

2RtγI(t)
. (64)

where E(t) is the number of exposed individuals, I(t) is the number of infectious individuals, Rt is the1119

effective reproduction number, and γI is the rate at which infectious individuals stop being infectious.1120

While this equation is derived under equilibrium conditions, we show using simulations that this equation1121

accurately estimates Ñe(t) in non-equilibrium conditions after the peak of the pandemic (Figure S32); before1122

the pandemic peak, this equation overestimates Ñe(t) but by less than one order of magnitude. Additionally,1123

we show that calculating the Ñe(t) using the equation for an SIR model (Equation 1) when the dynamics are1124

actually described by an SEIR model provides a lower bound on the actual Ñe(t). Thus, if the true dynamics1125
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of SARS-CoV-2 in England are actually SEIR dynamics, then the inference results shown in Figure 3c using1126

the SIR model should be an underestimate of the level of genetic drift; thus our main result that the literature1127

values of superspreading do not sufficiently explain our results should still hold.1128

In reality, it may also be the case that some people test positive in a PCR test before they become1129

infectious. To test the impact of this possibility on our results, in our simulations we recorded both exposed1130

and infectious individuals as testing positive. We then calculated the SEIR model Ñe(t) numerically as1131

described in “Calculating the effective population size for an SIR or SEIR model” assuming that I(t) includes1132

both infectious and exposed individuals (Figure S33). We find that the numerical solutions give slightly higher1133

Ñe(t) as compared with the true analytical solutions; however, the numerical solutions to the SEIR and SIR1134

models bound the inferred Ñe(t). Thus we also expect that our main result that the literature values of1135

superspreading do not sufficiently explain our results should still hold in this scenario.1136

To calculate the SEIR model Ñe(t) for the actual data, for the number of infectious individuals, we1137

used the number of positive individuals estimated from the UK Office for National Statistics’ COVID-191138

Infection Survey [31], which is a household surveillance study that reports positive PCR tests, regardless1139

of symptom status. We used the measured effective reproduction number in England reported by the UK1140

Health Security Agency [40]. We found that Ñe
SEIR

(t) is very similar to the number of positives because the1141

effective reproduction number in England was very close to 1 across time. To calculate Ñe
SEIR

(t) for each1142

variant or group of lineages, we rescaled the population-level I(t) and Rt based on the fraction of each variant1143

in the population and the relative differences in reproduction numbers between variants (see Methods). We1144

then calculated the scaled true population size, Ñ(t) ≡ N(t)τ(t), for the SEIR model by multiplying by the1145

variance in offspring number, σ2, for the SEIR model [43]1146

ÑSEIR(t) = Ñe
SEIR

(t){σ2}SEIR (65)

{σ2}SEIR = 2. (66)

Overall, the inferred Ñe(t) is lower than ÑSEIR(t) by a time-dependent factor that varies between 70 and1147

2000 (Figure S17), suggesting high levels of genetic drift in England across time, which is consistent with1148

what we find with an SIR model (Figures 2 and S16). Also similarly to in the case with an SIR model, the1149

ratio of ÑSEIR(t) to the inferred Ñe(t) for Alpha decreased over time, suggesting that the stochasticity in1150

the transmission of Alpha decreased over time.1151

The effect of background selection on effective population size1152

We estimated the magnitude by which we expect the effective population size to be decreased due to back-1153

ground selection given the empirically estimated distribution of fitness effects using both simulations (de-1154

scribed in the main text) and analytical theory (described here). Most studies on background selection1155

consider strongly deleterious mutations with a single negative fitness value and assume that deleterious mu-1156

tants quickly die out so that multiple mutations do not occur in the same background [86]. However, in this1157

case we need to consider a distribution of fitness effects and the possibility of mutants with different fitnesses1158

existing simultaneously. As such, we used Equation 8 derived from Ref. [87] for the effective population size1159

in the presence of deleterious mutations with a distribution of fitness effects, assuming a constant mutation1160

