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Abstract. We have previously reported on the creation of nanoscale rotational actuators based 
on multiwall carbon nanotubes.  During the fabrication of these devices, we torsionally sheared 
the outer walls of the MWCNT to form a rotational bearing.  We have designed an alternate 
technique for forming a rotational bearing geometry using electrically driven vaporization 
(EDV) of multiwall nanotube shells.  While applying this technique, we have discovered an 
interesting failure mode. 

INTRODUCTION 

Investigating the exact behavior of nanoscale systems is often quite difficult.  
Easily accessible imaging techniques such as optical or scanning electron microscopy 
may not offer high enough resolution, while techniques that do (scanning probe or 
transmission electron microscopy) are limited in what geometries and materials they 
can examine (such as planar, conductive or electron-transparent substrates).  
Components integrated in multi-planar devices on silicon wafers can be particularly 
hard to image.  We recently reported on one such device, a rotational actuator 
mounted on a multiwall carbon nanotube bearing (see Figure 1) [1].  A gold plate 
attached to the outer walls of a suspended multiwall nanotube was torqued about the 
nanotube by electric fields until rotational freedom was achieved.  From the lack of 
restoring force, we determined that one or more outer shells of the multiwall nanotube 
had failed and were rotating about an inner core.  We here explore an alternate (and 
hopefully highly controlled) method for bearing creation:  electrically driven 
vaporization to selectively remove the outer walls of the multiwall carbon nanotube.  
In principle, the controlled removal of these walls creates a desirable geometry in 
which the behavior of the bearing can be easily characterized.  Furthermore, with no 
outer walls extending past the edges of the rotor, the rotor should be able to slide along 
the inner core, creating a combination of linear and rotational bearing.  This opens the 
door for investigation into chiral mismatch between the inner and outer walls of a 
multiwall nanotube and its effect on linear translation between the two [2]. 
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FIGURE 1.  Rotational actuator mounted on a MWCNT.  The gold rotor paddle can be rotated by 
applying voltages to the three stator electrodes (two surface stators and the conducting back gate). 
Artist’s conception (a) and SEM image (b).  The scale bar is 300nm. 

METHODS 

Electrical driven vaporization (EDV) of the outer walls of a multiwall carbon 
nanotube (MWCNT) was first discovered by Cumings et al in 2000 [3].  By passing 
current through a MWCNT, they were able to instantaneously vaporize several walls, 
corresponding to a step up in the resistance of the MWCNT.  Related work refining 
this technique to presumably step-by-step single wall vaporization has been reported 
by Collins et al [4], in which regularly spaced current steps corresponding to discrete 
steps in the thinning of the nanotube were presented.  This technique has also been 
applied for use in sharpening STM/AFM tips [5] and in the fabrication of a torsional 
nanotube device with an architecture similar to ours [6]. 

We find that good electrical contact to the nanotubes is necessary for controlled 
vaporization to take place.  Attempts made on devices with high resistance (>50 kΩ) 
result in breakage of the nanotube with no intermediate thinning observed.  Devices 
with resistances lower than 10 kΩ reliably achieved stepwise current decays at 
constant bias voltages.  These stepwise current decays sometimes exhibited current 
steps of equal magnitude (on the order of 10-20 µA, varying from device to device), 
but were often found to vary greatly (in the range of 5 to 25 µA) on a single device 
(see figure 2).  The exact mechanism underlying these steps is still unknown. 

Our first attempt to use EDV in our devices consisted of passing current from one 
anchor to the other, in the hope that sections of the outer walls would be removed on 
both sides of the rotor.  We found, however, that once a shell failed on one side of the 
rotor (determined by scanning electron microscope (SEM) imaging of thinning of the 
MWCNT), all subsequent vaporization would happen on the same side, with no 
apparent failures occurring on the other side.  This could not be remedied by reversing 
the bias, and would continue all the way to complete breakage of the nanotube.   

We were able to vaporize sections of the MWCNT on both sides of the rotor, 
however, by making electrical contact to the center of the MWCNT and passing 
current through each side separately.  The contact was made by adding an extra 
lithography step in the device fabrication, during which a thin strip of metal is 
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evaporated to form a bridge between the stator electrodes and the rotor (see inset of 
figure 2).  This contact, however, must later be removed for the device to be able to 
function.  We therefore used Al or Ti, both of which, due to their very high etch rates 
in hydrofluoric acid, quickly disappear in the subsequent buffered hydrofluoric acid 
etch used to undercut and suspend the device.  Due to the propensity of Al for 
oxidation we found Ti to be the ideal metal for this temporary contact.   

Once a device was contacted with a Ti short we were able to pass current from the 
stators to either anchor in turn.  It proved difficult, however, to induce equal amounts 
of damage on both sides; the resistance was rarely the same on both sides, often 
requiring different voltages and currents to begin the current cascades, and sometimes 
the nanotubes would completely fail without showing any steps at all.  When they did 
occur, the cascades were sometimes difficult to controllably stop.  Upon testing the 
devices in situ in an SEM, we found that many would have significantly reduced 
torsional spring constants.  They would not, however, exhibit free bearing behavior – 
they would eventually break without showing the freedom of motion seen in the 
torsionally freed devices.  We surmise that one side of the tube had been rotationally 
freed while the other remained as a torsional spring.   

 
FIGURE 2.  Cascades of current steps during EDV.  (a) Some devices had remarkably equally-sized 
steps. (b)  Many, however, showed a large variation in step size.  The inset shows a scanning electron 
micrograph of a device with a Ti bridge connecting the stators to the rotor.  

Despite these difficulties we were able to shed more light on the bearing nature of 
our devices.  We repeatedly saw one particularly interesting failure mode.  Instead of 
snapping at some point along its length (as was seen, for example, in devices freed by 
reactive ion etching [7]), the MWCNT would telescope out, dropping the rotor to the 
underlying surface (telescoping behavior in MWCNTs was first reported by Cumings 
& Zettl in 2000 [8]). The result of one such failure is shown in Figure 3.  We were 
able to extend the MWCNT even further by attracting the rotor to the two side stators.  
Other devices failed similarly, some combining telescopic extension with rotation of 
the paddle.  We submit two possible explanations for this failure mode.  EDV may be 
able to remove internal, unexposed shells, in which case we are seeing the result of a 
break in the inner core near to the EDV-induced gap in the outer walls.  This is 
contrary to the results of Collins et al, as they could correlate each current step with a 
thinning of the MWCNT (implying that each subsequent exposed wall is being 
removed).  We find it more likely that the inner core is indeed decoupled from the 
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outer shells and free to move, both linearly and rotationally, and we simply removed 
too many shells, making the exposed core too flexible to support the rotor. 

 

 

FIGURE 3.  Telescopic failure of a MWCNT that has undergone EDV on both sides of the rotor 
paddle.  The images are in sequential order, showing increasing extension:  (a)  No voltages applied.  
(b)  Rotor pulled down towards substrate (voltage applied to back gate).   (c) Rotor pulled towards 
lower stator.  (d) Rotor pulled towards upper stator  (though hard to see, the nanotube is still intact).  

The difficulty of inducing equal damage and failure of the same shells on both sides 
of the rotor suggests this method requires additional refinement for creating reliable 
rotational bearings.  Additional work on applying EDV to nanotube bearings and other 
geometries is in progress. 
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