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ELECTRONIC AND ELASTIC MODE LOCKING IN CHARGE DENSITY

WAVE CONDUCTORS

A. ZETTL

Department of Physics, University of California, Berkeley, CA 94720, USA

Mode locking phenomena are investigated in the charge density wave {CDW) materials NbSe, and TaS;. The joint
application of ac and dc electric fields results in free running and mode locked solutions for the CDW drift velocity, with
associated ac-induced dynamic coherence lengths £1,(ac) on the order of several hundred microns. The electronic response
couples directly to the elastic properties of the crystal, with corresponding free running and mode locked solutions for the
velocity of sound. Phase slip center-induced discontinuities in the CDW phase velocity lead to mode locked solutions with
period doubling routes to chaos, and noisy precursor effects at bifurcation points. These results are discussed in terms of
simple models of CDW domain synchronization, and internal CDW dynamics.

1. Introduction

In a growing number of low dimensional con-
ductors, there exists, below a transition tempera-
ture ranging from 50 K to 300 K, a charge density
wave (CDW) ground state with associated excita-
tion energies on the order of millikelvin {measured
on a per electron basis) [1]. Stability against ther-
mal fluctuations is provided by the large number
of carriers condensed in the collective CDW state,
and to first order a zero temperature formulation
of the dynamics is appropriate. The static CDW
may exhibit phase coherence over macroscopic
distances determined by the (impurity dependent)
Lee—Rice length [2]. Static coherence lengths £,
are on the order of fractions of microns for pure
specimens of NbSe, and TaS,, with comparable
lengths expected for (TaSe,),I and K ; ;Mo00O,.

In the presence of relatively low (mV /cm) ap-
plied dc electric fields exceeding a threshold field
E., the CDW condensate may depin from the
underlying lattice, thereby carrying a real electric
current {3, 4]. CDW conductors are thus intrinsic
nonlinear devices. The depinned current driven
CDW generates incoherent and coherent voltage
oscillations across the ends of the specimen [4],
and most likely also throughout the bulk of the

crystal [5]. The coherent oscillations (“narrow
band noise”) have a fundamental frequency di-
rectly proportional to CDW current, and hence
proportional to CDW drift velocity [6].

Quite analogous to what is observed in Joseph-
son junctions or superconducting microbridges [7],
in CDW systems the joint application of dc and ac
electric drive fields leads to “interference™ in the
electronic response [6]. In particular, the CDW
phase velocity may mode lock to the frequency of
the ac drive field, resulting in “Shapiro steps” in
the dc current voltage characteristics [8, 9].

In this report we investigate the fine structure of
such mode locking, and its implications for CDW
coherence. We also investigate the effect of elec-
tronic mode locking on the macroscopic elastic
properties of the CDW crystal. Finally, we ex-
amine the effects of intentional “breaking” of the
macroscopic CDW phase coherence, in particular
the consequent transitions to chaos.

2. Electronic mode locking

2.1. Domains and synchronization

The joint application of dc and ac electric fields
(or currents) to CDW conductors results in sharp
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Fig. 1. Shapiro step spectrum in NbSe;. The mode locked
steps are indexed by n = wy/w,,. The inset shows in detail the
subharmonic structure, with non-integral n =p/q. a, /2% =5
MHz.

Shapiro step interference. Fig. 1 shows the effect
for NbSe, at 45 K. The excitation applied to the
sample is a current of the form I=17,+
I, cos{w,t). At I, =0, the (dc) differential resis-
tance dV/d T is finite, and corresponds strictly to
the normal electron resistance, assumed to be in
parallel with the CDW condensate. For finite 1,
a spectacular array of interference peaks is ob-
served. These occur whenever the narrow band
noise frequency, wy, equals rw, , with n=p/g
where p and g are positive integers [10]. Integral »
corresponds to “harmonic” Shapiro steps, while
nonintegral »n cotresponds to “subharmonic”
steps. Subharmonic structure is shown in detail in
the inset to fig. 1.