rate and no recombination1161

Ne ≈ Nexp
[
−
∫ ∞

1
N

µ

s
(1− e−st)2ρ(s)ds

]
(67)

where µ is the deleterious mutation rate per generation per genome, ρ(s) is the deleterious distribution1162

of fitness effects (i.e. the fitness effect is −s), t is time in generations into the past, and N is the census1163

population size. Assuming no recombination is a conservative assumption, as recombination mitigates the1164

effects of background selection [86].1165

Using the empirically estimated distribution of fitness effects from Ref. [46] (which are consistent with1166

experimental measurements, see Refs. [88, 89, 90, 91]) and the clock rate of 31 substitutions per year1167

(Nextstrain SARS-CoV-2 GISAID build on August 7, 2023), a generation time of 5.1 days [35], and a1168

population size of 104 (order of magnitude of true population size), we estimate that the effective population1169
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size will be decreased by at most a factor of 2 at times far into the past, and less in more recent times1170

(see Figure S34). The above formula was derived assuming strong selection (s ≫ 1
N ) for the bulk of1171

deleterious mutations, which we see from the distribution of fitness effects does hold (Figure S19). Thus,1172

while background selection will in general decrease the effective population size, in this system it can only1173

explain a small fraction of the observed reduction of two orders of magnitude. This result is consistent with1174

what we found in the simulations (Figure S22).1175

Application to COG-UK data by regions in England1176
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Figure S1: Inferred effective population size in regions of England. (Top panels) Inferred Ñe(t) of pre-B.1.177
lineages, B.1.177, Alpha, and Delta for each region of England. The inferred Ñe(t) for England as a whole
is shown for reference. Shaded regions show 95% confidence intervals (see Methods). (Bottom panels) The
ratio between the inferred Ñe(t) of England and that of the region for each variant. A horizontal dashed
line indicates a ratio of 1 (i.e. Ñe(t) is the same in that region of England and England as a whole). Shared
regions show the minimum and maximum possible values of the ratio from the combined error intervals of
the numerator and denominator (thus, not corresponding to a specific confidence interval range).

The inference of effective population size can also reveal information about the well-mixed or spatially-1177

structured nature of transmission dynamics within England. This can be done by inferring effective pop-1178
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ulation size at smaller geographical scales within England. If the transmission dynamics were completely1179

well-mixed, then we would expect Ñe(t) to be the same across regions and compared to England. On the1180

other hand, if the transmission dynamics were completely spatially segregated (i.e. transmission only occurs1181

within the defined geographical areas, but not between them) and the dynamics were the same in each region,1182

we would expect that the ratio Ñe
SIR

(t)/Ñe
inf
(t) to be the same across regions.1183

The geographical areas that we used were the 9 regions of England: East Midlands, East of England,1184

London, North East, North West, South East, South West, West Midlands, and Yorkshire and The Humber.1185

We looked at sequences from each region, repeating the analysis described above, and inferred the scaled1186

effective population size (Figure S1). We observe a lower Ñe(t) for in the region than in England for Delta1187

in all regions, for Alpha in all regions except North East (where there was not enough data), and for B.1.1771188

in all regions except North East. For lineages pre-B.1.177, the inferred Ñe(t) is not significantly differnt in1189

the region than in England. These results suggest that the dynamics are not well-mixed during the B.1.177,1190

Alpha, and Delta waves.1191

The calculated SIR model Ñe
SIR

(t) (Figure S2) and the number of positive individuals in each region1192

(Figure S3) were 1-2 orders of magnitude higher than the inferred Ñe(t), suggesting high levels of genetic1193

drift. The ratios of the SIR model Ñe(t) and the number of positives to the inferred Ñe(t) in the regions1194

were similar to one another and to that seen in England as a whole, consistent with a scenario where the1195

dynamics are spatially-structured and the extent of stochasticity in transmission is similar across regions.1196
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Figure S2: Inferred scaled effective population size by region in England, compared to that of an SIR model
as calculated using the observed number of positives at the community level in that region reported by the
COVID-19 Infection Survey [31] and the observed effective reproduction number in that region reported by
the UK Health Security Agency [40].
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Figure S3: Inferred scaled effective population size by region in England, compared to number of positives
at the community level in that region reported by the COVID-19 Infection Survey [31].

