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1. Introduction

One of the more interesting and controversial discoveries associated with
transport by charge-density waves (CDWs) was the observation of distinct
oscillations in the linear-chain compound NbSe; (Fleming and Grimes
1979). The oscillations have become known as narrow-band noise (NBN)
because of the fluctuating character of the response and to contrast it with a
broad-band component that also characterizes CDW response. Rich har-
monic content is typical for the oscillatory behavior and is illustrated in the
spectral analysis of fig. 1.1 (taken from the original paper by Fleming and
Grimes). Also seen is the 1/f-like behavior at lower frequencies that
became known as broad-band noise (BBN). The current oscillations appear
only above a sharp threshold electric field Er that also signifies the onset of
the non-Ohmic conductivity. As the dc field is increased, the fundamental
frequency increases monotonically from zero. CDW conduction noise can
be similarly observed if a constant total current is applied to the crystal and
the response voltage is monitored. This is in fact the more usual experi-
mental situation for ease of detection and was the method used to generate
the traces of fig. 1.1.

Conduction noise, either in the form of the oscillations or the broad-band
noise, has become an accepted signature of collective dc transport in
density-wave systems. Other CDW materials displaying the oscillations
include TaS, in two forms (monoclinic and orthorhombic), (TaSe,).I and
related materials, and the blue bronzes Ko3Mo00O; and Rbo3MoOs.

To illustrate why the oscillations are significant for these systems, we
begin with a brief description of Frohlich superconductivity. It was pro-
posed by Frohlich (1954) that superconductivity could result from the
Peierls semiconducting (CDW) state in a one-dimensional metal by moving
the distortion. In a system where the CDW and the lattice are com-
mensurate, it costs energy to translate the distortion (often referred to as
commensurability pinning), whereas the incommensurate CDW has no
preferred position. Therefore, the CDW can move freely provided that it is
incommensurate. The energy gap at the Fermi level prevents any damping
from taking place by scattering of single electrons.

While all of the materials referred to above have incommensurate CDWs,
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Fig. 1.1. Spectrum analysis of the voltage response for a series of current levels. (Fleming et
al. 1979).

Frohlich superconductivity is not observed for a variety of reasons. In real
systems, the translational symmetry will be broken by impurities and other
crystal defects, and presumably also by thermal phonons. These defects act
to pin the phase of the charge-density wave, and to some degree must be
responsible for a finite phase-phase coherence length. If the impurity
concentration in the real CDW crystal is sufficiently small then the total
pinning force may be quite weak, allowing for depinning by a modest dc
electric field Eq4. exceeding the depinning threshold Er. In addition to
allowing for the development of a pinning force, the low-energy phase
distortions provide a possible mechanism for the dissipation of energy from
the CDW. Pinning and damping are always observed experimentally.
Following the discovery of the narrow-band noise, it was conjectured that
the velocity of the periodic charge-density wave was modulated because of
the potential created by the pinning centers (Monceau et al. 1982, Griiner
et al. 1981). The time-varying velocity was responsible for the measured
oscillations. Associated with this intuitive interpretation is the postulate that
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sliding CDW conduction and current oscillations are inseparable. In sup-
port is the observation that the excess (CDW) current and the fundamental
frequency of the current oscillations are proportional. The relation is well
established in NbSe; (Monceau et al. 1982, Zettl and Griiner 1984), TaS;
(Brown and Griiner 1985), and K,3;MoO,;. Figure 1.2 is an example
depicting the linearity from Zettl and Griiner (1984).

It is often convenient to draw analogies to systems exhibiting similar
behavior to CDWs, summarized by a dc threshold field for nonlinear
conduction and oscillation phenomena above that threshold. Supercon-
ducting tunnel junctions and the damped, driven pendulum both share these
properties. A finite current can flow at zero voltage in the junctions up to a
critical density J.. Above J, the dc voltage is a monotonically increasing
function of the current; small voltage oscillations in addition to the dc are
the ac Josephson effect. The frequency of the oscillations is linearly
proportional to the dc voltage.

Measurements of the dc current-voltage (I-V) curves of the junctions
when microwaves are applied is fundamentally important because constant
voltage steps can be observed (Shapiro 1963) whenever the condition

nhw,pp =2eV (1.1)

is met, giving to a high precision the ratio fife. In eq. (1.1), V is the dc
voltage across the junction, w,pp is the applied microwave frequency, and n
is an integer. The name Shapiro step is often associated with this inter-
ference effect.
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Fig. 1.2. Fundamental frequency of the oscillation response versus dc current level. (From
Zettl and Griiner 1984).
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The linear relationship between excess current and frequency of the
oscillations for CDWs suggests that similar behavior may be realized
for this system. First observed by Monceau et al. (1983), fig. 1.3 is a
recording of differential resistance 8 V/8I versus V for NbSe; from their
paper. A peak in the differential resistance that increases to the Ohmic
value below the threshold would indicate that the excess current does not
change over the span in voltage where 8 V/3I is high. The circumstances
for which complete locking (3 V/3I = Ohmic value) occurs will be de-
scribed in more detail in section 4. Complete locking can often be observed
at harmonic steps, which correspond to the situation

PWapp = Wq, (1.2)

where w, is the fundamental angular frequency of the oscillations and p is
an integer. Experimentally, w, is determined by measuring the excess
current and converting that to the equivalent fundamental frequency.

In addition to the harmonic steps, there has been considerable interest in
the subharmonic steps, which satisfy (p/q)wapp = wo. This is because of
general interest in nonlinear driven systems, as well as being significant for
the physics pertaining to sliding CDWs. These aspects will be described in
sections 4 and 5. Results of mode-locking experiments in the presence of a
temperature gradient in the context of velocity domain formation will be
reviewed in section 6.
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Fig. 1.3. Differential resistance versus dc current in the presence of a large radiofrequency
(v =8.3 MHz) drive. The peaks in the trace are the interference effects (from Monceau et al.
1982).
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Physical properties of materials not directly associated with electronic
transport can also be dramatically altered by sliding CDWs. The Young’s
modulus actually softens in several materials when the threshold field is
exceeded. The application of an ac field complicates the situation still
further, as steps are observed in the Young’s modulus that correspond to
the steps in the I-V curve itself. The experiments and interpretation will be
reviewed in section 7.

2. Models of CDW motion and oscillation phenomena

The reason for the current oscillations remains a controversial issue in the
field of charge-density waves. Because the models that attempt to explain
the conduction noise and interference effects appear elsewhere in this book,
we give only a brief description as a way of introduction for the experi-
ments.

2.1. Single degree of freedom models

The simplest model which includes most of the basic features of CDW
conduction is a particle sitting in a washboard potential (Griiner et al. 1981,
Monceau et al. 1980). An important neglection are the CDW internal
degrees of freedom; for the moment we consider the CDW as a large, but
finite sized, rigid object. It is pinned by anything that disrupts the trans-
lational invariance of the system (in the limit that the rigid CDW becomes
infinite in extent, the total pinning force approaches zero). The electric field
couples to the effective charge density po, defined by the spatially varying
charge density p(x)

p(x) = po+ py cos[2krx + ¢(x)], (2.1

with kg the Fermi wavevector, ¢(x) the location of the CDW relative to the
lab frame, and p, the amplitude of the charge modulation. The one-
dimensional (1D) equation of motion can be written

d’x dx dV
*et [ —+—= 2.2

dr? dr  dx eE(0), 2.2)
where m* is the effective mass of the CDW and I' is a phenomenological
damping constant. It is expected that m* is much larger than the electron
mass because the lattice distortion must move with the CDW. The simplest
periodic potential is the cosine (also appropriate for the Josephson junc-
tion), for which eq. (2.2) becomes

Ld2x  dx

m -&i'f' PE}'—ZICFV() sin(2kpx) = eE(l). (23)

m
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Equation (2.3) contains many of the important features of CDW response: a
finite threshold field E=2kgVol/e, strong frequency-dependent conduc-
tivity, and a modulated drift velocity vy under constant applicd electric
field. The CDW current density is given by

Jecow = hcpweby = "CDwel\fo, (2.4)

where ncpw is the condensate density, 04 is the time-average velocity, A is
the CDW wavelength and f, is the fundamental frequency of the response
oscillations. On a per chain basis, eq. (2.4) gives

jc/f()=2€ (25)

at T =0. j. is the CDW current carried on each chain, A =27/2kg and the
condensate density is 2kg/r for one chain.

Failures of the single-particle model prompted more sophisticated treat-
ment. With respect to the current oscillations and behavior around
threshold there are several obvious problems. First, the ratio of the am-
plitude of the voltage oscillations 8 V to the threshold voltage V' is far too
small. Because it is the strength of the pinning leading to both effects, it is
expected that 8 V/ V1 is on the order of unity. For example, in the high-field
overdamped limit, the time-dependent velocity dx/dt is given by

%ﬁt = (e/T)(E — Exsin(2kgx))

= (eE/T')(1 - (Ex/E)sin(2kgx)),

(2.6)

with E the dc driving field. It follows that the oscillating current density
8] ~ ouEt and therefore 8 V ~ Vi (where oy, is the high field conductivity of
the CDW). Experimentally NbSe; shows the strongest current oscillation
phenomena and smallest threshold field but still 8 V/ Vi~ O(107%) (Griiner
and Zettl 1985). This can be explained by assuming that the pinning force
somehow becomes reduced when the CDW is moving. However, it is
important to note that this hypothesis requires giving up the main assump-
tion that the CDW is rigid. Another feature of the single-particle model is
the very different behavior produced when driven by a voltage or current.
Graphed in fig. 2.1 are the two cases. A conductance from normal electrons
is the reason for the current carried below threshold. However, the
experiments never show any change as the source impedance is varied.
Furthermore, the shape of the I-V curve is always concave up rather than
down. Although it is possible that the curvature changes in the limit of high
fields, that has never been observed.

The overdamped sinusoidal washboard model does not result in any
subharmonic steps whatsoever. Attempts to explain them rely either on
hypothesizing an effective potential with rich harmonic content or invoking
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Fig. 2.1. Current-voltage (I-V) curve for the single-particle model. The presence of a

channel for normal electrons accounts for the conductivity below the threshold field Et. Note

that the current drive (dashed curve) is double-valued with respect to the field. The dash-
dotted curve denotes voltage drive.

a model that includes phase degrees of freedom. Because some unique
aspects of the interference effects (section 4) share features with models that
contain many effective degrees of freedom, we proceed to describe this
modification of the classical transport model.

2.2. Classical models with many degrees of freedom

Near threshold, it is expected that impurity pinning of the phase will have
very strong distortive effects on the CDW, so the easiest situation to handle
is in the high-velocity limit, when the pinning centers can be treated
perturbatively. Sneddon, Cross and Fisher (1982) (SCF) demonstrated that
for this case the high field velocity takes the form:

je=owE - cVE. 2.7)

It was assumed that only long-wavelength distortions of the phase are
important and therefore macroscopic equations are still appropriate. Ad-
ding an elasticity term to the equation of motion allows the CDW to distort
as it moves over the impurities. That energy can be dissipated to other
degrees of freedom in the crystal. It is important to note that the concave
up form for the differential conductance is qualitatively consistent with the
data.

Another significant feature that emerged from this treatment was that the
velocity of the CDW was not modulated in time, so perhaps the obser-
vations are attributable to finite size effects. The argument in support of
finite size can be put in simple terms by considering correlations of the
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CDW between different regions. At zero velocity, the phase will be dis-
torted by the impurities. The approximate distance over which the phase is
nearly constant is the phase-phase correlation length (p(0)p(x)).
Equivalently, a moving CDW described by a deformable model must have
a finite velocity-velocity correlation length. Time-dependent velocitics
from different regions will have a random relative phase. The resulting sum
over all the regions as the number of regions grows infinitely large has zero
velocity modulation amplitude.

Fisher (1985) extended the work of SCF to lower velocities by treating
the depinning of the CDW as a critical phenomenon. The model in-
corporates a CDW elasticity through the effective interactions J;; between
the phases ¢; and ¢; at impurity sites R; and R;:

Ho= =% h;cos(d; = B)) +3 X, Jy(di — ¢))*. (2.8)
i 4

The preferred phase at R; is B; and the pinning strength is h;. For
convenience the strength of the pinning potential is always the same:
h;=h. In the mean field (infinite range) approximation N phases arc
coupled by J;; = J/N. The equation of motion is written

dd; __dHy

‘a—“ 5%, + F, (2.9)

where the inertial term has been neglected and F is the driving field. The
narrow-band noise amplitude is obtained from the velocity-velocity cor-
relation function. As in critical phenomena, the appropriate length scale
diverges at the transition between the moving and non-moving state,

(2.10)

F— FT)“"

€~ 0 (

with Fr the threshold, & the phase-phase correlation length, and v = 1/2 in
the mean field calculation. The important result to emerge from the mean
field calculation is the jerkiness of the motion on the length scale of &(F).
This result is surprising, because each phase is coupled to the mean velocity
field,

- 1
¢(r)=2—1\—,; ¢; (1), (2.11)
so that eq. (2.8) is rewritten

Ho(MF) =§%Z (¢;— 43)2—2 hj cos(¢; — B;). (2.12)
J J
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The equation of motion for the phase at the jth impurity is

dé;

TR b) = 2 hj cos(¢; — B). (2.13)
]

In the limit of an infinite number of impurities, we can write @(1) = vt.
Although far above threshold the motion of individual phases will be
relatively smooth, at smaller electric fields the relative phase velocities
become more ‘jerky’.