An important feature of the harmonic (and
some subharmonic) interference peaks of fig. 1 is
that their tops are flat, i.e. over a finite range in I,
(corresponding to a finite range in applied dc field
E, ), dV/d I is constant. Qver this range the CDW
is mode locked 10 w,,, and changes in E . have no
effect on py, the CDW drift velocity. I, on a
particular step, the entire CDW condensate were
mode locked, then dV/dI on that step would
attain exactly dV/dI(f, =0). Such “complete”
mode lecking is, however, not observed in fig. 1
(although the locking there is very nearly com-
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Fig. 2. Domain model for CDW conductor. The resistors rep-
resent normal electrons in parallel with charged CDW
“particles” in periodic potentials. Carrier conversion is allowed
by vertical shunts.

plete). The actual height h of the interference
peak, measured from the effective baseline (or
saturated dV/dJ7 value) represents the volume
fraction of the CDW condensate mode locked to
the external ac drive. This is simply understood if
we consider the CDW conductor as a series of
CDW “domains”, as depicted in fig. 2, Each do-
main there consists of a charged CDW “particle”
in a periodic pinning potential, in parallel with a
resistance R representing normal electrons. Dif-
ferences in CDW phase velocity from one domain
to the next are compensated by carrier conversion
at vertical resistor junctions. The CDW particle
associated with each domain has a differential
resistance R opw. Where R py — o0 if the domain
is mode locked, and R,y — R, (a constant) in
the conduction saturated (unlocked) limit, In this
model, the total differential resistance for the sam-
ple is

N
avydr = EanRCDw/(Rn + Repw) (1)
jm

where j indexes the domain and N is the total
number of domains in the crystal. If all ¥ do-
mains are mode locked, d¥V/dI =LY R, =
dV/dI(Idc = 0)’ and h= hmnx = Ef-an -
T R.R/(R,+ R,). If, on the other hand, only
M of the N domains are mode locked,

M N
k=Y R,+ YL R R/R,+R,)
J=1 =M+l

- g Rch/(Rn+Rc)'

=1

This implies h/h ., = M/N, the locked volume
fraction.
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Experimentally, for a given Shapiro step (index-
ed by n), the ratio h/h ,,, depends on both the ac
electric field amplitude £, and frequency w,,. In
general, higher £ (E, = 3E) and lower «,, (low
MHz range) leads to more complete mode locking,
The size of the CDW crystal also plays an im-
portant role, with “typical” NbSe, and Ta§,
crystals of dimensions 1 pm X 10 pm X1 mm
(chain axis) rarely displaying complete mode lock.
This suggests that the ac-induced CDW phase
velocity coherence length £p(ac) is less than 1
.

To determine £,(ac) explicitly, one may explore
mode locking for a single crystal over different
spatial ranges. Fig. 3 shows the results for such an
experiment in NbSe,, where non-perturbative
“sliding™ voltage sensing probes were used to de-
termine h/h_,. for the n=1 Shapiro step, as a
function of distance d between voltage probes,
For d > 500 pm, h/h _,, decreases with increasing
probe separation, while A/h ., =1 for d< 500
pm. This determines £p(ac)= 500 pm for rela-
tively pure specimens of NbSe;. Within a length
on the order of 500 um, all domains may be fully
mode locked by the external ac electric field.