Similarly to in England as a whole, the inferred measurement noise in each region was mostly indistin-1197

guishable from uniform sampling except for in a few timepoints (Figure S4).1198
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Figure S5: The fraction of simulations (20 total) where the inferred 95% confidence interval for Ñe(t) or c
included the true value (left) by timepoint and (right) for all timepoints. (Right) Boxes indicate the quartiles
and the line inside the box (and number above) indicates the median. Whiskers indicate the extreme values
excluding outliers. Simulation parameters are specified in the Methods and Figure 1, which shows a single
simulation instance. For the inference, we created coarse-grained lineages randomly 20 times.
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a
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c
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Figure S6: Wright-Fisher simulations where Ñe(t) is constant over time, and the inferred Ñe(t) and ct. (a)
Number of sequences sampled. (b) Simulated lineage frequency trajectories. (c) Inferred effective population
size (Ñe(t)) on simulated data compared to true values. (d) Inferred measurement noise (ct) on simulated
data compared to true values. In (c) the shaded region shows the 95% confidence interval calculated using
the posterior, and in (d) the shaded region shows the 95% confidence interval calculated using bootstrapping
(see Methods).
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Figure S7: Wright-Fisher simulations where Ñe(t) changes over time according to a rectangular function, and
the inferred Ñe(t) and ct. (a) Number of sequences sampled. (b) Simulated lineage frequency trajectories.
(c) Inferred effective population size (Ñe(t)) on simulated data compared to true values when ct is jointly
inferred and when ct is fixed at 1 (uniform sampling). (d) Inferred measurement noise (ct) on simulated data
compared to true values. In (c) the shaded region shows the 95% confidence interval calculated using the
posterior, and in (d) the shaded region shows the 95% confidence interval calculated using bootstrapping
(see Methods).
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Figure S8: Total number of surveillance sequences of each variant in the metadata from COG-UK downloaded
on January 16, 2022 and the number of sequences used in the analysis for each variant or group of lineages
(determined by the number of sequences included in the tree, and the number of sequences which could be
grouped into sublineages based on the procedure described in the Methods).
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Figure S9: Varying the date of the tree downloaded from COG-UK and the depth at which the tree is cut for
creating lineages (dcut, which is defined as the number of mutations from the root of the tree, see Methods)
does not substantially change the inferred scaled effective population size. The tree date and depth used
in the main text are {2021-02-22, B.1.177, dcut = 2.323 · 10−2}, {2021-06-20, Alpha, dcut = 2.054 · 10−3},
{2022-01-25, Delta, d

(1)
cut = 1.687 · 10−3, d

(2)
cut = 1.954 · 10−3}. The color of the lines for the parameters that

were used in the main text are the same as those shown in Figure 2.
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Figure S10: The inferred effective population size when cutting the tree at different depths to test the effect
of combining lineages with other more closely related lineages in forming the coarse-grained lineages.
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Figure S11: The lineage frequency time series using the tree cut depths shown in Figure S10.
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Figure S12: Varying the threshold counts for forming coarse-grained lineages (see Methods) does not sub-
stantially change the inferred scaled effective population size. The coarse-grained lineage threshold counts
used in the main text is 20.
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Figure S13: Varying the number of weeks in the moving window does not substantially change the inferred
scaled effective population size. The size of the moving window used in the main text is 9 weeks.
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pre-B.1.177 B.1.177

Alpha Delta

Figure S14: The distribution of square root observed frequency displacements (
√

fobs
t+1 −

√
fobs
t ) across

all time points normalized by the inferred variance due to genetic drift and measurement noise (κt,t+1 =
ct