Fisher argues that short-range interactions will only enhance the jerkiness
of the motion. Far above threshold ¢ is comparable to £, but closer to
threshold ¢ diverges according to eq. (2.10). Here as in the single-phase
model, the CDW spends most of the time almost pinned (moving very
slowly), then quickly advances a large fraction of 2m. The important
consequence of the divergence is an enhanced ac noise amplitude near to
the threshold

vi2(d—4+7)

F"‘FT>

= (§—“) " (2.14)

N2
(]ac) /]dc ( v
Contained in eq. (2.43) is the volume incoherence factor (jiyr~y-i2
that can be tested experimentally.

2.3. Current oscillations and microscopic pinning

Many of the attempts to determine the pinning forces on a microscopic
level have been led by Zawadowski. Barnes and Zawadowski (1983) have
calculated the effect of scattering of electron-hole pairs by impurities and
implications for pinning of the CDW and narrow-band noise. Later, the
interaction of the CDW and Friedel oscillations created near the impurity
was investigated by Tutto and Zawadowski (1985) to higher orders in the
perturbation. It is important to mention these results because any form
obtained from the microscopic theory can in turn be used in the macro-
scopic equations of motion. For convenience, only a one-dimensional seg-
ment is considered and the phase is coherent over that segment.

The charge-density wave is formed by two macroscopic quantum states
consisting of electron-hole pairs with momentum +2kg and spin zero. It is
the interference of the two states which results in the gap formation and
thus the CDW. To second order in the acceleration (scattering) of the
CDW by a single impurity, a transition takes place in which two electrons
are scattered from the same side of the dispersion curve to the opposite. In
turn, the position (phase) of the two states combine to form the CDW
position ¢ = ¢ — ¢dr, and the transition rate depends on position as
sin[2(¢ — ¢o)], where ¢ is the preferred position. Therefore, the scattering
rate due to the impurity oscillates in time and may be a contributing source
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of the oscillation phenomena. The second-order results predict a pinning
wavelength that is half the CDW wavelength. If no more terms were
important, the ratio of j./fo would be half that predicted from the
phenomenological treatments above.

Higher-order processes are also possible, and it turns out significant. The
origin of the terms comes from scattering of clectrons that move in the
effective potential induced by the CDW; they are shown in fig. 2.2. Perhaps
an easier way to visualize the impurity pinning to nth order is to describe
the interference between the charge-density wave and the Fricdel oscil-
lation formed about the impurity. The electron density is cither maximal or
minimal at the impurity, with periodicity 2 kg just as the CDW. The phase of
the CDW is mismatched with the Friedel oscillation in general, so there
must be a crossover region around the impurity (in a volume xy).

Since the volume over which the amplitude can vary (&) usually satisfics
&> Xo, the phase on two sides of the impurity cannot change by much.
Long-range deformations act to minimize the overall energy in the regions
around the impurities. The effective potential V, at the impurity site can be
borrowed from the microscopic description mentioned here and incor-
porated into any calculations using a phase Hamiltonian such as eq. (2.8).
Tutto and Zawadowski predict that at temperatures close to the CDW
phase transition the effective potential becomes more sinusoidal. Shown in
fig. 2.3 is an example of the potential. The harmonic content of the NBN, as
in the classical theories depends on the velocity; any shape of the potential
gives ‘spike-like’ behavior very close to threshold. For overdamped motion
at high velocities, it is the spatial derivative of the potential that directly
gives the velocity and therefore the harmonic content. Sinusoidal behavior
near T, results from the higher-order perturbation terms exerting a force
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Fig. 2.2. Higher-order electron-hole scattering processes as described by Barnes and
Zawadowski (1983).



CDW, current oscillations and interference effects 235

Vig)
1 1
- 0 T
¢
Fig. 2.3. Potential as created by impurities in the model calculated by Tutto and Zawadowski
(1985).

on the CDW that decreases faster than the order parameter, which in turn
determines the first-order term through, for example, Coulomb interactions.

2.4. The tunneling model and current oscillations

Bardeen (1985) has proposed a mechanism for CDW transport which
involves the coherent macroscopic tunneling between two energetically
equivalent states ¢a(x) and ¢p(x). One important difference between
models described previously and the tunneling model is the alternation
between the two states. In the presence of an electric field, a CDW in state
¢ A will move from its optimal position at the average rate —vgql. When the
spatial average position is /2, ¢a and ¢p are equivalent in energy but
separated by a barrier. At phases ¢ > /2, ¢ is favorable. The effective
potential, as shown in fig. 2.4, can be written

—cos 0, —wR2<O0<m/2,

2.15
cos 6, w2 < 0<37/2. ( )

vio) =
The CDW current is determined by the transition rate between the two
states. The effective potential is similar in shape to that calculated by Tutto
and Zawadowski (1985) but is shorter in spatial periodicity by a factor of
two. Similar to the deformable classical models, it is the ability for the CDW
to change its form to best accommodate the impurity potential that allows
for sliding motion.

The motion of the CDW as described in the tunneling model can be
discussed classically (Mihaly 1986) as illustrated in fig. 2.5 (using the strong
pinning limit for convenience). Similar to the idealized case of Bardeen,
place pinning centers an integral number of wavelengths apart at regular
intervals. Halfway in between each of these, place another set of strong
pinning centers. The phase distorts to accommodate the new centers and
therefore the lowest energy state is that shown in fig. 2.5b. Application of
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Fig. 2.4. (a) The two states ¢ and g in the tunneling model. (b) Effective potential. Note
that the periodicity is half that of classical pinning models (Bardeen 1985).

an electric field moves the compressed region to the position of fig. 2.5¢, so
that the CDW is always pinned at one half of the sites. The repetition of this
process gives an average phase advance of m per cycle, as in the tunneling
picture. Forcing the CDW to move in this manner retains the potential of
eq. (2.15); the rich harmonic content of the oscillations persists to high
fields. Similar to the classical phase treatments of CDW sliding motion, the

a
® ®

b
® ® ®

C
® ® ?

Fig. 2.5. Classical analogy to the tunneling model, strong pinning limit. (a) The CDW is

pinned by two impurities an integral number of wavelengths apart. (b) Insertion of an impurity

midway between causes a compression in one half and an extention in the other. (c) An electric
field shifts the compressed region.
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source of the narrow-band noise is a bulk phenomenon due to impurity
pinning.

2.5. Phase-slip processes

All of the models described above have the common feature that the
narrow-band noise arises from bulk pinning effects, so in that sense they are
indistinguishable. However, because the ratio 8V/Vry is so small the con-
nection is not straightforward; indeed, experiments addressing this issue are
a main topic of this chapter. It can also lead one to search for other
explanations regarding the source of the noise.

Up until now, only phase excitations have been considered. Amplitude
fluctuations are completely neglected. In some limits this is acceptable, but
at least in one case for every sample, amplitude excitations have to be
included. In the presence of a very weak pinning center, the CDW phase
will be distorted a small amount and the size of the gap will remain large;
the density of condensed carriers remains constant near the pinning center.
However, in the limit when a dislocation or chemical impurity has such a
strong effect to completely block the sliding mode, then the order
parameter will decrease near the impurity. The only way for current to pass
is by normal single-particle transport.

This process must occur at the contacts for every sample. Ong, Verma,
and Maki (1984) and independently Gor’kov (1983) have developed a
theory describing the conversion of CDW carriers to normal carriers at the
terminals of the sample. The spatially periodic charge modulation leads to
the oscillating voltages picked up in the experimenters’ detection circuits.
Their proposal depends on the creation of an array of vortices at the sample
ends, or anywhere there is a phase discontinuity. Included is the assumption
that the static phase-phase coherence length is much shorter than any
dynamical phase coherence lengths, which may be on the order of the total
length of the sample. This supposition leads to a uniform CDW velocity in
time and space in the bulk of the sample. The creation of vortices at one
end of the sample and the annihilation at the other is the source of the ac
conduction noise. Conservation of charge requires us to write

valy = VsAcpw, (2.16)

where I, is the vortex spacing and v the velocity.

The phase-slip process can be thought of as the way the sample reduces
stress that is built up by the dc electric field. The phase is considered to be
fixed at the end of the sample. A sliding charge-density wave moving
towards the contact tries to compress the CDW near the contact because of
this boundary condition. By letting the phase change by an amount 27 the
energy stored in the system is released, like shorting out a capacitor. The
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amplitude fluctuations discussed earlier are from the requirement that the
discharge be in the form of ‘normal electrons’, able to propagate outside of
the sample into the measuring leads.

The current oscillations become a modulated chemical potential
difference in the experiment through an cflective resistance that is in-
dependent of sample length but inversely proportional to the sample width.
Therefore, it is expected that the voltage amplitude U, ~ R

The important length scale in the vortex model is the distance over which
the CDW velocity decreases to zero at the contact. We expect that the
oscillations decay exponentially over the phase-slip length ¢; therefore the
ac electric ficld is given by

E(x) = E, (e */¢+e'* e (7Y%, (2.17)

where ¢ is the random phase between the noise sources at the two ends of
the sample. Integrating eq. (2.17) over the length of the sample gives the
total measured ac voltage.

3. Experimental issues pertaining to the narrow-band noise

Experimentalists have investigated several aspects of CDW motion via
measurements of the oscillation phenomena and the related observations of
the interference effects upon application of an ac clectric ficld.

3.1. Volume dependence of the oscillations

One of the controversial issues is the origin of the oscillations and its
relation to CDW motion, as discussed in section 2. The experiments can be
divided into two classes: those that address the volume dependence and
others where it is attempted to separate the signals coming from each end
(for example, through the use of a temperature gradient). Here we discuss
the results of three of those experiments as performed by Mozurkewich and
Griiner (1983), Jing and Ong (1986) and Brown and Mihaly (1985).

First, however, it should be emphasized that these measurements arc
difficult to draw conclusions from. The reason is a lack of reproducibility
that has been noted by several authors. The material of choice is NbSe,
where the NBN peaks are extremely sharp, usually much less than 10 kHz
wide. Typically the drive is a constant dc current and the voltage is
measured as a function of time. This signal is in turn fed to a spectrum
analyzer (different than a Fast Fourier Transform). The fundamental peak in
the spectrum is arbitrarily selected for the measurements. It is assumed that
any information contained in the higher harmonics is obtained by measuring
the fundamental only and does not change from crystal to crystal.
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The next difficulty arises from fluctuations in the spectrum. In the time
domain a periodic signal that fluctuates considerably is observed. On the
trace of a spectrum analyzer, the height of the peaks vary in time and the
finite widths in frequency space also vary. A good simulation of the signal
can be constructed by feeding a white noise source to the Voltage-
Controlled Oscillator input of a function generator. The output of the
generator looks similar to the response from a NbSe; crystal. When
measuring the oscillations a bandwidth must be chosen along with a method
for signal averaging. The choice of measurement bandwidth becomes
significant when signal to noise ratios are marginal and when the fluctua-
tions change from one experimental run to another.

Mozurkewich and Griiner (1983) tried to overcome these dlfﬁcultles by
keeping the measurement bandwidth larger than the signal and the fun-
damental centered around 10 MHz. In this way, they measured the root-
mean-square (rms) voltage V,ms=AV of the fundamental frequency peak.
The dependence on cross-sectional area was made by applying two contacts
to the sample and measuring. Then the contacts were removed and the
sample was cleaved along the direction of CDW current. The process was
repeated as many times as feasible. The length dependence was measured in
a similar fashion except that the cuts were made orthogonal to the direction
of current. Their results are summarized in fig. 3.1, where Aj=AV/RA=
AV /pf is plotted versus sample volume (A is the cross-sectional area, p is
the resistivity, and ¢ is the length of the sample). The quantity Aj is
assumed to be the oscillating current that would be detected if the drive was
voltage rather than current. Technically this is valid only for a non-
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Fig. 3.1. Volume dependence of the amplitude of the fundamental oscillation frequency
(Mozurkewich and Griiner 1983).
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interacting two-fluid modcl (representing the CDW electrons and the
‘normal’ electrons). The solid line has a slope of —1/2, which would indicate
a vanishing current oscillation amplitude in the infinite volume limit.

