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Abstract

A substitution-reaction is used to synthesize highly aligned B,C,N. nanotubes (B,C,N.-NTs) with uniform length
and small diameter. Aligned carbon/nitrogen nanotubes (CN,-NTs) or aligned carbon nanotubes (C-NTs) are reacted
with B,O; under ammonia atmosphere. The length and diameter of the aligned B,C,N.-NTs are similar to the starting
aligned nanotubes. For example, the aligned B,C,N.-NTs produced from aligned CN,-NTs are 10-30 pm in length and
20-90 nm in diameter. The x/z ratio of B,C,N,-NTs for most nanotubes is close to 1:1. The x/y ratio of B,C,N,-NTs
ranges from 0.3 to 1.7. © 2001 Published by Elsevier Science B.V.

1. Introduction

Nanotubes and nanorods of various materials
can be synthesized using a template-based ap-
proach [1]. Nitride [2,3] and carbide [4,5] nanorods
can be prepared by the conversion of hollow C-
NTs to solid nanorods by reaction with respective
volatile oxide or halide species under inert or re-
active atmosphere. The growth of the nanorods
involves a template mechanism in which the C-
NTs confines the overall morphology of the pro-
duced nanostructure [2]. Recently, oriented SiC
nanowires were synthesized by the reaction of SiO
with aligned C-NTs [6]. BN, B,C,N. and B-doped
multiwall and single wall nanotubes have been
synthesized by a carbon nanotube-substitution
reaction in which carbon atoms of starting C-NTs
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have been substituted partially or totally by boron
and/or nitrogen atoms by reaction with B,O; with
C-NTs under Ar or N, atmosphere [7-10].

Composite B,C,N.-NTs offer a large variety of
electronic properties and are suggested to be can-
didates for nanoscale electronic and photonic de-
vices. The advantage of such nanotubes is that
their electronic properties are easier to control,
since they are determined only by composition
[11]. B,C,N,-NTs have been synthesized by arc-
discharge, laser ablation, pyrolysis, and substitu-
tion-reaction [12-17]. Recently, Bai et al. [18] have
reported the formation of aligned B-C-N na-
notubes by bias-assisted hot filament chemical
vapor deposition from the source gases of
B,Hg¢, CH4, N, and H,. The diameters of these
nanotubes range from 50 to 260 nm.

In the present Letter, we describe the use of a
substitution-reaction to synthesize highly aligned
B.C,N.-NTs with uniform length and small di-
ameter from aligned CN,-NTs and aligned C-NTs.
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2. Experimental

The aligned CN,-NTs and aligned C-NTs used
in these studies were prepared in a two-stage
furnace system fitted with temperature control-
lers. The aligned CN,-NTs (x < 0.1) were pre-
pared by the following procedure: A (1:4) mixture
(by weight) of powdered ferrocene (dicyclopen-
tadienyliron, Aldrich, 98%, ca. 20-50 mg) and
melamine (C3;HgNg, Fluka, >99%) was intro-
duced into a quartz tube and pyrolyzed at 1050
°C in an NH; flow (ca. 20-40 ml/min) [19,20].
Subsequently, the system was allowed to cool to
room temperature, and soot-like deposits, con-
taining the aligned pure C-NTs, were collected
from the silica tube. For the aligned C-NTs, the
synthesis is similar to the above procedure for the
aligned CN,-NTs, but the mixture is composed of
ferrocene (dicyclopentadienyliron, Aldrich 98%,
ca. 20-50 mg) and a mixture of Cg and Cy
(Bucky, USA, 70% Cq +30% Cq) (1:1, by
weight), and NH; gas was replaced by Ar [21,22].
The substitution-reaction was performed in a
horizontal high temperature furnace with mo-
lybdenum disilicide heating elements. B,O; pow-
der (Alfa, >99.99%) was placed in an open
platinum crucible and then covered with aligned
CN,-NTs or aligned C-NTs. The crucible was
held in a flowing ammonia atmosphere at 1260
°C for 0.5 h. After the reaction, the product was
collected from the bed of aligned nanotubes. The
originally black nanotubes were found to have
turned into a brown colored layer of product.
The resulting samples were characterized by
scanning electron microscopy (SEM) using a
JEOL JSM-6340 field emission microscope and
high-resolution transmission electron microscopy
(HRTEM) using a Philips CM200 FEG equipped
with a parallel electron energy-loss spectroscopy
detector (EELS, Gatan PEELS 678).

3. Results
3.1. Aligned B,C,N,-NTs from aligned CN,-NTs

Fig. 1 shows a typical SEM image of bundles of
highly aligned B,C,N.-NTs produced from aligned

Fig. 1. SEM image revealing a high density of highly aligned
B,C,N.-NTs produced from aligned CN,-NTs.

CN,-NTs precursor material. The B,C,N,-NTs are
10-30 m in length and 30-90 nm in diameter,
which is similar to the sizes of the starting aligned
CN,-NTs [19,20]. Fig. 2 shows typical TEM im-
ages of the produced nanotubes, which feature

3.00 nm

60.00 nm

Fig. 2. TEM image showing aligned nanotubes of B.C,N.
produced from aligned CN,-NTs. The NTs possess irregular
bamboo-like morphologies. The inset reveals that the nanotube
walls are composed of graphite-like layers, which make up the
stacked bamboo-like tubules.
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irregular bamboo-like morphologies with wide
core diameters, similar to those of aligned CN,-
NTs nanotubes reported elsewhere [19,20]. The
inset reveals that the nanotube walls are composed
of graphite-like layers, which make up the stacked
bamboo-like tubules.