4Mt
+ ct+1

4Mt+1
+ 1

Ñe(t)
, see Equation 24). The orange line is a plot of a normal distribution with mean 0 and

variance 1.
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Figure S15: Varying the rate of transitioning from infected to recovered within literature ranges (γI =3 to
14 days) used for calculation of the SIR model Ñe(t) (Methods) does not substantially decrease the observed

ratio Ñe
SIR

(t)/Ñe
inf

(t).
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Figure S16: Inferred scaled effective population size compared to the SIR model scaled population size
calculated using the observed number of positive individuals in England (see Methods).
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Figure S17: Inferred scaled effective population size compared to the SEIR model scaled population size
calculated using the observed number of positive individuals in England (see Methods).
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Figure S18: The inferred effective population size when excluding beneficial lineages whose inferred absolute
fitness value are above the 50th (|s| > 0.09), 75th (|s| > 0.16), and 90th (|s| > 0.27) percentiles compared to
that when all lineages are included.
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Figure S19: The distribution of deleterious fitness effects from Ref. [46]. The orange vertical line indicates
1
N , which is the threshold in fitness above which selection dominates over genetic drift. Here, N is set to
104, which is the order of magnitude of the census population size of SARS-CoV-2 in England.
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Figure S20: Simulated lineage frequency dynamics where deleterious mutations occur at rate
0.01/genome/generation and the distribution of deleterious fitness effects is taken from the empirically esti-
mated values in Ref. [46]. The inferred effective population size and measurement noise are shown.
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Figure S21: The same simulation as in Figure S20 but as a control, where the fitness of new mutations is
always 0. The inferred effective population size and measurement noise are shown.
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Figure S22: The cumulative mean ratio of the point estimates of the inferred effective population size in the
simulations using the empirical distribution of deleterious fitness effects and the neutral simulations.
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Figure S23: Same as Figure 3c, but plotting the overdispersion parameter, k = Rt
σ2

Rt
−1

, where Rt is the

effective reproduction number and σ2 is the variance in offspring number. The circles show the inferred
overdispersion parameter if we assume there is only superspreading and no deme structure. For the inferred
overdispersion parameter, the estimated effective reproduction number in England by variant (see Methods)
is used for Rt, and the ratio between the SIR model population size and the inferred effective population
size is used for σ2. The shaded area for the inferred overdispersion parameter k gives an estimate of the
error and is calculated by combining minimum or maximum values of the individual parameters; note that
this does not correspond to a particular confidence interval.
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Figure S24: Simulations of deme structure (described in main text and Methods). (a) The mean number of
infected individuals per week from Weeks 42 to 50. (b) The inferred Ñe(t) using lineage trajectories from
Weeks 42 to 50.

Figure S25: Sample epiweeks versus tree depths. In a phylogenetic tree, the number of sequences (leaf nodes)
of a focal variant that fall within specific epiweek and tree depth ranges is counted and summarized as a
two-dimensional histogram. The tree depth is the substitution rate measured in units of substitutions per
site, with respect to the most recent common ancestor. From left to right, the phylogenetic tree (specified
by date created by COG-UK, using the sequences available at the time) and focal variant are {2021-02-22,
B-1-177}, {2021-06-01, Alpha}, {2021-06-20, Alpha}, and {2022-01-25, Delta}. Weeks are counted from

2019-12-29. The dashed horizontal lines indicate the values of dcut (d
(1)
cut and d