The 1/(volume)"? behavior is the result one obtains for the two-dimen-
sional random walk. Consider a circuit consisting of a string of independent
ac voltage sources all of the same frequency and amplitude V. The rms
voltage measured at the ends, because the relative phases are uncorrelated,
is proportional to the square root of the number of oscillators N:

vrms = V()\/—I\". (3 l )

Normalizing to obtain the current and associating a length with cach
oscillator gives an ac current that varies as 1/(length)'?. Of course the
damping must be included, so phenomenologically we associate a resistance
that may be field dependent with each oscillator. Similarly, the cross-
sectional arca dependence can be modelled by placing oscillator-resistor
pairs in parallel. In that case Aj~AV ~ 1/(arca)’?. It was found using an
overdamped oscillator model for the fit that the appropriate domain volume
V4= 0.2 pm?. It is possible that the domain volume depends on the CDW
velocity, as described by Fisher (1985).

The measurements of Mozurkewich and Griiner remained controversial,
as Ong, Verma and Maki (1984) presented a study that showed no length
dependence at all, but with a considerable amount of scatter in the data.
Brown and Mihaly (1985) attempted a different type of experiment, where
the length dependence could be measured without cutting the sample. The
main idea was to first make a contact to the sample that did not reduce the
clectric field in the sample very much directly under it. Usually, silver paste
or some other conductor is used to make contact to the sample which
reduces the electric field and therefore ‘stops’ the CDW in that region (Ong
and Verma 1983). The required conversion to normal current is the process
that generates the narrow-band noise in the contact models, thereby
cflecting the measurement. What they used was another NbSe, fiber that
could be pressed lightly against the sample as a third contact, with the
additional capability that it could be moved during the experimental run.
The movable ‘middle’ contact allowed for three measurements to be made
for each position: the voltage between both ends V3, and the voltage from
each end to the middle Vi, and Vas. The results from that experiment are
shown in fig. 3.2. Data taken from three samples are shown in the figure, for
which the lengths varied 0.6-1.1 mm. The length is normalized to one, and
the position of the middle contact is the distance between contacts 1 and 2.
The general trend is that the noise amplitude increases with contact
separation, but notin a linear fashion. In fact, the results are consistent with
the model described above by the string of random-phase oscillators. For
entirely random phases, one expects (V2 + V,3)/ Vi3 = +/2 when contact 2 1s
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Fig. 3.2. Noise amplitude versus position of the middle contact. The solid symbols represent
the signal between contacts 2 and 3 (inset) and the open symbols are between contacts 1 and 2.
Also plotted is the sum (above the dashed line) (Brown and Mihaly 1985).

at the center of the sample. The hypothesis that the voltage oscillations are
generated in the bulk of the sample is further supported by their obser-
vation of the relative phase of the narrow-band noise on the two sides of the
sample. Brown and Mihaly (1985) reported that there was no observable
correlation, indicating a fluctuating relative phase on a very fast time scale.

The study was extended to include samples of a broader range in length
(up to 1.7 mm long), with the results plotted in fig. 3.3. Fits were generated
using eq. (2.17) of the vortex model for each sample with a constant
¢£=10.3 mm, and the phases of the oscillations at each end are random and
fluctuating. The dashed line is a fit to the random-phase oscillator model.
From the three plots, it is clear that the only way to consistently explain the
results using the contact description is to keep the ratio £/¢ a constant
(solid line). Physically, £ represents the appropriate length scale for screen-
ing of the vortex array, and reflects the velocity correlation function. As
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random-phase oscillator model. The solid lines are a fit to eq. (2.17) with £/€ = constant. The
longest sample also has been fit with £ = 0.3 mm.

discussed by Fisher (1985), the velocity correlation length is larger than the
Lee-Rice phase coherence length. Also, since the velocity is zero at the
contact, it is the small velocity length which is important. There is no
reason why ¢ should change with sample length when €> £. In all of the
experiments this condition should hold, since the shortest sample for which
we have a fit £€~0.3 mm, with no phase cohcrence to the oscillations
between the two sides of the sample.

More recently, Jing and Ong (1986) have reported a length dependent ac
amplitude that indicates &~ 0.26 mm. It appears difficult to simultancously
explain the results from the two experiments. However, we point out that
there are some indications from experiments performed in the prescnce of a
temperature gradient that the noisc generation is a phenomenon resulting
from bulk pinning of the charge-density wave (Lyding et al. 1986).

3.2. Periodicity of the potential

Provided that the narrow-band noise actually reflects bulk pinning, one can
learn something about the effective potential by studying the harmonic
content of the oscillatory response and from the constant ratio of excess
current density to fundamental frequency fo.

As presented in section 2, the time-average current density jcpw 18

Jcpw = ncpweAfo, (3.2)

where ncpw is the density of the condensed electrons and A is the eflective
pinning wavelength. The density can be considered to be an order
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parameter as demonstrated by Zettl and Griner (1984) and illustrated in
fig. 3.4. The open circles are Icpwlfo directly, and the asterisks are taken
from X-ray diffraction experiments (Fleming et al. 1978) (the intensity of
the satellite peaks). Normalizing the current to a single chain gives

je=q per chain, (3.3)

where g is the net charge transported per chain per ac cycle. Experiment-
ally, this number has been controversial for various reasons. First, the
number of condensed electrons in NbSe; for each CDW is not known. The
semiconducting materials are more difficult to get clean measurements
from, because typically there is a significant spread in the fundamental
frequency (indicating a corresponding distribution of CDW velocity in the
sample). Plots constructed from CDW current and fundamental frequency
where there are such distributions are not linear (Brown et al. 1985). This
effect is illustrated in fig. 3.5, where at T =164 K for this orthorhombic
TaS; (0-TaS;) sample there is a pronounced curvature. However, the slope
tends toward a constant as the frequency is increased. Also plotted is the
same quantity, but using the interfercnce phenomena (Shapiro steps) as
frequency markers (recall that steps are observed in the I-V curve
whenever the NBN frequency is an integer multiple of an external drive
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frequency). The data fit an excellent straight line with intercept at zero, as
would be expected for a coherent sample response.

Because the Shapiro step curve and the NBN curve do not coincide, the
CDW current at a step should depend on the rf power applied. This can be
understood, if, for example, there is a distribution of threshold fields within
the sample. The large amplitude ac may act to reduce the importance of
that distribution for at least two possible reasons. If the significant
parameter is E— Er, then sufficiently large fields reduce the importance of
a distribution of Et. For some samples, the steps are observed to become
sharper with increased amplitude of the ac driving ficld, indicating in-
creased synchronization of the sample response.

Electron diffraction experiments (Wang et al. 1983) show that the tem-
perature dependence of the superlattice wavevector is weak, and therefore
any observed temperature dependence of the slope jepwl/ fo can be attri-
buted to a change in the CDW electron density n(T). The results from the
temperature dependence study appear in fig. 3.6, showing almost no change
over the range 115-200 K. Above 200 K the value drops quickly towards
zero as the transition temperature T,~220K is approached. Compared
to similar results for NbSes, the development of the order parameter occurs
over a much smaller range in temperatures (non-BCS behavior). It may be
a result of the more one-dimensional nature of TaSs that the mean-ficld
theory is less appropriate.
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Evaluation of the temperature independent region gives
jelfo=1(2.0£0.2)e, (3.4)

consistent with those models where the energy periodicity related to the
phase of the condensate is just the wavelength of the CDW distortion. The
issue is not considered closed because estimates from other materials
disagree. Recent measurements (Hundley et al. 1988) in the blue bronze
Ko.3MoOj; are consistent with that reported here. However, the semimetals
NbSe; and monoclinic TaS; seem to yield results more consistent with a
pinning wavelength that is half of the CDW wavelength (Monceau et al.
1983).

3.3. Statistical measurements of the narrow-band noise

We mentioned earlier the difficulty of doing measurements of the NBN
because of fluctuations in the detected signal. Link and Mozurkewich
(1988) performed a statistical study of those fluctuations and found the
distribution of voltages corresponding to the fundamental frequency to be
Gaussian in shape and centered about zero. This is the same distribution
one obtains for Johnson noise in resistors. There is a time scale which serves
as a crossover to the Gaussian behavior; when the voltages are recorded
over a short enough interval, a bimodal distribution, as in fig. 3.7, is
observed. Link and Mozurkewich found the crossover time 7 to the Gaus-
sian shape to be as short as 10 us. When continually longer intervals are
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Fig. 3.7. Histograms of the voltage response of NbSe, above threshold. At short times the
structure is bimodal (top), whereas longer records reveal the unimodal shape (bottom) (Link
and Mozurkewich 1988).

used the distribution becomes unimodal, with = varying from rccord to
record. It is possible the variation is a result of finite-size effects. It was
demonstrated in a study of the fluctuations in the higher harmonics of the
NBN that the fundamental and first harmonic signals are uncorrelated. This
may be considered surprising because empirically the spectral widths of the
various harmonics scale with each other.

Their observations put constraints on possible models for the noise
generation. Any model with a unique sliding state can be eliminated. One
possibility is to allow the relative phase among various regions of the
sample to vary (Brown et al. 1985). We note, however, that various aspects
of pinning in sliding CDW systems are not understood, since none of the
available calculations of the phase Hamiltonians reproduce the fluctuations.

4. Electronic interference effects

The coexistence of an intrinsic narrow band noise frequency and the
inherent nonlinear CDW I~V characteristic sets the stage for a number of
spectacular electronic interference effects in sliding CDW conductors. The
CDW may be driven by an electric field of the form

E = Eq4.+ EacP(1), (4.1)

where Egq. represents a dc bias offset and E,c is the amplitude of the ac
component P(1). In practice, the drive is more often a total current, similar
in form to eq. (4.1). In either case, the system response is not a smooth
function of the drive parameters, but shows anomalous ‘interference’ struc-
ture. The response is determined by measuring the current through (or
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voltage across) the sample. The response signal may be viewed in real time
(as in pulse synchronization and transient ringing experiments), viewed in
the frequency domain (as in frequency locking and chaos experiments), or
filtered for a single frequency (as in ac conductivity measurements and dc
I-V curves). In all cases, interference usually occurs whenever the internal
narrow band noise frequency wnpn is equal to or simply related to a
characteristic frequency of the ac drive. P(t) is a periodic function of time ¢
and may, for example, be a sinusoid, square wave, or train of rectangular
pulses. In NbSes, TaSs, and Ko.3Mo0O;, interference has been observed in
the dc conductivity (Monceau et al. 1980, Brown et al. 1985, Zettl and
Griiner 1983, Hall and Zettl 1984, Brown et al. 1984, Sherwin and Zettl
1985, Thorne et al. 1987, Hundley and Zettl 1988), ac conductivity (Zettl
and Griiner 1984, Cava et al. 1984, Hundley and Zettl 1988), and real time
transient response (Fleming 1982, Brown et al. 1986, Fleming et al. 1985).
NbSe; shows the strongest interference effects, presumably because the
CDW response is most coherent in that material.

4.1. Shapiro steps

One of the most dramatic CDW interference effects and the one
emphasized in this review is a modification of the sample I-V charac-
teristics in the presence of a superposed ac drive field. In the most common
experimental situation, the ac field is a sinusoid and hence the total applied
field is of the form

E = E4c+ E,c cos(wexl). (4.2)

Under these conditions, anomalies occur in the dc I-V characteristics
whenever the narrow band noise frequency and applied frequency are
related by

wNBN/wex = P/qv (43)

with p and q integers. Figure 4.1 shows an early observation (Monceau et
al. 1980) of such interference in the differential resistance of NbSes. The
sharp spikes in d V/dI occur when wnpn/wex =1, 2, 3, etc. Similar inter-
ference is obtained in TaS; (Brown et al. 1985) and K,3Mo00; (Hundley
and Zettl 1988). Figure 4.2 shows that the interference peaks in dV/dI
correspond to actual ‘steps’ in the direct I-V characteristics (Zettl and
Griiner 1983). The magnitude of the steps, 8V, is a strong function of
external ac frequency and amplitude. The steps observed in CDW materials
are similar to those observed in the I-V characteristics of dc biased
Josephson junctions in the presence of microwave radiation, as originally
studied by Shapiro (1963). In the Josephson junction case, the steps reflect
interference between the internal ac Josephson oscillations and the exter-
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nally applied microwave oscillations. Both the Josephson interference and
CDW interference steps have become known as ‘Shapiro steps’.

Similar interference effects are also observed in the dc I-V charac-
teristics of type II superconductors with flux vortex flow in the presence of
tf radiation (Fiory 1971). Indeed, the close analogy between flux flow in
superconductors and CDW motion, together with the previous observation
of interference effects in type II superconductors, provided initial motiva-
tion for study of interference effects in NbSes.

Steps corresponding to integral values of n=p/q (eq. (4.3)) are com-
monly referred to as harmonic steps, while steps corresponding to non-
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integral n are referred to as subharmonic steps. Although early reports of
Shapiro step interference in NbSe; made note (Monceau et al. 1980, Zettl
and Griiner 1983) of the presence of subharmonic steps, more careful
differential resistance measurements on CDW systems have since demon-
strated an astoundingly rich subharmonic spectrum (Hall and Zettl 1984,
Brown et al. 1984, Thorne et al. 1987). It is not uncommon to observe as
many as 50 to 100 subharmonic steps between successive harmonic steps.
Figure 4.3a shows a typical d V/dI interference plot for NbSes, with some
dominant interference peaks identified with p/q values (Hall and Zettl
1984). The interference pattern displays self-similar structure, suggestive of
fractal geometry (see section 5.1). Figures 4.3b,c show Shapiro step d V/dI
plots for TaS; and K¢ 3MoOs, respectively (Brown et al. 1985, Hundley and
Zettl 1988). Similar peak structure is observed, though the peaks are less
sharp and smaller in relative height than those seen in NbSe;.