Fig. 4 is an example of complete CDW mode
locking in NbSe;, at least for the n=1 and n= 14
Shapiro steps. The sample used for this study had
a total length 200 pm (< £g(ac)). Fig, 4 shows
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Fig. 3. Degree of mode lock h/h . for a single NbSe; crystal,
as a function of distance d between voltage sensing probes.
For & < 500 pm = {(ac), complete mode locking is achieved.
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Fig. 4. dV/d7 and broad band noise amplitude in NbSe,, as
functions of dc bias. a) No ac field present; b) with an applied
ac field at w_ /27 = 2 MHz. The broad band noise vanishes on
maxde locked steps.

another important feature associated with com-
plete mode locking, that of broad band noise
suppression [11)]. In the absence of ac drive field, a
depinned CDW generates 1/f “broad band” noise
in addition to the narrow band noise [4, 12]. The
broad band noise amplitude for NbSe, is shown
in fig. 4a as a function of I,.. Fig. 4b shows clearly
that, for joint ac and dc applied fields, the broad
band noise amplitude vanishes identically on com-
pletely mode locked Shapiro steps. On steps for
which h/h . <1, the noise amplitude is signifi-
cantly reduced, but still finite. This suggests that
the broad band noise is a consequence of phase
velocity fluctuations arising from unlocked do-
mains, and is thus in many ways analogous to 1/f
noise in metal due to resistance fluctuations [13].
Broad band noise in TaS, has been investigated in
some detail by Bhattacharya et al. [14), in terms of
local fluctuations in £ and domain structure.

In fig. 2, the dynamics of each domain might be
described to first order by a “rigid particle” equa-
tion of motion, such as that introduced by Griiner,



158 A. Zewl / Electronic and elastic mode locking in CDW conductors

Zawadowski and Chaikin [15],
d%x/de? + (1opw ) dx/de + wlsin(Qx) /Q

=eE/m*, (2)
where x is the CDW position, ey is a phenome-
nological CDW relaxation time, w, is the CDW
resonance frequency, Q = 27 /X with A the CDW
wavelength, m* is the effective CDW electron
mass, and E'= Eg_+ E__ cos(w,,¢). Eq. (2) in itself
predicts narrow band noise and mode locking, but
no broad band noise (with exception to chaotic
response to be discussed later). The dynamics of
the entire CDW condensate then depends on how
domains interact. The important feature demon-
strated by the experiments just described is that
the external ac field serves to couple domains
together, i.e, synchronize them. The “synchroniza-
tion length™ is £(ac), and is a direct measure of
ac field induced phase homogenization. With F__
— 0, some synchronization is still possible, due to
self-synchronization. This may account for the
sharp frequency structure of the narrow band
noise in the presence of E;  alone. The self-syn-
chronization length is §, < £p(ac), and has been
estimated from narrow band noise studies to be
on the order of 0.5 pm [16].

Synchronization and self-synchronization are
often found in biological systems {17] (eg.
circadian rhythm) or laser physics [18], where
complete (and partial) mode locking are com-
monplace. A single domain in such systems is
often described by the van der Pol equation [19],
which, for small displacements, differs from eq. (2)
only in the form of the dissipative coefficient,
which introduces nonlinear feedback. For linearly
coupled van der Pol oscillators, subgroups of the
entire oscillator set may mode lock, analogous to
incomplete mode locking displayed in fig. 1. A
linear interaction between oscillators in CDW sys-
tems could be easily mediated through frictional
forces or ohmic currents. It should also be noted
that sets of coupled oscillators, where each oscilla-
tor is described by eq. (2), display similar synchro-
nization properties, as demonstrated by dynamics
of Josephson junction arrays [20].

2.2. Harmonic and subharmonic structure

The simplest analysis of Shapiro steps in CDW
systems results when CDW internal degrees of
freedom are neglected, and one assumes only a
single coordinate for the CDW phase, for example
eq. (2). In dimensionless form, eq. (2) reads

d%8/d:?+ Gd6/dt+sin8=E/E, (3)

where G = (wyTcpw) ! and time is measured in
units of w, !. This equation is well known in the
Josephson junction literature [7], where it de-
scribes the phase difference between superconduc-
tors comprising a resistively shunted junction (with
E/E; replaced by I /1, and G related to junction
resistance, capacitance, and plasma frequency by
G = (RCwy)™ ). Eq. (3) predicts Shapiro step in-
terference and mode locking, and, in the over-
damped limit, it provides surprisingly good
quantitative fits to the behavior of the n =1 mode
locked step in NbSe; over a wide range of ac drive
frequency and amplitude [8). The return map ap-
propriate to eq. (3) is a one-dimensional sine circle
map [21],