EELS characterizations of the K-edge absorp-
tion for boron, carbon and nitrogen were used to
estimate the stoichiometry of the nanotubes.
Spectra were obtained using a probe beam diam-
eter of 5-10 nm. A typical EELS spectrum from an
individual nanotube is shown in Fig. 3. Three
distinct absorption features are apparent, starting
from 188, 284 and 401 eV, corresponding to the
known B-K, C-K and N-K edges, respectively.
The B/C and N/B atomic ratios of the nanotube
are 1.5 and 0.92.

Several tens of nanotubes have been checked
by EELS measurement, and all are shown to be
B.C,N.-NTs. Fig. 4a, b shows histograms of the
x/y and x/z ratio of B,C,N.-NTs determined us-
ing EELS in 40 randomly selected nanotubes.
The x/y ratio of B,C,N.-NTs ranges from 0.3 to
1.7. The z/x ratio of B,C,N.-NTs ranges from 0.7
to 1.1. Taking into consideration the experimen-
tal error of about 10%, due mainly to back-
ground subtraction when the EELS spectra are
analyzed, the x/z ratio of B,C,N.-NTs for most
nanotubes is close to 1:1. This suggests that B
and N radicals prefer to incorporate into the
network of the nanotubes in the ratio of 1:1. No
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Fig. 3. A typical EELS core electron K-shell spectrum taken
from an individual nanotube of aligned B,C,N.-NTs produced
from aligned CN,-NTs.
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Fig. 4. (a) Histograms of the x/y ratio of B,C,N.-NTs pro-
duced from CN,-NTs. (b) Histograms of the x/z ratio of
B.C,N.-NTs produced from aligned CN,-NTs.

pure BN or pure carbon nanotubes were found in
the product.

3.2. Aligned B,C,N.-NTs from aligned C-NTs
Fig. 5 is the typical SEM images of the aligned

B.C,N.-NTs produced from aligned C-NTs pre-
cursor material. It shows bundles of highly aligned
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Fig. 5. SEM images of the highly aligned B,C,N.-NTs pro-
duced from aligned C-NTs.

nanotubes. The aligned nanotubes are 20-50 um in
length and 20-70 nm in diameter, similar to the
original aligned C-NTs [21,22]. HRTEM shows
that nanotubes have regular morphologies with
straighter fringes that indicate a more ordered
structure, similar to those of aligned C-NTs
[21,22].

EELS characterizations of the K-edge absorp-
tion for boron, carbon and nitrogen were used to
estimate the stoichiometry of the nanotubes. Sev-
eral tens of nanotubes have been characterized by
EELS measurement. The x/y ratio of B,C,N,-NTs
is up to 0.8. The x/z ratio of B,C,N,-NTs for most
nanotubes is close to 1:1. This result is similar to
that from aligned B,C,N.-NTs produced from
aligned CN,-NTs. A small amount of pure C-NTs
remain in the product.

4. Discussion

The following chemical reaction has been pro-
posed for the synthesis of BN-NTs and (BN) C,-
NTs from C-NTs through complete or partial
substitution of C atoms by B and N under N,
atmosphere [7,10,17]:

B,0; + 3C (nanotubes) + N,
— 2BN (nanotubes) + 3CO (1)

The reaction above is efficient for CVD-C-NTs
when the reaction temperature is higher than 1300
°C [10,17]. However, when the reaction tempera-
ture is over 1300 °C, for both aligned CN aligned
CN,-NTs and aligned C-NTs, the nanotube
alignment deteriorates. The substitution ratio is
also not very high.

By using NH; atmosphere to replace N, at-
mosphere, the efficient temperature of substitution
reaction can be decreased to about 1260 °C, so
that the nanotube alignment can be preserved.
Although aligned nanotubes are closely packed,
the spaces between nanotubes are large enough for
the passage of NH; and boron oxide vapor.

The atomic ratio of B and N for most of the
nanotubes in the product is close to 1, as achieved
in the previous study [7,17]. The reaction can be
expressed as

B,0; + C (nanotubes) + 2NH;
— 2BN (nanotubes) +2H,0 + H, + CO  (2)

For B,C,N.-NTs, the reaction can be expressed as

B,0; + C (nanotubes) + NH;
— B,C,N. (nanotubes) + - - - (3)

When the reaction temperature is over 1300 °C
under NHj; atmosphere, the nanotube alignment
deteriorates, although the x/y ratio of B,C/N.-
NTs is increased.

As a comparison, control experiments with the
same experimental conditions for aligned B,C,N.-
NTs as reported above were performed with ni-
trogen instead of ammonia. The products were
primarily carbon nanotubes and only small
amounts of B,C,N.-NTs, because 1260 °C is too
low for the substitution reaction under N, atmo-
sphere.

EELS spectra show that the substitution ratio
for aligned CN,-NTs is greater than that for
aligned C-NTs. The reason might be that the
aligned CN,-NTs used here have much higher
densities of defects and distortions than the
aligned C-NTs used here, so that the aligned CN,-
NTs provide many more accessible active surface
sites in the nanotube lattice structure during the
substitution reaction. The existing C—N bonding in
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aligned CN,-NTs might also be advantageous for
the substitution-reaction.

5. Conclusion

The substitution-reaction route has been dem-
onstrated as an efficient synthesis route for
producing uniform arrays of highly aligned
B,C,N.-NTs. The use of NHj is crucial, since it
can decrease the efficient reaction temperature,
which is important for maintaining nanotube
alignment. We have found that the conversion of
CN-NTs into B,C,N.-NTs is more efficient than
the conversion of CNTs into B,C,N.-NTs.
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