Figure 4.3a shows that for the dominant interference peaks in NbSe3, the
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differential resistance d V/dI is flat over a substantial range of dc bias and
achieves nearly the pinned, zero bias value. The CDW condensate is mode
locked (Hall and Zettl 1984, Sherwin and Zettl 1985) during the inter-
ference, and does not contribute to the differential conductance ol the
sample (i.e. during mode locking only the normal, uncondensed clectrons
respond to small low-frequency ac perturbations of the electric field drive).
The fact that d V/dI remains flat over a range of dc bias implies that near
the step edges wnpn is pulled subslantidlly away from its ‘natural’ value.
The Shapiro step width or magnitude 8V is a measure of over what range
wnpn Will track we, due to mode locking. In an experimental d V/dI versus
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1988.)

I4c (not Eg) plot, 8V is found by integrating the area under the rectangular
interference peak. Experimentally (Zettl and Griiner 1983, Thorne et al.
1987), 8 V is a strong function of the ac drive amplitude E,. and frequency
w.y. Figure 4.4 shows 8V versus E,. for the n = 1/1 Shapiro step in NbSe;.
For low values of E,., 8V increases rapidly with increasing E,., but at
higher ac drive oscillatory behavior is obtained.

As is to be expected, Shapiro step interference in the dc I-V charac-
teristics similar to that shown in figs. 4.1 to 4.3 (sinusoidal drive) also occurs
for non-sinusoidal ac excitation (Brown et al. 1986). Figure 4.5 compares
dV/dI of NbSe; measured in the presence of a low-frequency sinusoidal
drive with dc bias (upper trace), to that measured in the presence of a
low-frequency square wave drive with dc bias (lower trace). For relatively
large dc bias values, the two interference date sets look very similar. On the
other hand, for very low values of Eg, the square wave drive data shows
suppressed interference peaks.

A more interesting situation occurs (Brown et al. 1986) if the square
wave drive is asymmetric, as shown in fig. 4.6. In this drive configuration,
the sample spends a waiting time 1, below threshold and a time f, above
threshold. The dc bias is defined as the time averaged response voltage
measured experimentally. The inset to fig. 4.7 shows a typical dV/dI
interference plot thus obtained (with the sample actually current, not
voltage, driven). The interference peaks are closer together on the negative
bias side, where the system spends a longer time above threshold. The
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Shapiro step width 8 V is plotted in fig. 4.7 for different ac drive amplitudes
and different f, and f, values. For short ;, 8V increases roughly linearly
with 1, and the relative slope of 3V versus 1, varies approximately as 1/1,.
Saturation of 8V occurs for large values of ;.
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Fig. 4.5. Shapiro step interference in NbSe; for (a) sinusoidal ac drive and (b) square wave
drive. The ac amplitude and frequency are identical in both traces. (From Brown et al. 1986.)
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4.2. Single degree of freedom models for the interference

In a single-particle picture, Shapiro step interference and mode locking can
be described in very simple terms. We first consider the motion of a charged
particle in a periodic (c.g. sinusoidal) pinning potential. The most elemen-
tary electric field drive that satisfies eq. (4.1) is one where E switches
periodically between two constant levels: E = E;> Ex for a time duration
1,, followed by E = E, = 0 for a time duration f, (see fig. 4.6). In this special
case, the particle begins to move from the bottom of a potential well when
E, is applied. Provided the 1, is sufficiently long, the particle will move out
of the original well and into the next, or a more distant, well. After the field
switches off to E, = 0, the particle rclaxes to the bottom of the nearcst well
and remains there for the remainder of time ¢, until the field switches once
again to E,, etc. In the steady state, the ac-sensitive time averaged CDW
current will be (Brown ct al. 1986)

()= pA /(1 + 1), (4.4)

where p is an integer and A is the periodicity of the pinning potential. The
dominant frequency of the external ac drive corresponds to a time period
(1, + 1), hence we identify we /27 = (t; + 1;)"!. Together with cq. (4.4), this
implies

(j(1)) = pAwex/2m, (4.5)

i.e., the CDW current is locked to w., and hence the particle is mode
locked. A similar situation will occur even if E,#0, since this simply
redefines the dynamic minimum in the potential. An alternative but
equivalent description of the locking involves energy considerations
(Thorne et al. 1986). With only a dc bias applied above threshold, the
moving particle has a potential energy that corresponds to its average
height in the well. For the case of a sinusoidal pinning potential this will be
halfway up the well. When the particle becomes phase locked, more time
will be spent near the potential minima and the mean potential energy will
decrease. This is a more favorable dynamic situation.

In the interference data of fig. 4.5, there is a strong cutoff for the
interference at approximately £10 mV dc bias, for both sinusoid and square
wave ac drive. This cutoff corresponds to the situation where the drive
signal no longer goes below threshold at any instance. This suggests that for
Shapiro step interference to occur, the CDW system must spend some time
below threshold during any one period of the ac drive. Further evidence for
this is observed in the square wave data, for dc bias between approximately
—4mV and +4 mV. Here the external drive switches the sample between
levels that are both larger than the threshold for depinning, but with
opposite signs. Hence for this set of drive parameters the sample spends
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virtually no time below threshold, and the Shapiro step interference is
greatly suppressed. The corresponding sine wave drive data shows no such
suppression, because for a sinusoidal drive of similar amplitude there is
always a non-negligible time spent below threshold.

In the case of rectangular pulse ac drive with two relevant times f, and 1,
(see fig. 4.6), a single-particle calculation yields for two limiting cases the
following expressions for the Shapiro step magnitude (Brown et al. 1986):

SV = VTT/lz, nh>t, (4.611)
SV:ZVTh/fz, l}<7, (46b)

where 7 is the CDW damping time. Equations (4.6a,b) are independent of
the specific form of the pinning potential. Physically, the forms of eqs.
(4.6a,b) can be understood by considering f,, the time spent below
threshold. When 1, is long, the CDW current is always locked because a
minimum in the potential can always be reached. For large E,., the steps
will be equal in size and fill the Eq4. axis, which means the step magnitudes
vary as 1/t. In the limit t; < 7, the step width is limited by #,.

Figure 4.7 shows as a dashed line the behavior predicted by this simple
single-particle description. A fit to the data of 8 V versus 1, at long 1, yields
7=0.25 ps (eq. (4.6a)). At short 1,, the fit is not quantitatively consistent
with experiment.

It should also be noted that recent Shapiro step interference experiments
(Thorne et al. 1987) on NbSe; in the upper CDW state have demonstrated
that, for samples with unusually sharp breaks in the I-V characteristics at
threshold (measured in the absence of rf radiation), Shapiro step inter-
ference with complete mode locking does obtain at high frequencies even if
the CDW is never driven into the pinned state. It would appear inconsistent
to describe these results in terms of a slow relaxation to the pinned state.
Whether the unusual dc I-V characteristics of these samples (suggestive of
switching behavior, see below) is related to this ‘enhanced’ mode locking, is
not clear.

We now examine more closely the case of sinusoidal ac drive fields where
E = Eyc + E,.c cos(wet). The highly oversimplified model of ‘rigid’ classical
CDW motion described by the damped pendulum equation (Griiner et al.
1981)

d*x/di*+ 77 dx/dt+ Q7' wdsin(Qx) = eE/m*, (4.7)

and introduced in section 2.1 is here surprisingly successful in providing
qualitative and even quantitative fits to many features of the Shapiro step
interference. In dimensionless form eq. (4.7) reads (Zettl and Griiner 1983)

d*0/dt*+ G do /dt+sin 8= E/Er, (4.8)

where G = (wo7) and time is measured in units of wy'. Equation (4.8) is well
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known in the Josephson junction literature (Lindelof et al. 1981), where it
describes the phase difference between superconductors comprising a resis-
tively shunted junction (RSJ). In the current-driven Josephson junction
case, E/Er is replaced by I/, and G is related to junction resistance R,
capacitance C, and plasma frequency w; by G =(RCw,)”". In the over-
damped and high-frequency limit (w.,> wd7), eq. (4.8) predicts Shapiro
steps in the I-V characteristics whose magnitude for the n=1/1 step is
given (Zettl and Griiner 1983) by

dV =2a«a Vr((l) = 0)ljl(w(z)TEac/wch'r(w = 0))|9 (49)

where a represents the CDW volume fraction locked to the external signal
and J, is the first-order Bessel function. In the low-frequency limit (@, <
w37), a modified Bessel-like solution for 8V can be obtained numerically
(Fack and Kose 1971). In the extreme low-frequency limit (we, < w§7), the
numerical solution predicts that 8V has a maximum at E, .= E; where
3V = (wex/ w37) V1.

The solid line in fig. 4.4 is the prediction of eq. (4.9) for 8V versus E,,
with no fitting parameters except for a, which sets the vertical scale (in fig.
4.4, a=0.6, suggesting for this sample 60% volume phase coherence).
Although the fit in fig. 4.4 is surprisingly good, lending credibility to eq.
(4.8), there are notable discrepancies between the Shapiro step data and the
predictions of eq. (4.8). First, 8 V is predicted to vanish at the zeroes of J;,
while the experimental data suggest finite 8V for all finite E,.. This is
shown more clearly in fig. 4.8. A second and perhaps more serious difficulty
is that in the overdamped limit eq. (4.8) predicts no subharmonic inter-
ference. In NbSes, TaS; and Ko 3Mo00Oj; the ac conductivity suggests over-
damped behavior, yet subharmonic Shapiro step interference is consistently
observed. Hence, single-particle rigid motion in a sinusoidal potential
cannot account for all aspects of Shapiro step interference.

The simplest correction to the deficiencies of eq. (4.7) or (4.8) is to retain
the general form of the equation of motion but introduce a non-sinusoidal
pinning potential. The expression for the Shapiro step magnitude then
becomes (Thorne et al. 1987)

3V = Vi(wex = 0) Max, {2 2 (gB) agJ,[qBw/ wey] sin(qB())}, (4.10)

where (gB)a, is the gth Fourier component of the pinning force, J, is the
pth-order Bessel function, w, is proportional to E,., and B is | or 2 for
pinning periodicities 27 or , respectively. Higher harmonics in the non-
sinusoidal pinning potential lead to subharmonic interference steps, and the
summation of Bessel functions in eq. (4.10) climinates zeroes in the predic-
ted 8V, consistent with experiment. However, as shown in fig. 4.8, detailed
measurements of 8 V versus E,. on NbSe; samples indicate that 3 V exhibits
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Fig. 4.8. Shapiro step magnitude versus ac drive amplitude in upper CDW state of NbSe;.
(From Thorne et al. 1987.)

smooth minima with increasing E,., while eq. (4.10) predicts sharp down-
ward pointing cusps at the minima. This problem is generic to rigid particle
classical models, regardless of the form of the pinning potential. In terms of
generating narrow band noise spectra and harmonic and subharmonic
Shapiro step interference most consistent with experiment, the best single-
particle periodic potential appears to be cusped (Thorne et al. 1987), similar
to that discussed by Tutto and Zawadowski (1985) and predicted by
Bardeen’s tunneling model (Bardeen 1985).

In Bardeen’s tunneling model discussed previously in section 2.4, the
electrons and macroscopically occupied phonons in the CDW are treated as
a macroscopic quantum system with only one thermal degree of freedom in
a large phase-coherent volume. The model is consistent with narrow band
noise generation and nonlinear CDW I-V characteristics and should,
therefore, account at least to first order for Shapiro step interference.
However, no specific form for 8V or subharmonic interference structure
has been calculated for the tunneling model.

4.3. Internal modes and relevant time scales

An increasing number of transport, structural, and NMR experiments on
CDW conductors suggest that CDW internal degrees of freedom play a
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central role in CDW dynamics. We will examine the relevance of internal
modes to electronic interference effects.

Below threshold, the pinned CDW displays rich metastable state structure
with both short and long characteristic time scales for decay. The long time
scales can be on the order of thousands of years for a truc cquilibrium state
to be reached. Metastable states correspond to different local configurations
of CDW phase which results from the interaction of the condensate with
crystal impurities. The states may correspond to an extremely polarized
CDW, where the Q-vector (and hence single-particle gap) varies
significantly over the length of the crystal.