8,,1="8,+82+Ksin(2w8,)/2m, (4)

where m is a discrete time index, i.e. the system is
stroboscopically viewed at discrete times ¢,,=
2am/w,, R=wy/v,, and K represents the
strength of the coupling of the system to the
external drive. For the CDW system, we associate
K with E,_ . The circle map describes in a natural
way the interaction of resonances, and indeed
harmonic and subharmonic mode locked solutions
follow directly from eq. (4) [21]. The mode locked
steps are separated by regions of quasiperiodic
orbits; these “gaps” compnse less and less of 2
space as X increases from zero and approaches a
critical line at K = 1. For X < 1, the mode locked
steps form an (incomplete) devil’s staircase of
dimension d=1. At K =1, the staircase is com-
plete, with a fractal dimension 4= 0.870. This is
the Hausdorff dimension of the complementary
Cantor set for the mode locked region. For K > 1,
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resonances overlap and the map is no longer in-
vertible, and chaos is possible. The fractal dimen-
sion d=0.87 near criticality is not restricted to
the sine circle map, but holds for a wide class of
return maps [22].

To test for completeness of the devil’s staircase,
one could count up the widths of all mode locked
regions in & space, and determine if the quasiperi-
odic orbits (gaps) are confined to a Cantor set of
zero measure. A more practical (finite resolution)
method is to consider the gaps themselves. Given
a scale r, the total measure of the gaps between
mode locked steps is 1 — S(r), and the number of
holes N(r}=[1 —S(r))/r- If rtN(r)—=0as r—0,
the staircase is complete, with fractal dimension 4
given by [21]

N(ryar (5)

An analysis such as that just described by Brown
et al. [23] on Shapiro step interference in NbSe,
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Fig. 5. log N(r) vs log{i/r) for Shapiro step subharmonic
structure in NbSe;. The traces corresponding to different F,
have been offset for clarity. The inset shows the resulting
fractal dimension o vs ac amplitude. At high V., 4 tends
toward 1.0

has indicated a fractal dimension 4= 0.91, with
no apparent dependence on E, .. Unfortunately, in
that experiment no complete mode locking was
observed, and hence the interference peaks (and
thus also gaps) were of ill-defined width. Fig. 5
shows an analysis of subharmonic mode locked
steps in a high quality NbSe, sample (where lock-
ing was virtually complete), for four different val-
ues of ¥V, (V.= I R,, with R the chmic sample
resistance). For all four cases the data points of
log N(r) vs log(l/r) fall excellently on a straight
line, consistent with the expected power law be-
havior of eq. (5). The inset to fig. 5 shows the V,_
dependence of d. Although the fractal dimension
corresponding to V, = 330 mV is 0.862, and hence
very close to the value 0.870 expected from the
circle map at K=1, 4 in fig. 5 is observed to
increase with increasing ac drive amplitude, and
appears to asymptotically approach d=1 at high
Ve
Similar results follow from an analysis of sub-
harmonic mode locked steps if 4 is determined
from a Farey tree construction [24], where

Y (s/5) =1 (6)

i

s; and § are defined as follows: Starting with any
pair of locked intervals p/gq and p’/g’, the length
between them is denoted §. Next the locked inter-
val (p+p’)/(q+ ¢q') is determined, vielding gaps
of length 5,_, and s,_, between the new interval
and the preceding one. The process is then re-
peated until the experimental (or numerical) reso-
lution is exhausted. Surprisingly, this method ap-
pears to give 4 to within a few percent accuracy
using only two gaps. Applying this method to
NbSe,, 4 is found [25] to increase with increasing
V... approaching 4 =1 at high ac drive field, con-
sistent with the data of fig. 5.

