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Effect of random noise on a mode-locked system
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We have experimentally added white noise to an analog Josephson-junction simulator in the
mode-locked state. The Poincaré sections and power spectra of the analog simulator have been
reconstructed from the resultant time-series data. A classical form of noise squeezing is observed.
In addition, the power spectra associated with noisy motion about the subharmonic fixed points in
the simulator’s Poincaré section are found to be Lorentzian in shape. These observations are well
accounted for by a theory of noisy mode-locked dynamics recently developed by Wiesenfeld and

Satija.

It is well known that nonlinear systems with multiple
interacting frequencies display mode-locking behavior.'
Examples of such systems are periodically driven Joseph-
son junctions,? charge-density-wave conductors,* and car-
diac cells.* Less well understood is what influence ran-
dom noise has on these systems when they are in the
mode-locked state.> To help explore this phenomenon we
have introduced white noise into the drive of a mode-
locked Josephson-junction analog simulator and studied
the response dynamics through analysis of the resultant
Poincaré sections and power spectra.®

We find that added noise spreads the mode-locked sys-
tem into states located preferentially along a (two-di-
mensional) torus in the three-dimensional phase space of
the analog simulator’s equations of motion. Subharmonic
fixed points in the simulator’s Poincaré section tend to
spread at different rates along the torus. The subharmoni-
cally mode-locked simulator thus displays a form of classi-
cal “noise squeezing.” The power spectrum associated
with the noisy motion about each periodic point is Lor-
entzian in shape. In general, we find very good agreement
between these observations and the recent theory of
Wiesenfeld and Satija (WS).” However, noise-induced
excursions off of the simulator’s phase-space attractor
necessitate at least some small corrections to the theory of
WS.

A phase-locked loop analog simulator of a resistively
shunted Josephson junction® was externally driven at au-
dio frequencies to display mode-locking behavior. The di-
mensionless equation of motion of the junction simulator
(hereafter referred to as the “junction”) is

d?e do

dr? +o dr
where 6 is the phase difference across the junction. For
our experiments on the 5:2 (external frequency:internal
frequency) mode-locked step, G == 2, setting the junction
in the nonhysteretic regime,2 igc=1.31, i;c=0.67, and
Q,.=0.29 (corresponding to 10 kHz). A random voltage
from a vacuum-tube white-noise generator (roll-off at 500

+sin@=igc+i,sin(Q,.0)+&(r), (1)
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kHz) was converted to the random current £(7) with di-
mensionless amplitude 2.86% 10 ~® /7. Both the voltage
across the junction, proportional to d6/dz, and the “super-
current,” proportional to sinf, were simultaneously digi-
tized at the ac drive frequency. A plot of d6/dt vs sin@
“strobed” at the drive frequency defines the Poincaré sec-
tion.

Figure 1(a) shows the “pumped” dc I-V curve of the
junction for I,V > 0. The vertical axis shows the dc bias
current applied to the junction and the horizontal axis
shows ((1/2zy)d6/dt), the average voltage across the
junction (=10 kHz/V). On the vertical steps in the I-V
curve, the junction is mode locked and I'=(1/27vgcive)
xd0/dt, the winding number, is rational. On the regions
of positive slope between the mode-locked steps, the junc-
tion is unlocked and I' is an irrational number. Figure
1(b) shows a Poincaré section of the noisy, pumped dy-
namics on the 5:2 step (I'= 3 ). The dotted line shows the
actual one-dimensional invariant curve observed experi-
mentally when the junction is biased in the quasiperiodic
regime between the mode-locked steps. We refer to this
curve as “the circle.” The Poincaré section for the 5:2
step is composed of two “noisy” period-2 fixed points
(denoted a and b), both of which are spread along the cir-
cle by different amounts. The noise in the period-2 fixed
point b is ‘“‘squeezed” compared to the noise in period-2
fixed point a.

Before quantitatively discussing the observed power
spectrum and autocorrelation function associated with
each periodic point in the Poincaré section, we outline
briefly the theory of WS. The theory supposes two condi-
tions, both of which are met in our data.

(1) The system must be strongly mode locked. This
means that the noise is sufficiently weak that it can only
rarely kick the system out of phase lock and cause the
phase to slip. For the data shown in Fig. 1(b), the junc-
tion was never kicked out of phase lock.