Metastable state structure is well demonstrated by the so-called pulsc-
memory effect, first observed in NbSe; by Gill (1981) and subsequently
identified in other CDW materials (Janossy et al. 1985, Fleming and
Schneemeyer 1983). The effect is observed by exciting the CDW with a
series of rectangular current pulses. If the amplitude of the pulses I,
exceeds the threshold Iy, then during the time between pulscs the static
CDW ‘remembers’ the polarity of the previous pulse. If a particular current
pulse is of opposite polarity to the previous pulse, the voltage response of
the system shows a slow ‘charging’ transient. This transicnt is interpreted as
reflecting the nonequilibrium metastable state induced by repeatedly driv-
ing the CDW above threshold and quenching it to rest. As the CDW is
excited by a series of unipolar pulses with [p> Iy, the trained static
configuration between pulses will reflect a highly distorted CDW, with the
phase ‘stretched’ near one end of the sample and ‘compressed’ ncar the
other end. A sudden reversal of pulse polarity initially results in the CDW
unleashing this stored phase, leading to a sudden anomalously large phase
velocity transient with a correspondingly small voltage response. Once the
stored phase is exhausted, the CDW assumes a steady state velocity limited
by damping. The time scale for CDW depolarization is on the order of
5-20 wus in NbSe; (Gill 1981) and 100-500 ps in Ky 3MoO; (Fleming and
Schneemeyer 1983).

A closely related memory effect concerns the phase of the coherent noise
oscillations. To observe the effect, the CDW is excited by a steady state
current with I;> Iy, and the noise oscillations riding on the voltage
response are observed in real time. The current is then suddenly driven to
zero at time ¢’ and reinstated at a later time ¢". The phase with which the
oscillations resume at (" is found (Gill and Higgs 1983) to be exactly the
same as the phase with which the oscillations ceased at ¢'. Hence, during the
zero drive static situation between t' and t”, the CDW is in a metastable
state which retains the phase information of the earlicr sliding state.
Variations in témperature during the static situation erase the phase
memory.

Both of the above-mentioned memory effects are closely related to ‘pulse
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synchronization’, a form of Shapiro step interference viewed in the real-
time domain. Pulse synchronization was first observed by Fleming (1982). A
train of unipolar rectangular current pulses is applied to the sample and the
voltage response is observed in real time on an oscilloscope. As the
amplitude of the current pulse Ip exceeds I+, narrow-band noise oscillations
are directly observed. For a given Ip> Iy, it is found that the noise
oscillations can be enhanced by ‘synchronizing’ their period to the pulse
width. This is accomplished by fine tuning either Ip or the pulse width such
that an integral number of noise oscillations ‘fit’ into the length of the pulse.
Causality is satisfied since the memory effect during a particular pulse
reflects only the width of the previous identical pulses. An example of pulse
synchronization in NbSe; is shown in fig. 4.9,

During a pulse synchronization experiment, the drive field applied to the
sample is precisely of the form eq. (4.1), where E, is interpreted as the
time-average drive signal, and P(t) reflects the positive and negative
excursions from Eg.. Pulse synchronization may thus be identified as the
phenomenon of Shapiro step interference viewed in the time domain. The
criterion for pulse synchronization is the same as for Shapiro step inter-
ference, eq. (4.3).

From figs. 4.2 and 4.3a, it is apparent that the width of the Shapiro step
interference peaks can be substantial, which implies significant noise
frequency pulling near the step edges. Analogous frequency pulling can be
observed in time domain pulse synchronization experiments on NbSe; and
Ko.3M0O;. Figure 4.10 shows the real-time response of Ky3:MoO; to
rectangular current pulses. In trace (a), the noise oscillations are clearly
visible, and an integral number of oscillations occupy the pulse width. As
the pulse width is increased, the noise frequency changes (even though the

ov
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{_________j 'Ivol
— 0V
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Fig. 4.9. Example of pulse synchronization effect in NbSes: (a) synchronized; (b) unsynch-
ronized. (From Brown et al. 1986.)
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Fig. 4.10. Pulse width memory effect in K, 3M0O; at 45 K. The pulses have a period of 10 mS;
different traces correspond to different pulse widths. (From Fleming et al. 1985.)

height of the current drive pulse remains constant) so that an integral
number of oscillations still occupies the new pulse width. In other words,
changing the ac drive frequency (by changing the drive pulse width) results
in a pulling of the noise frequency. Over a substantial range of we,, the
noise frequency remains locked to a harmonic of we,.

In the pulse-induced Shapiro step described in fig. 4.7, saturation of 8V
occurs for t; above approximately 4 us. This independently identifies a
relaxation time comparable to that obtained from pulse memory experi-
ments. The fit of eq. (4.6) to experimental data in fig. 4.7 suggests that a
distribution of relaxation times may be more approporiate than a single time
scale. The spectrum of times is associated with the development of the
pinned state after the high field is turned off. In this sense the behavior is
similar to the stretched exponential or logarithmic decay of CDW polariza-
tion following a current pulse. However, both the Shapiro step experiments
and polarization relaxation experiments probably reflect more a sampling of
a large number of metastable states rather than a simple distribution of
relaxation times.

A feature of CDW response again related to internal modes, memory,
and Shapiro step interference is that of transient ringing, first identified in
NbSe; (Zettl 1983). Ringing refers to the strong decrease in the amplitude
of the narrow-band noise oscillations following the start of a current pulse
which drives the CDW from below threshold to above threshold. The
ringing resembles an inertial effect, not expected in an overdamped system.
Ringing only occurs if the CDW is initially started from a static configura-
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tion below threshold, and hence does not simply reflect response to a
dramatically changing drive (i.e. step function with the associated high
harmonic frequency content). The amplitude of the transient after the start
of the pulse is also strongly dependent upon the dc bias of the pinned CDW
prior to the pulse. This strong sensitivity to initial metastable (pinned) state
has been exploited to determine CDW relaxation rates between different
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Fig. 4.11. dV/dI and broad-band noise amplitude in NbSe;: (a) no rf, (b) with superposed rf
drive. Complete electronic locking is associated with a suppression of broad band noise. (From
Sherwin and Zettl 1985.)
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mectastable pinned states. For NbSec. it is found (Parilla and Zetd 1985) that
relaxation from the metastable state just below threshold to the (polarized)
metastable state associated with an unbiased (but trained) CDW takes on
the order of 50-100ns. This relaxation is exceptionally fast and distinet
from that associated with the ‘waiting time’ of Shapiro steps experiments.

It has been suggested that the broad-band noise generated by a sliding
CDW reflects directly internal CDW degrees of freedom. In the absence ol
rf radiation, the broad band noise amplitude is a well-defined function of
CDW phase velocity. Figure 4.1 1a shows, for NbSe,, the broad-band noise
amplitude as a function of dc bias. In the presence of rf radiation, the CDW
phase velocity on a mode locked Shapiro step becomes fixed. Surprisingly,
in this locked state the sliding CDW gencerates no broad band noise
(Sherwin and Zettl 1985). This is demonstrated in fig. 4.11b. It has been
suggested that during mode locking, the internal degrees ol freedom
responsible for broad-band noise generation are ‘frozen out’. This inter-
pretation suggests that the CDW condensate is exceptionally coherent
during mode locking. which has implications for clastic CDW responsce (see
section 7).

4.4. Many degree of freedom models for the interference

Single degree of freedom models have not been fully successtul in describ-
ing Shapiro step interference phenomena. It appears necessary to explicitly
treat the CDW as a many degree of freedom system. The hydrodynamical
approach of Sneddon, Cross and Fisher (1982) (see section 2.2) predicts (to
all orders in perturbation theory) no steady state narrow band noisc oscil-
lations. In the presence of ac and dc drive fields, however, interference is
obtained. The form of the interference in the I-V characteristics is pre-
dicted to be (Sneddon et al. 1982)

dIE = vy J (g Vil 0e) Gl(gra — nwe)/ 03], (4.11)

where vy is the dc drift velocity of the condensate, g represents a reciprocal
lattice vector. and G(z) is a function peaked at z=0. The model of
Sneddon ct al. does not predict true mode locking during interference:
rather, interference occurs whenever the intrinsic and applied frequencies
arc relatively close. In addition, the interference features predicted by cy.
(4.11) are smooth functions of dc bias, in contrast to the rather sharp
Shapiro step interference peaks experimentally observed. Sneddon has
extended the classical deformable model to include electrostatic inter-
actions of the CDW with itself (Sneddon 1984), conduction clectrons, and
the host lattice with defects. The model suggests an important role played
by frec electron screening. For TaS;, for example, it is predicted that the
wings of the d V/dI interference peaks will be strongly enhanced and that
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the peak heights will change little as the temperature is lowered in the
CDW state. Experimentally, the interference peaks in TaSs are observed to
broaden with decreasing temperature. Sneddon has further studied (Sned-
don 1984) interference effects by extensions of the Frenkel-Kontorova
model, where the CDW is treated as interacting discretized units in a
periodic potential. The model accounts well for dc field-induced inter-
ference structure in the complex ac conductivity of NbSes and TaS;.

Coppersmith and Littlewood (1986) have reexamined the deformable
CDW model of Sneddon, Cross and Fisher. The system is discretized and
the phase ¢; = Qu; at the impurity site becomes

de;/dt= [(¢ix1— i)/ Li— (i — ¢i—l)/Li—|] + Usin(¢i + ¢))
+3E(1)(Li + Li-), (4.12)

where ¢; = QR is the undistorted phase and L; = Ri+1— R; is the distance
between the impurities. A sinusoidal pinning potential is assumed. In the
low-field regime, eq. (4.12) does predict true mode locking when wey is
small and Egc = Eac such that significant relaxation takes place while the
drive field is below threshold. Subharmonic mode locking arises from the
presence of many pinned metastable states. The experiments of Brown et al.
(1986) discussed in section 4.1 (see fig. 4.5) support this model, i.e., it
appears that the CDW needs to spend time below threshold for true mode
locking to occur. Figure 4.12 shows mode locking predicted by the
deformable CDW model with different numbers of random impurities. Both
harmonic and subharmonic interference is observed; the appearance of
high-order subharmonics is associated with an increase in the number of
degrees of freedom. It is interesting to note that, for a drive configuration
where the time the CDW is at rest is long compared to the time above
threshold (1, >t in fig. 4.6), a single degree of freedom model with any
potential will yield (even with CDW inertia) only harmonic mode locking.
This is in contrast to experimental observations, and supports a many
degree of freedom model for the Shapiro step interference.

A very large number of degrees of freedom is not necessary to generate
subharmonic as well as harmonic mode locking in a classical CDW
dynamics model. Matsukawa and Takayama (1987) have considered the
case of a set of overdamped coupled oscillators each independently obeying
eq. (4.7). Subharmonic interference is obtained for as few as two coupled
oscillators. For two linearly coupled oscillators in a sinusoidal potential, the
equations of motion are

d(l)l/dt: ¢2-¢l+siﬂ ¢I+Edc+Eac COS Wex!, (4.133)
dg,/dt= ¢, — ¢ +sin(¢2 + 8) + Egc+ Eac COS Wex!. (4.13b)

Equation (4.13a,b) predict subharmonic mode locking unless & = 0. Figure
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Fig. 4.12. Mode locking in the many-degree-of-freedom model of eq. (4.12). The vertical axis

is the number of wavelengths moved per pulse, plotted versus the pulse duration f,, with a

fixed Eo, = 16 and U = 4. Three different numbers of degrees of freedom are shown: 10, 25 or

55. Locking is demonstrated because the number of wavelengths moved is always a rational

fraction. Inset: magnified portion of the plot, demonstrating that increasing the number of

degrees of freedom causes the appearance of high-order subharmonics (from Coppersmith and
Littlewood 1986).

4.13a shows the I-V characteristics of this model with & = /2. A rich
spectrum of mode locking is observed, in good qualitative agreement with
experiment. No chaos is predicted, even for large Eqc, again consistent with
experiments on conventional NbSe; samples. Figure 4.13b shows mode
locking in the E,—~Eq. plane predicted by eqgs. (4.13a,b). The decrease in
8 V at large ac drive is similar to that observed experimentally (see fig. 4.8).

Recently, it was suggested that CDW memory and associated inter-
ference phenomena may be an example of universal ‘phase organization’.
Tang et al. (1987) consider a ‘soft’ system with many effective degrees of
freedom (such as the Frenkel-Kontorova model with many balls connected
with weak springs). If the system driven by a train of rectangular force
pulses, the system can be ‘trained’ such that, at the end of a driving pulse,
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Fig. 4.13. Mode locking for a set of coupled oscillators described by eq. (4.13). (a) Inter-
ference in the direct I-V characteristics. The lockings at ¢ =1, 2, and 3 are appreciable. (b)
Locking regions in the Eg—E,. plane. (From Matsukawa and Takayama 1987.)

the system will be in a self-organized state. This state can be one that
appears least likely for the system, e.g., all balls at the tops of the potential
peaks! Figure 4.14 shows an example of a phase organized state. The
dynamics of the system self-selects certain metastable states; in a CDW
experiment, these states may be those most important for strong inter-
ference. Hence, universal phase organization provides a natural account of
the pulse duration memory effect (fig. 4.10) and associated mode locking in
CDW conductors. Central to the phenomenon of phase organization is the
presence of many degrees of freedom. This is in contrast to nonlinear
dynamics analyses based, for example, on the circle map (see section 5.1),
or a small number of coupled oscillators, e.g. eq. (4.13).