(2)
cut for the Delta variant) used

for the results presented in the main text, except for the 2021-06-01 Alpha tree, where they indicate the
value of dcut tested in the Supplementary Information.
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Figure S26: Comparing the inferred Ñe(t) and ct in Wright-Fisher simulations using the method of moments
and maximum likelihood estimation approaches (see Methods). (a) Number of sequences sampled. (b)
Simulated lineage frequency trajectories. (c) Inferred effective population size (Ñe(t)) on simulated data
using the method of moments (MSD, for mean squared displacement) and maximum likelhood (HMM, for
Hidden Markov Model) estimation approaches compared to true values. The shaded region shows the 95%
confidence interval of the inferred values. The confidence interval using the method of moments approach
was calculated by taking the middle 95% of values when bootstrapping over the coarse-grained lineages. The
confidence interval using the maximum likelihood estimation approach was determined using the posterior
(see Methods) and takes into account joint errors in ct and Ñe(t). (d) Inferred measurement noise (ct) on
simulated data using the method of moments and maximum likelihood estimation approaches compared
to true values. The shaded region shows the 95% confidence interval calculated using bootstrapping (see
Methods).
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Figure S27: Inferred effective population size from different times and coarse-grained lineage combinations.
The vertical dashed line indicates 105 which is the value above which results in the text were thrown away
due to non-convergence (these only include values at 1011).
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Figure S28: The inferred measurement noise overdispersion parameter for England as a whole when changing
the lower bound of the overdispersion parameter from 1 to 0.
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Figure S29: The fraction of sequences in the tree that are assigned to a lineage. The blue shading indicates
the period of time in the data that was used for the inference analysis.
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Figure S30: Randomly subsampling half of the Delta sequences used for the analysis does not substantially
change the inferred scaled effective population size.
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Figure S31: Varying the values of the basic reproduction number within literature ranges (
RAlpha
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1.1−2.7 [17],
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= 1.76−2.17 [78]) used for calculation of the SIR model Ñe(t) by variant (Methods)

does not substantially affect the calculated ÑSIR(t).
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Figure S32: Simulations of stochastic SEIR dynamics without measurement noise, and comparison of the
inferred Ñe(t) to Equations 1 and 49 when the reported positive individuals include only the infectious
individuals. (Top) Muller plot of simulated infectious individuals’ lineage trajectories (simulations described
in Methods). Infectious individuals are randomly assigned a lineage in week 11, and individuals that they
transmit to are infected with the same lineage. The blue lineage before week 11 indicates the infectious
individuals that existed before lineages were assigned. (Bottom) Comparison of the inferred Ñe(t) using the
lineage trajectories shown in the top panel to the number of infectious individuals I(t), Equation 49 (SEIR
model Ñe(t) at equilibrium), and Equation 1 (SIR model Ñe(t)) calculated analytically or numerically as
described in the Methods. The numerical solutions give the same results as the analytical solutions.
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Figure S33: Simulations of stochastic SEIR dynamics without measurement noise, and comparison of the
inferred Ñe(t) to Equations 1 and 49 when the reported positive individuals include both infectious and
exposed individuals. (Top) Muller plot of simulated infectious and exposed individuals’ lineage trajectories
(simulations described in Methods). Infectious and exposed individuals are randomly assigned a lineage
in week 11, and individuals that they transmit to are infected with the same lineage. The blue lineage
before week 11 indicates the infectious and exposed individuals that existed before lineages were assigned.
(Bottom) Comparison of the inferred Ñe(t) using the lineage trajectories shown in the top panel to the
number of infectious individuals I(t), the sum of the number of infectious and exposed individuals I(t)+E(t),
Equation 49 (SEIR model Ñe(t)), and Equation 1 (SIR model Ñe(t)) calculated analytically or numerically as
described in the Methods. The numerical solutions give slightly higher Ñe(t) as compared with the analytical
solutions; however, the numerical solutions to the SEIR and SIR models bound the inferred Ñe(t).
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Figure S34: The effect of the empirically estimated distribution of deleterious fitness effects in SARS-CoV-
2 [46] on the effective population size using the analytical theory derived in Ref. [87] (Equation 67). In this
calculation, the effective population size in the absence of background selection is 104, the clock rate is 31
substitutions per year, and the generation time is 5.1 days.
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