(2) When a small, random perturbation kicks the sys-
tem off of the circle, it will relax onto the circle in a time
much smaller than the drive period and then relax more
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FIG. 1. (a) Mode-locked current vs voltage (I-V') response of
the junction simulator. The Shapiro steps are labeled by (inter-
nal frequency):(external drive frequency) ratios. (b) Poincaré
section when the junction is biased on the 5:2 subharmonic step.
The two noisy fixed points are shown, superimposed upon a dot-
ted curve which represents a nearby quasiperiodic orbit.

slowly along the circle towards the fixed point. The dom-
inant excursions around the fixed points are clearly along
the circle in Fig. 1(b).

Assuming conditions (1) and (2) are met, WS argue
that the Poincaré section of a general mode-locked system
can be modeled by a one-dimensional circle map with
added noise:

¢n+l=f(¢n)+§n’ )

where f(¢) is a 2x periodic function and &, is a random
kick. The noise added to the map is white, with zero
mean: (&,) =0 and (£,&,,) =x6, . If the noiseless map is
mode locked with winding number n:1, then the solution
to Eq. (1) is a period-1 fixed point, ¢*. WS assume that
the dynamics of the mode-locked state can be described
by a map linearized about the average fixed point:

Mn+1=ANp+&y, 3)

where 0, =¢, —¢* and A =(df/d¢)|,. The power spec-
trum Sy of a time series {17,,} with N elements is then®

Sk =(x/N)/(1 —2rcosk +12), 4)

while the autocorrelation function C, is predicted to be of
the form C,~A". The model also implies that the distri-
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bution of {n,,} is Gaussian and that « is determined by the
standard deviation about the average fixed point ¢*
through’®

o=[x/(1—2H)]"2. (5)

WS show that a simple renormalization of time enables
one to treat the 7 fixed points in an n:7 subharmonically
mode-locked state in the same manner as one would treat
an n:1 mode-locked state. We have experimentally stud-
ied the case of 5:2 subharmonic mode locking, and so will
here concentrate on applying the results of WS to the n:2
mode-locked state. In this situation, Eq. (1) has two
period-2 fixed points, while the second-iterate map, f2(¢),
has two period-1 fixed points, ¢*¢ and ¢*°. (Hereafter,
these period-2 fixed points will be referred to simply as
“fixed points.”) Two new time series, {¢$,} and {95}, can
be created by taking the time-ordered set of every second
point of the initial time series, {¢,}. In the presence of
noise, the second-iterate map can also be linearized, and a
power spectrum can be calculated for deviations n$, and
n$. about each average fixed point. The power spectra of
{n%.} and {n$,} are of the same form as Eq. (3), but with x
replaced by a renormalized parameter:

Kap =k(1+1%,) (6)

[where A, =(df/d¢)|,« and s =(df/d¢)| =1, A replaced
by the new stability parameter, A =A,Ap, and k replaced
by 2k on the right-hand side. The autocorrelation func-
tions of both {n$,} and {Tlfn} are shown by WS to fall ex-
ponentially with identical decay rates:

CsiP o AP, ¢))

The noise strength at each fixed point, however, as seen
from Eq. (6), can be very different. For example, if
Aa <Ap, the fixed point a “squeezes” the noise seen by
fixed point b and fixed point b appears more quiet
(xp < Kl).

In order to quantitatively apply the theory of WS to our
results, the data for the I'=3% Poincaré section were
reparametrized to reduce the two-dimensional time series
of (sin8,, d6,/dt) pairs to a one-dimensional time series
{¢.}. We chose the simplest of several possible repa-
rametrization schemes: The angle ¢, =tan ~'[(d6,/dt)/
sing,] was assigned to each (sin8,, d0,/dt) pair in the
Poincaré section. The origin was chosen to lie along the
perpendicular bisector of the spread in the fixed points in
order to gain the maximal angular resolution of the least-
stable directions. As prescribed by WS, two experimental
time series, {ngn} and {nf,,}, were generated by subtracting
the appropriate average fixed point, ¢**°, from each of
the two, out-of-phase time series {¢z,,} and {¢2,, 1.