Recently, Dong and Yu (1988) have suggested that many ‘pseudo-
inertial’ aspects of CDW dynamics are well described by a single degree of
freedom model such as eq. (4.7) with inertia included only for the sliding
CDW state. Such a description provides good fits to, for example, transient
ringing experiments (Parilla and Zettl 1985). On the other hand, the model
cannot account well for metastable state structure.

Fig. 4.14. Snapshot of phase organized state of weakly coupled balls in a sinusoidal potential,
just prior to the drive field being turned off. (From Tang et al. 1987.)
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5. Driven CDWs and the theory of nonlinear dynamics

A driven CDW comprises an cxceedingly complex nonlinear system, with
many degrees of freedom. The conventional approach in dealing with
dynamical systems is to derive a set of differential equations which describes
the system, and then integrate the equations to extract the motion. Often,
however, the equations of motion are unknown, or, once established, very
difficult to solve.

In many systems with a large number of degrees of freedom (such as a
fluid), the complex dynamics are actually well described by only a few
active degrees of freedom. In such cases it is often advantageous to
describe the dynamics in terms of a low-dimensional discrete mapping,
rather than by differcntial equations of motion. A return map relates the
state of the system at index m+ 1 (m could be a time unit) to the state of
the system at index m. If the points on the mapping fall on a smooth line,
the return map is termed one-dimensional. Once the return map for a
system has been identified, the evolution of the system can be tracked by
simply iterating the map, which in general is far easier than integrating
complex equations of motion. Even exceedingly complex system response
(such as chaos) is well described by maps. Return maps find a natural
application in the description of nonlinear CDW dynamics (Zettl 1988).

5.1. Competing periodicities: the circle map

Interference in CDW systems results directly from the interaction of two
competing periodicities, one defined by the narrow-band noise frequency
wnpn and the other defined by the frequency of the external ac drive we,.
The general phenomenon of competing periodicities has been extensively
studied from the point of view of nonlinear dynamics theory (Aizawa and
Kobatake 1975, Jensen et al. 1983a,b, 1984, Bohr et al. 1984, Bak et al.
1984).

Consider the quasiperiodic behavior of a system with internal frequency
wnpny =d6,/dt driven by an incommensurate source at frequency we, =
d@,/dt. The evolution of the system in phase space can be represented as
motion on a two-dimensional torus, as illustrated in fig. 5.1. A particular
plane cutting through the torus defines a Poincaré section; in fig. 5.1 the
plane has been chosen at 6, =0. The intersection points of the system
trajectory with the chosen plane may be obtained by ‘strobing’ the system at
‘times’ 6, =0, 2, 4, etc., and recording the intersection points in the
plane. The series of points thus obtained clearly lie on the intersection of
the torus surface with the plane; this intersection is topologically equivalent
to a circle. As the system evolves and points accumulate, points on the
circle generated during one pass of the system are mapped to another part
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Fig. 5.1. Motion on a 2D torus for a system with two competing periodicities. Phase 1
represents the intrinsic system periodicity; phase 2 represents the external drive periodicity.
The dashed line is the trajectory for a p/q =3/1 mode locked state. The Poincaré section
contains a single point.

of the circle during the next pass. This defines a nonlinear map of the ‘circle
onto itself’.
One such mapping of the invariant circle is the sine circle map,

Om+1 = O + 2+ (K/27) sin(278,,), (5.1)

a discrete mapping which has been used extensively to describe many
natural systems with two competing periodicities (Aizawa and Kobatake
1975, Jensen et al. 1983a,b, 1984, Bohr et al. 1984, Bak et al. 1984). Here
0,,= 0(t=mT) with m an integer and T =2n/we,. K represents the
strength of the coupling between the external drive and the system, and £
is the ratio of the two characteristic frequencies in the absence of inter-
ference (i.e. £2 = wnpn/wey). The sine circle map predicts mode locking,
subharmonic interference, and a quasiperiodic transition to chaos. Figure
5.2 shows some of the more prominent mode locked regions for the sine
circle map in K-{2 space. For K<1, the mode locked steps form an
(incomplete) devil’s staircase of dimension d = 1. Just at K = 1, the staircase
is complete with a fractal dimension (Jensen et al. 1983a,b, 1984, Bohr et
al. 1984, Bak et al. 1984) d = 0.870. This is the Hausdorff dimension of the
complementary Cantor set for the mode locked region. For K>1,
resonances overlap and the map is no longer invertable, hence chaos is
possible.

There are two motivations for analyzing CDW interference phenomena
in the context of the sine circle map. First, the sine circle map has been
found to give a surprisingly accurate account of mode locking in several
physical systems with competing periodicities (examples being barium
sodium niobate (Martin and Martienssen 1986) and germanium (Gwinn and
Westervelt 1987). A second motivation is that detailed numerical and
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Fig. 5.2. Mode locked regions in the sine circle map. Only a selected set of locked regions is

shown. The critical line is at K = 1. (From Jensen et al. 1983a,b, 1984, Bohr et al. 1984, Bak et
al. 1984.)

analytic calculations (Jensen et al. 1983a,b, 1984, Bohr et al. 1984, Bak et
al. 1984) have demonstrated that, for a certain parameter range, the sine
circle map is the appropriate return map for the damped pendulum equa-
tion, eq. (4.7), which forms the basis of the rigid particle classical model of
CDW motion. ’

The first analysis (Brown et al. 1984) of CDW interference in terms of the
circle map addressed the fractal dimension of the locked and unlocked
region in a Shapiro steps experiment. To analyze experimental data such as
shown in fig. 4.3a, one could count up the widths of all mode locked regions
in {2 space, and to test for completeness of the devil’s staircase determine if
the quasiperiodic orbits (gaps) are confined to a Cantor set of zero measure.
A more practical (finite resolution) method is to consider the behavior of
the gaps (Brown et al. 1984, Jensen et al. 1983a,b, 1984, Bohr et al. 1984,
Bak et al. 1984). Given a scale r, the total measure of the gaps between the
mode locked steps is 1 — S(r), and the number of holes N(r) =[1— S(r)])/r. If
rN(r)— 0 as r— 0, the staircase is complete, with fractal dimension d given
by

N(r) « r79, (5.2)

Such an analysis for NbSe; by Brown et al. (1984) is shown in fig. 5.3. The
data lie on a line whose slope indicates a fractal dimension d = 0.91, close
to the expected value of 0.87 and hence suggestive that the system is close
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Fig. 5.3. Fractal dimension determination of Shapiro step locking in NbSe;. The data lies close
to d = 0.87 expected from the circle map at the critical line. (From Brown et al. 1984.)

to criticality and chaotic response. However, no critical line or chaotic
response has been identified, even for a large range of ac drive amplitudes.
More systematic studies by Sherwin et al. (1988) have also demon-
strated that d is strongly ac amplitude dependent in NbSe;, and tends to
approach 1 for large ac drive. In the context of the circle map, mode
locking in NbSe; is always subcritical (i.e. K <1).

In comparing the predictions of the sine circle map to CDW response, it
seems natural to associate K in eq. (5.1) directly with E,., and 2 with Eg..
A plot of mode locking in the E,.—Eq. plane for a CDW system might then
be analogous to fig. 5.2 for the circle map. Such direct comparison,
however, reveals serious discrepancies, such as the experimentally observed
oscillatory behavior of 8 V with increasing E,. (see figs. 4.4 and 4.8), and
the lack of chaotic response at high ac drive. These problems suggest that
the driven CDW condensate is not the best physical realization of the sine
circle map, at least not if K is directly associated with E,. (in section 5.2.2,
it is argued that this direct association is flawed). The physical significance
of a well-defined fractal dimension corresponding to the mode locking in
NbSe; is not clear.

5.2. CDW switching and transitions to chaos

For most CDW crystals the CDW condensate depins smoothly as an applied
dc bias exceeds threshold E+; the functional form of the I-V characteristic
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is similar to the Zener tunneling expression. However, not all samples of a
given material display smooth depinning. In selected crystals of NbSes;,
TaS;, Ky3Mo0O;, and (NbSe,)s 331, the CDW depins in a sharp, hysteretic
manner which results in a strong discontinuity in the dc I-V characteristics.
This phenomenon was first observed in the lower CDW statc of NbSe; by
Zettl and Griiner (Zettl and Griiner 1982), and it is referred to as switching.
Switching typically occurs only over a limited temperature range for a
given sample. The switching state is characterized by a temperature in-
dependent depinning field (Hall and Zettl 1984), I-V hysteresis (Zettl and
Griiner 1982), negative differential resistance (Hall et al. 1984), inductive
ac response (Hall and Zettl 1985), and large phase polarization (Hall et al.
1988). In the presence of combined ac and dc drive fields, switching
samples show unusual Shapiro step structure and period doubling routes to
chaos (Hall et al. 1984). Switching can be induced by strong impurity
doping or irradiation, and it appears to arise from isolated ‘ultrastrong’
impurity pinning within the crystal bulk (Hall et al. 1988). The observed
velocity discontinuities (Hall et al. 1986) in switching crystals imply local,
periodic collapse of the CDW amplitude at phase slip centers. Con-
sequently, one of the most interesting aspects of CDW switching is that to
successfully model the phenomenon, it is necessary to include degrees of
freedom for both the CDW amplitude and phase. This is in contrast to most
models of CDW conduction (see section 2) which treat the CDW amplitude
as rigid and assign degrees of freedom only to the CDW phase. Switching in
NbSe; has been extensively studied experimentally (Sherwin et al. 1988,
Hall and Zettl 1985, Hall et al. 1988) and theoretically (Inui et al. 1988).

5.2.1. Mode locking and chaos

Figure 5.4 shows Shapiro steps interference phenomena in a switching
crystal of NbSe; (Hall et al. 1984). The interference steps in this voltage-
driven experiment are the roughly horizontal plateaus whose differential
resistance is equal to the low-field pinned state differential resistance.
Switching samples show dramatic mode locking. In the trace corresponding
to V=28 mV in fig. 5.4, for example, complete mode locking, with little
space between harmonic mode locked steps, is observed over a large range
of dc bias.

On any particular mode locked Shapiro step shown in fig. 5.4, the time
averaged dc CDW velocity is constant and insensitive to dc bias. One might
expect, on a mode locked step, that higher frequency fluctuations are
suppressed, as is the case for non-switching samples (Sherwin and Zettl
1985). For switching samples, however, the situation is quite different;
indeed, some of the most complex CDW response occurs precisely when
the condensate is mode locked in the dc limit! Figure 5.5a shows an
expanded view of mode locked Shapiro steps in switching NbSe; similar to
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Fig. 5.4. Mode locking in direct I-V traces of switching NbSes. (From Hall et al. 1984.)

those seen in fig. 5.4. The solid line response is measured at zero frequency.
The arrows indicate forward and reverse voltage bias sweep direction, and
the traces have been vertically offset for clarity. The CDW is nearly always
harmonically mode locked. Figure 5.5b shows the corresponding response
spectrum in the frequency domain, for selected dc bias voltages on a
particular mode locked step. Complex response is obtained, with an ap-
parent period doubling route to chaos with increasing dc bias. The first
frequency spectrum shows only the fundamental of the rf drive at frequency
f= wex/2=5MHz, and higher harmonics of f due to the non-linearity of
the CDW system. In the second spectrum, peaks appear at f12, indicating
that a period doubling bifurcation has occurred. The third spectrum shows a
generally elevated noise level and new frequency structure indicative of a
second period doubling bifurcation. The final spectrum shows broad-band
chaotic response. The bifurcation points are shown schematically in fig.
5.5a as vertical lines separating different response forms. It is apparent that
on each mode locked step, there is a period doubling route to chaos. Such
behavior is only observed in switching samples, and thus far it has only been
observed in NbSe; although it probably exists in other switching CDW
materials as well.

Figure 5.6a shows the structure of mode locking in the E,.—Eq. plane for
switching NbSe; (Sherwin et al. 1988). At the lowest value of ac drive
shown (top of fig. 5.6a) there is a hysteretic transition between the n =
plq=0/1 and 1/1 steps, and the n=1/2 step is eclipsed. There is no gap
between the 0/1 and 1/1 steps. The period doubling route to chaos is most
strongly developed in this region of very hysteretic mode locking. At higher
values of ac drive (lower in fig. 5.6a), the n=1/2 step emerges and a
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Hall et al. 1984.)

smaller fraction of parameter space is occupied by the mode locked regions.
Some period doubling instabilities still exist, but they occur less frequently.
Below the critical line identified at V,/V.=0.97, period doubling in-
stabilities are no longer observed, and the n = 1/2 step shrinks in relative
magnitude. In general the response is a very complicated function of ac
amplitude and frequency, dc bias, and temperature.

5.2.2. Models for the switching and chaotic response

Mode locking in switching CDWs has many of the characteristics of
inertial, underdamped motion. Another way of writing eq. (4.4) in dimen-
sionless form is (Hall et al. 1984, D’Humieres et al. 1982)

Bde/dt* +de/dt+sin ¢ = ey t+ eqc Sin(Ls1), (5.3)
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where B quantifies system inertia, egc and e,. are dc and ac drive fields
normalized to the threshold field Er, and () is the ac drive frequency
scaled to w37. In this representation the inertial parameter is more trans-
parent. The solutions of eq. (5.3) with finite B show (D’Humieres et al.
1982, Kautz 1981) many of the features of driven switching CDWs,
including hysteresis, mode locking, and chaos. For B> 1 (underdamped
motion), hysteretic Shapiro steps are predicted, and period doubling routes
to chaos are observed on some of the mode locked steps (Kautz 1981).
However, eq. (5.3) fails to account in detail for switching CDW response.
For example, the ac conductivity of a switching CDW with no applied dc
field appears overdamped, inconsistent with eq. (5.3) when B is extracted
from the switching I-V characteristics. Equation (5.3) also predicts chaotic
response for the limited frequency range B! < wex < B2, inconsistent
with experimental observations of chaos in NbSe; over a much larger
frequency range (Hall et al. 1984). Finally, the period doubling route to
chaos of eq. (5.3) is not periodic in dc bias, in contrast to the experimental
data of fig. 5.4 Thus eq. (5.3) does not provide an entirely satisfactory
description of CDW dynamics in either switching or non-switching CDWs.

Recent studies (Sherwin et al. 1988) have re-examined the applicability of
the sine circle to CDW dynamics. Although the circle map does not provide
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a good description for mode locking in non-switching CDWs, it is surpris-
ingly successful in describing the complex behavior of switching CDWs!
Figure 5.6b shows for the sine circle map the mode locked regions p/q =
0/1, 1/2 and 1/1 in K-{2 space. The critical line at K =1 is indicated. For
K <1, the circle map predicts distinct mode locked, and quasiperiodic,
solutions, but no period doubling or chaos. For K> 1, the circle map has a
local maximum, with different possible states of the system for a given set of
drive parameters. At the edges of the p/1 and p/2 regions for K> 1, the
solutions represent simple mode locking. However, as (2 is swept toward
the center of the mode locked regions, period doubling instabilities and
chaos occur for this range of K. For both the CDW and the circle map, the
structure of mode locking and the period doubling route to chaos are
periodic in dc bias.

A comparison between figs. 5.6a and 5.6b shows a surprising cor-
respondence between the CDW response and behavior predicted by the
circle map. It is interesting that the data indicate that K is inversely related
to E,, i.e. large E,. corresponds to small K. This inverse relation reflects a
general feature of many nonlinear systems: when forced sufficiently stron-
gly, the nonlinearity of the system becomes a mere perturbation to a linear
system. This ‘linearizing’ effect accounts for the decreasing widths of
Shapiro steps with increasing ac drive for both switching and nonswitching
CDWs.

The observation of period doubling in mode locked switching CDWs
indicates that mode locking in this system can be supercritical, i.e. K> 1.
The critical line in fig. 5.6a separates regions in which period doubling (not
necessarily chaos) is and is not observed experimentally in NbSe;. The
dimension of the mode locked regions along this line should be a lower
bound to the dimension predicted by the circle map at K = 1. Sherwin et al.
(1988) have found that d =0.85+0.05 at the critical line of switching
NbSes, in agreement with the circle map predictions.

The structure of mode locking in switching CDWs is seen to be con-
sistent with the predictions of the circle map in nontrivial ways: (1) The
presence of dynamical instabilities is correlated with the width of mode
locked steps. (2) The structure of mode locking and the period doubling
route to chaos are periodic in dc bias. (3) The period doubling cascade
occurs as the system is pushed from the edge of mode locked regions
toward the middle of those regions. (4) The fractal dimension of the devil’s
staircase (Cantor set complementary to the mode locked regions) at the
critical line is within experimental error of theoretical predictions.

The success of the circle map in describing the complex response of
switching CDWs in the presence of ac and dc drive fields unfortunately
gives no insight into the microscopic origins of the unusual dynamics. It has
been demonstrated by Hall et al. (1986, 1988) that phase slip processes
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within the crystalline bulk are integral to the switching process. Phase slip
gives rise to an apparent motion-dependent inertia which can qualitatively
account (Inui et al. 1988) for harmonic and subharmonic mode locking, and
period doubling routes to chaos. The phase slip process requires a macro-
scopic polarization of the CDW prior to the collapse of the CDW amplitude.
After the amplitude collapses, a finite time is needed for the CDW to
depolarize before it can slide. This lag in the response resembles system
inertia (response lags the force). When the phase slip process is entrained at
a frequency of order the inverse of the relaxation time, the tendency of the
CDW to follow the external forcing may compete with the requirement
that the CDW ‘remember’ its previous polarization state (see section 4.3).
This competition leads to a frustrated subharmonic or chaotic response.
The detailed dynamics of a CDW condensate with associated phase slip
centers has been examined by Hall et al. (1986) and Inui et al. (1988). In
simplified form, the equations of motion for the CDW condensate are

ddpun/dt = e —sin dpux — aA(Ppui — ‘f’psc), (5.4a)
kdd/dt= -(A +[¢bu|k - d’psx:]Z/@z - l)s (54b)
Gpsc—> Ppsc if 4>0, bpsc = Ppsc 27 if A<O, (5.4¢)

where ¢pux represents the bulk CDW phase. ¢pux couples to a normalized
electric field e, an impurity pinning potential sin ¢dpux, and a strongly
pinned phase ¢, at the phase slip center. ¢, changes by hops of 2=
when the CDW amplitude A at the strong pinning site collapses, and A
obeys simple relaxational dynamics driven by the square of the phase
polarization, (¢yux — ¢psc)2. a represents the stiffness of the phase mode, «
is the ratio of phase to amplitude relaxation rates; and @ is the stiffness of
the amplitude mode.

Equations (5.4a)—(5.4c) are intractable analytically, but solutions have
been obtained by numerical integration on a digital computer (Inui et al.
1988). Figure 5.7 shows the predicted response for a Shapiro step experi-
ment in the E,—E,. plane. The amplitude relaxation rate has been fixed at
x =0.5. Typically, solutions in fig. 5.7 are periodic and mode locked to
harmonic (p/q = integer) Shapiro steps. The solutions are identified with
the step index n and period P as (n, P). The blank areas in fig. 5.7
represent quasi-periodic or subharmonically mode locked solutions. In
typical CDW experiments, the ac field amplitude is held constant and the dc
bias is swept through a range of values. The horizontal line in fig. 5.7
corresponds to an analogous sweep. As ey, increases along this line,
solutions move through the third harmonic Shapiro step, then through the
fourth harmonic Shapiro step, and finally through an unlocked region to the
fiftth harmonic Shapiro step. Figure 5.8 shows the details of this sweep. The
dashed line in the figure represents the entrainment ratio (Shapiro step
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order). Over most of the figure, solutions are mode-locked to a harmonic
step, similar to what is observed experimentally in the switching regime of
NbSes (figs. 5.4 and 5.5a). For example, the third Shapiro step in fig. 5.8
extends from ey = 4.0 to 4.3; the fourth step from 4.3 to 5.3, and the fifth
step from 5.4 10 5.5.

The solid line in fig. 5.8 represents the periodicity index P (quasi-periodic
and chaotic solutions are assigned P = 0). Even though solutions are usually
mode-locked at dc in fig. 5.8, the periodicities of the solutions are often not
one. For example, on the fourth Shapiro step, a period doubling cascade to
chaos is observed. The corresponding response in the frequency domain is
shown in fig. 5.9 for selected values of dc bias in this cascade. The behavior
on this step is remarkably similar to that observed in NbSes, as shown in fig.
5.5b. Nearly all of the unusual mode locking and chaotic response features
of switching CDWs are, at least qualitatively, well accounted for by the
phase slip model of switching.
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6. Relevant length scales and domain structure

6.1. Intrinsic phase and velocity domains

The static CDW is characterized by a finite static phase coherence length
given by the Fukuyama-Lee-Rice length (Lee and Rice 1979)

L5=27T/niV(2,, (6.1)

where V, is the strength of the impurity potential and n; is the impurity
concentration. L, is roughly the length over which the phase fluctuations
(84%)"? is less than 2. For most CDW conductors, Ly is estimated to be on
the order of one micron or less, consistent with lower bounds extracted
from X-ray scattcring measurcments. For a dynamic CDW, scveral new
length scales come into play. The dynamic phase-phase correlation length
($(0)P(x)) of a dc-driven sliding CDW condensate has been estimated
(Mozurkewich and Gruner 1983) from the narrow-band noise studies, and
implies a microscopic domain volume {2y = 0.2 wm*. Within this domain the
phase of the CDW behaves more or less as a rigid entity. As the sample
volume increases, different microscopic domains oscillate out of phase, and
the narrow band noise amplitude falls as 023'?, vanishing in the ther-
modynamic limit. In this interpretation. the noise is a finite-size effect. The
recent observation (Hundley and Zettl 1988) of very coherent and large
amplitude narrow-band noise response in ultra-thin Ko.3sMoOj; crystals sup-
ports this interpretation.

The time derivative of the CDW phase defines a CDW phase velocity
with an associated narrow band noise frequency. Since mode locking
cxperiments reflect interaction between an external rf field and the narrow-
band noise frequency, Shapiro step interference is a useful method to
investigate CDW phase velocity coherence and its sensitivity to external ac
fields. The phase velocity-velocity correlation function

((d¢(0)/d1)(dd(x)/dD)) (6.2)

defines an ac-sensitive dynamic velocity coherence length &p which may
greatly exceed L;. &p is dependent on the CDW velocity and the amplitude
and frequency of externally applied electric fields (Hall et al. 1987).

In a dV/dI Shapiro step mode locking experiment, the height of the
interference peak during mode locking will coincide with the pinned
differential resistance only if the entire CDW condensate takes part in the
interference. Such ‘complete’ locking is, however, not always observed
(compare, for example, figs. 4.3a,b and c). The completeness of mode
locking can be influenced by changing sample dimensions (Hall et al. 1987).
Figure 6.1a shows Shapiro step interference for a relatively long and thick
NbSe; sample. The height of the n =1 step indicates incomplete locking. If
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(From Hall et al. 1987.)

the sample is reduced in volume by decreasing its length and cross sectional
area by factors of 10, the interference structure of fig. 6.1b results. Com-
plete locking is now observed. This suggests that large samples are com-
posed of a number of large, macroscopic velocity-coherent domains, which
may oscillate at independent frequencies for a given set of drive
parameters. The volume of these macroscopic domains may be determined
from the Shapiro step interference spectrum.

The height h of the interference peak, measured from the effective base
line (or saturated d V/dI value) represents the volume fraction of the CDW
condensate mode locked to the external ac drive (Hundley and Zettl 1986,
Zettl 1986). This is simply understood if one considers the thin CDW
conductor as a linear series of domains. Each domain consists of an
independent CDW condensate in parallel with a resistance R, representing
normal electrons. Differences in CDW phase velocity from one domain to
the next are compensated for by carrier conversion at domain interfaces.
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The CDW associated with each domain has a differential resistance R¢pw,
where Rcpw— @ if the domain is mode locked, and Repw—> Re (a con-
stant) in the conduction saturated (unlocked) limit. In this model, the total
differential resistance for the sample is (Zettl 1986)

N
dV/dI =), RaRcow/(Ra+ Reow), (6.3)
j=1
where j indexes the domain and N is the total number of domains in the
crystal. If all N domains are mode locked, dV/dI =)_“,,’-i, R,=
dV/dI(I4 =0), and

]

1

N
R,R/(R,+ R,).
=1

N
h= hmax = Rn -
=1

If, on the other hand, only M of the N domains are mode locked,

M N N
h=) Rao+ Y. R.R/(R,+RJ)— ) R.R/(Rn+Ro).
j=1 j=M+1 i=1

This implies that the experimentally determined ratio h/hma = M/N, the
locked volume fraction.

For a given Shapiro step (indexed by n), the ratio h/hmax depends on
both the ac electric field amplitude and frequency, and of course the size of
the crystal.

To determine ¢&p(ac) explicitly, one may explore mode locking for a
single large crystal over different spatial ranges. Figure 6.2 shows the results
for such an experiment (Hall et al. 1987) in NbSes, where non-perturbative
‘sliding’ voltage sensing probes were used to determine h/humax for the n =1
Shapiro step, as a function of distance d between voltage probes. The
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Fig. 6.2. Ratio of h/h,, for mode locking in NbSe; crystal. d is the distance between voltage
sensing probes on the crystal surface (from Hall et al. 1987).
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external ac frequency is 5 MHz, and the ac amplitude has been chosen to
maximize h/hmax. For d > 500 pm, h/h.,.x decreases with increasing probe
separation, while h/hy,. =1 for d <500 pm. This determines &p =500 pm
for relatively pure specimens of NbSe;. Within a length on the order of
500 pwm, all microscopic domains may be fully mode locked by an external
ac electric field of frequency 5 MHz.