Figure 2 shows the autocorrelation function, C5t, of
the two time series, {n%;%}, about the I'=3 fixed points
(marked a and b, respectively). Except for the excessive
autocorrelation at n =0 for fixed point b, the logarithm of
the autocorrelation functions of the time series for both
fixed points lie on straight lines with identical slopes. This
figure bears out two of the predictions of WS. First, the
autocorrelation function of the two time series {n$;%} is
shown to decay exponentially. And second, the decay rate
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FIG. 2. Discrete points show the autocorrelation function of
{ns.} and {n4.} (fixed points a and b, respectively). Solid lines
show least-squares linear fits to data.

of the autocorrelation function is identical for each fixed
point. One can extract the stability parameter of the
I'= 3 subharmonic step, A = 0.9, from this decay rate us-
ing Eq. (7).

Figure 3 shows the power spectra of the time series
about each fixed point on the I'=3 step. The solid lines
show the experimental power spectra, calculated from the
time series data using a fast Fourier transform. The
power spectra are Lorentzian and extend out to w =, the
normalized Nyquist frequency. As expected, the power
spectrum of the wider fixed point a is higher in magnitude
than that of the smaller fixed point b—despite the fact
that the autocorrelation functions corresponding to the
two fixed points decay at identical rates. The dashed
curves in the figure are the theoretical fits to the data us-
ing Eq. (4) (modified for two fixed points as explained
earlier). A and «,, are obtained for the fits using Egs.
(5) and (7), and there are no free parameters. The agree-
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FIG. 3. Solid lines show the experimental power spectra of
the phase about fixed points @ and b. Dashed lines show the
theoretical fits using Eq. (3). The deviation of fixed point b
from theory at high frequencies is discussed in the text.
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ment between the theoretical and experimental power
spectra is excellent at all frequencies for fixed point a, and
at low frequencies for fixed point b. The theory underesti-
mates the power spectrum at high frequencies for fixed
point b.

The experimental excesses in both the high-frequency
power spectra and the n=0 autocorrelation function of
fixed point b are small deviations from excellent general
agreement between the theory of WS and our observa-
tions. These differences can both be explained from the
fact that while WS consider the slow relaxation along the
circle, they neglect the effect of fast relaxation onto the
circle. In general, the Poincaré section of the junction’s
motion reflects both of these relaxation rates. The two re-
laxation directions are not necessarily orthogonal in the
(sin@,d6/dt) plane. Hence, when a center is chosen to
convert the data points to angles, even if it is chosen to be
along the perpendicular bisector of the fixed point (i.e.,
perpendicular to the slow rate of relaxation along the cir-
cle), the angular data will still contain angular displace-
ments with components along both the slow axis and the
fast axis (see Fig. 4). For fixed point a, the fast axis was
projected out and both autocorrelation and power spec-
trum are well fit by the slow relaxation rate considered by
WS. However, the fast axis makes a contribution to the
dynamics near fixed point . Due to the discreteness of
the autocorrelation function, we are unable to accurately
measure the relaxation rate of the fast direction. The fast
relaxation-rate component of the autocorrelation vanishes
in less than one cycle of drive, and hence before n=1.
However, no matter how fast the relaxation in this direc-
tion is, it will always increase at least the zeroth point of
the autocorrelation, as this correlates the data to itself
without any time delay. This causes the autocorrelation
function to decay faster as n goes to zero than for longer
times. If one calculates A for fixed point b using only the
first two points of the autocorrelation function and com-
bines this with Eq. (4), then one obtains a much better
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FIG. 4. The geometry involved in collapsing a two-dimen-
sional Poincaré-section data point into a single angle. Note that
if the two relaxation directions are not orthogonal, then a gen-
eral choice of center will project out angles relaxing with both
fast and slow rates.
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theoretical fit to the high-frequency end of the experimen-
tal power spectrum. The fit at the low-frequency end,
however, worsens. In general, the power spectrum cannot
be perfectly fit by a single relaxation rate.

We have shown that the noisy circle map can indeed
make nontrivial, quantitative predictions about mode-
locked systems with noise. The predictions are nearly ex-
act if the fast relaxations can be projected out during the
parametrization of angles. This result supports the far-
reaching claim that the essential dynamics of a real physi-
cal system whose behavior is dictated by Eq. (1) can be
captured by the discretized circle map with added white
noise [Eq. (2)]. An analysis like the one used in this paper
may thus be used to determine whether various mode-
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locking systems can, for some parameters, be modeled by
a circle map. One particularly important candidate for
such a study is nonlinear charge-density-wave conduction,
where the relevance of any circle map or low-dimensional
description is a topic of great interest. '°
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