Using a similar sliding voltage probe method, the frequency dependence
of ¢p has also been explicitly determined (Hall et al. 1987) for NbSe;. For
low w.,, £p may be very large, exceeding the sample length of 0.2 mm in
fig. 6.3. Above 2 MHz, ¢&p is seen to drop dramatically with increasing wex.
Hence at high CDW velocities, the CDW condensate is broken into
numerous macroscopic regions with independent phase velocities. Even a
very large amplitude rf field is unable to synchronize the regions.

6.2. Temperature gradient effects

An interesting aspect of phase velocity coherence is the effect of an applied
uniform temperature gradient. Experiments (Lyding et al. 1986, Ong et al.
1984) have demonstrated that a temperature gradient may split the narrow-
band noise spectrum into two or more seemingly independent spectra, with
no smearing of the noise peaks. Although such splitting was originally taken
as evidence for noise generation at sample contacts (see section 2.5), most
experiments point to an interpretation in which the CDW breaks into
macroscopic domains, each with a different characteristic phase velocity
and oscillation frequency.

The splitting of the noise spectrum in a temperature gradient is reflected
also in the Shapiro step spectrum. Figure 6.4 shows the results of such an
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Fig. 6.4. Shapiro step interference in NbSe; in the presence of an applied temperature
gradient. For finite gradient, the sample breaks into independent phase-velocity coherent
domains with independent Shapiro step spectra. (From Hundley and Zettl 1986.)

interference experiment (Hundley and Zettl 1986) on NbSe; performed in
the presence of a temperature gradient. Independent interference peaks,
associated with mode locking to different macroscopic regions within the
sample, are observed. From the ratio h/hmay associated with each set of
interference peaks, the volumes of the independent regions can be evalu-
ated. The data of fig. 6.4 suggests that the sample has split into two
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independent macroscopic domains, with the ‘hot’ domain comprising 40%
of the sample volume and the ‘cold’ domain comprising 60% of the sample
volume. This accounts for 100% of the sample volume. The interface
between the macroscopic domains must consist of a phase slip center.

The total number of macroscopic domains within a sample subjected to a
temperature gradient represents a competition between the tendency to
decrease CDW elastic energy by forming more domains, and the tendency
to increase phase slip energy when more domains are formed (with the
associated formation of more domain interfaces). A simple model has been
proposed by Hundley et al. (unpublished) which explicitly evaluates the
balance of elastic and phase slip energy in terms of measurable CDW
parameters. Figure 6.5 shows the calculated strain energy, phase slip
energy, and total CDW energy as a function of the number of macroscopic
domains in a CDW crystal subject to a temperature gradient. The
parameters used in the calculation represent those expected for a NbSes
crystal of length 1 mm and cross-sectional area 5 X 107 cm?, at temperature
Ty =48 K (cold end) with a gradient of 6 K across the sample, and subject
to a dc bias current I,= 100 pA. The total energy is minimized if the
sample breaks into three domains, consistent with the number of domains
observed in a real NbSe; crystal under similar experimental conditions
(Hundley and Zettl 1986, Lyding et al. 1986).

I, =100 pA o U,
o u
ps
30 p T,=48K | A Uy, | 7
AT=6K
20} —

A\A A/o
u}
10l \o /° |
0/ D\D\
0 / o

-0 —
1 1 1 1 1

1 2 3 4 5
number of domains

energy (meV)

Fig. 6.5. Predicted number of domains for an assumed NbSe; sample in a temperature
gradient. Energy considerations suggest for the indicated set of parameters that the sample
should break into three domains (min. energy). (From Hundley et al. unpublished.)
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7. Electro-elastic interference

7.1. Elastic mode locking

Electronic mode locking in CDW conductors directly affects the CDW
velocity in the interference regime. As discussed in section 4.3, internal
degrees of frecdom play an important role in the mode locking. Although
most attention has been focused on the electronic responsc of CDW
materials, experiments have demonstrated that the elastic response of CDW
materials is sensitive to CDW motion. Since elastic response involves
internal degrees of freedom of the CDW and underlying lattice, itis a useful
probe of CDW dynamics, including those of an electronically mode locked
condensate.

For most sliding CDW materials (such as NbSes, TaS3 and (TaSe,),1), the
Young's modulus Y and internal friction & of the crystal change smoothly
following CDW depinning (Brill and Roark 1984, Mozurkewich et al.
1985). As first demonstrated by Brill and Roark (1984) for TaS;, Y
decreases with increasing E4. > Et and eventually saturates; similarly &
increases with increasing E4. > E and either saturates or eventually turns
over at high field. A simple interpretation of these results is that in the
pinned state, the stiffness of the CDW adds to that of the lattice, while a
depinned CDW is decoupled from the lattice, and hence the stifiness of the
lattice is reduced. Such arguments lead to order of magnitude estimates
(Mozurkewich et al. 1985) in changes of Y upon depinning, which are in
rough agreement with experiment.

In the region of ac-induced electronic mode locking, where the CDW
drift velocity vy is fixed over a finite range in Eq, one might expect Y and 8
to display no more than ‘regions of constancy’ during mode locking. This
would occur if Y and & were strictly functions of vg. Alternatively, one
might imagine that during mode locking, the CDW would fully decouple
from the underlying lattice. In this case, Y and & would, during clectronic
mode locking, assume their high ficld, saturated values.

Figure 7.1 shows that an entirely different behavior is observed (Bourne
et al. 1986) for Y and & during mode locking in TaS; and NbSe;. During
the Shapiro step interference, Y and 8§ both tend toward their zero-field,
pinned values. This occurs for harmonic as well as subharmonic clectronic
mode locking. The effect is more dramatic for NbSes, for which the
electronic locking is nearly complete for the n =1 interference step. For
both TaS; and NbSes;, a rough scaling exists between the degree of
electronic mode lock (i.e. h/hmay) and the size of the anomaly in Y and 6
during mode lock. The anomalies in Y and & during electronic interference
reflect ‘elastic mode locking’, since here the velocity of sound is locked to a
value dictated only by (d/df)[(d¢/d1)], assuming complete electronic mode
locking.
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Fig. 7.1. Young’s modulus, internal friction, and differential resistance for TaS; and NbSe; in
presence of ac +dc electric field drive. Electronic Shapiro step interference is reflected in the
elastic constants. (From Bourne et al. 1986.)

7.2. Models for the elastic mode locking

The theoretical models of CDW transport discussed in sections 2 and 4 in
general consider only the electronic response, and assume a fully rigid
CDW pinning potential. Hence these models fail to account for any elastic
properties of the crystal.

Sherwin and Zettl (1986) have attempted to account for elastic mode
locking in CDW conductors by an extension of the Frenkel-Kontorova
model. The theory treats the CDW condensate and underlying lattice as
coupled elastic media obeying classical mechanics. Elasticity of the under-
lying lattice is incorporated by a discretization which breaks the lattice and
associated pinning potential into rigid units of mass M coupled harmonic-
ally by springs with spring constant K. The CDW is represented by discrete
particles of mass m coupled harmonically to nearest neighbors by spring
constant k. Both commensurate and incommensurate CDW cases can be
described, and the model is easily extended to the random pinning case.
Figure 7.2a shows a mechanical analog representation of the model. The
particles in the potential wells are charged CDW ‘particles’. Equations of
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Fig. 7.2. Mechanical analog of electro-elastic coupling model of Sherwin and Zettl: (a) analog
of eq. (7.1); (b) analog of eq. (7.2). (From Sherwin and Zettl 1986.)

X

motion for the model are
m d?r/d® + yd(r;— x)/dt+ k(2r; = riey = ri-y) + QV sin[ Q(r; — x;)]
= [0, (T.1a)
M d?x;/de? + ['d(2x; — xi—y — xjo0)/dt + y d(x; — r)/dt
+ K(Q2x;— X1 — xja1) + QV sin[ Q(x, — )] = Fy(1),  (7.1b)

where r; and x; are respectively the (laboratory frame) positions of the jth
CDW mass and jth lattice unit, V is the strength of the impurity pinning
potential, and Q =2m/A, with A the CDW wavelength. I" is the internal
friction of the lattice and v is a frictional coupling between the CDW and
lattice. fj(¢) is the force applied to the jth CDW particle by external clectric
fields, and Fj(t) is the external mechanical force applied to the jth lattice
unit. In the limit K—, eqgs. (7.1a) and (7.1b) reduce to the discretized
Sine-Gordon equation.

A great simplification occurs if the infinite set of CDW particles and
lattice units is truncated to three units. This retains the essential physics by
preserving internal degrees of freedom and CDW-lattice interactions. With
clamped-clamped boundary conditions (appropriate to experimental con-
ditions), the model is reduced to a single renormalized CDW particle
interacting with a single renormalized lattice unit. The mechanical analog
to the renormalized system is shown in fig. 7.2b. The corresponding
equations of motion are (Bourne et al. 1986, Sherwin and Zettl 1986)
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m*d?r/de® + y. d(r— x)/dt + ker + eEr sin[2kg(r — x)]
= e[Edc + E,c COS(wexl)], (723)

M d%x/de*+ I dx/dt+ y d(r— x)/dt+ Ky x + eErsin[2kg(x — r)]
= F cos(wt), (7.2b)

where r and x are, respectively, the laboratory positions of the CDW center
of mass and lattice, m* is the total CDW effective mass in the crystal, e the
total charge of the CDW, M_ the lattice mass, y. and I respectively the
total CDW damping and internal lattice friction, and kr the Fermi wave-
vector. k. and K, parameterize, respectively, the total elasticity of the
CDW and underlying lattice, and F cos(w,t) is the mechanical force applied
to the lattice, the response to which determines the elastic properties of the
system. In order for the CDW to slide continuously through the lattice
while retaining the periodicity of the pinning potential, k. is restricted to
respond only to ac excitations.

Equations (7.2a,b) have been solved for in the regime of electronic
Shapiro step mode locking by an analog computer using parameters ap-
propriate to NbSe; or TaS;. Figure 7.3 shows the predicted Y, §, and
d V/dI curves as functions of dc bias. Complete Shapiro step mode locking
is obtained, with corresponding elastic mode locking in striking agreement
with the behavior observed in fig. 7.1. Hence, the mode locking of the
elastic response follows directly from a simple model where CDW internal
degrees of freedom are taken into account. A model similar to eqs. (7.1a,b)

o
J- n=1 n=2 n= T
s
J .]..d_Y=5
2 || Rodl
1 1 1 1
1 2 3

dc bias Edc/ET

Fig. 7.3. Elastic and electronic response predictions of eq. (7.2) during mode locking. The
results agree qualitatively with those observed experimentally in TaS; and NbSe; (fig. 7.1).
(From Sherwin and Zettl 1986.)
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has been independently proposed by Sneddon (1986), but solved only in the
limit of finite Ey., with E,. = 0.

8. Conclusion

The intrinsic current oscillations and related ac—dc interference effects in
sliding CDW conductors remain among the most fascinating aspects of
CDW dynamics. The study of these phenomena is a valuable tool in gaining
an understanding of the CDW state. Most experimental evidence points to
the narrow band noise oscillations as originating in the bulk. However,
phase slip processes cannot be neglected, in particular when they occur at
strong pinning sites and lead to switching and related chaotic response, ctc.
CDW mode locking is one of the most dramatic consequences of CDW
nonlinearity and metastability, with many applications to the universal study
of competing periodicities and phase organization.

Some of the classical models presented in this review have been surpris-
ingly successful in accounting for very complex CDW response. Models
which explicitly take CDW internal degrees of frcedom into account are
more realistic. The CDW cannot in general be treated as a rigid object in a
periodic potential, since in this treatment metastability is lost. Elasticity
measurements demonstrate a strong coupling between the CDW electronic
response and the underlying phonon structure of the host lattice.

Despite much apparent success of classical models of CDW transport,
controversy remains about the applicability of classical concepts to the
CDW condensate. Bardeen (unpublished) has strongly criticised all classical
approaches to CDW dynamics, and suggests that it is absolutely necessary
to treat CDW metals as macroscopic quantum systems with quantum
tunneling as an essential feature. Classical concepts are demonstrated to be
useful only in the low-frequency response of the pinned CDW or for
phenomena on large length scales in the sliding CDW state. Although this
criterion puts many CDW interference phenomena into the classical
regime, it is expected that, for certain parameter ranges, CDW interference
reflects quantum effects. In Bardeen’s view, the CDW is not ‘like an elastic
rug sliding down a staircase with stick-slip friction’, but is rather ‘a beautiful
example of macroscopic quantum mechanics (with many analogies to
superconductivity)’ (Bardeen unpublished). In either case, CDW dynamics
is a unique conduction mechanism with an exceptionally rich spectrum of
exotic structural, transport, and mechanical properties.
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