The V,, dependence of the dimension 4 ob-
served in NbSe, is inconsistent with the predic-
tions of the circle map, where 4=1 at low ac
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drive, and d = 0.870 only at (or very close to) the
critical line. In addition, for the types of NbSe;
samples here discussed {non-switching, see section
4) there is no transition to chaos for large ac drive,
again in contrast to what might be expected from
the circle map. An interpretation of the mode
locking structure in CDW systems in terms of the
circle map {or eq. (3)) has other serious problems,
the most apparent being that subharmonic strue-
ture is not predicted unless the inertial term of eq.
(3) is retained. This is, however, not consistent
with low field ac conductivity studies, which indi-
cate an overdamped (noninertial) response [%].
This problem can of course be overcome if a
non-sinusoidal potential is introduced into eq. (3)
[26].

A more realistic approach to the Shapiro step
interference includes CDW internal degrees of
freedom. A full hydrodynamical solution to the
CDW problem by Sneddon, Cross, and Fisher [27]
leads to ac-induced interference structure in the
I-V characteristics, but no true mode locking. The
CDW condensate has also been treated as a series
of masses connected by springs in a pinning
potential [28], and for this model Coppersmith
{29] finds harmonic and subharmonic mode lock-
ing. Here the internal CDW degrees of freedom
{provided by the springs) play a key role in the
subharmonic structure, Short range defoermations
of the CDW have also been considered by Tua
and Ruvalds [30], who numerically solve a classi-
cal equation of motion assuming a large number
of interacting CDW segments. A devil’s staircase
structure is obtained, although there appears to be
no power law behavior consistent with eq. (5), and
hence no fractal dimension can be inferred. More
consistent with the domain structure described
earlier (fig. 2), Doniac and coworkers [31] have
treated the CDW as two coupled (overdamped)
oscillators, each independently obeying eq. (3).
Sharp subharmonic structure is indeed found. It
remains to be seen if such a model, extended to
more than two domains, can account for incom-
plete mode locking or devil's staircase behavior
with fractal dimension.

It is nevertheless clear that internal CDW dy-
namics play an important role in the fine structure
of CDW mode locking, and that a single degree of
freedom model, such as eq. (3), is inadequate, in
particular in describing quasiperiodic orbits where
broad band noise abounds.

3. Elastic mode locking

3.1. Coupling of electronic—elastic response

The electronic mode locking phenomenon dis-
cussed in section 2 reflects directly the free
running or locked solutions of #, and hence
also solution of the CDW drift velocity vy =
{df/dz}. This suggests that other CDW proper-
ties, sensitive to vy, should be affected by elec-
tronic mode locking. One such property, the broad
band noise amplitude, has already been discussed.
Experiments on TaSe, by Brill and Roark [32],
and other CDW materials by Mozurkewich et al.
[33], have shown that the bulk elastic properties of
CDW crystals are sensitive to CDW motion, In
TaS,, for example, the Young’s modulus Y de-
creases with increasing E, > E, and eventually
saturates. Similarly, the internal friction & in-
creases with increasing E, > E;, and also
saturates (in fact much more quickly than does
Y'). A simple interpretation of these results is that
in the pinned state, the stiffness of the CDW adds
to that of the lattice, while a depinned CDW is
decoupled from the lattice, and hence the stiffness
of the lattice is reduced. Such arguments lead to
order of magnitude estimates [33] in changes of ¥
upon depinning, which are in rough agreement
with experiment.

In the region of ac-induced electronic mode
locking, where v, is fixed over a finite range in
E,., one might expect ¥ and & to display no more
than “regions of constancy” during mode locking.
This would occur if ¥ and 4 were strictly func-
tions of v,. Alternatively, one might imagine that
during mode locking, the CDW would fully de-
couple from the underlying lattice. In this case, ¥
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Fig. 6. Young’s modulus, internal friction §, and d¥/df in
Ta$, and NbSe,. Shapiro step electronic interference results in
corresponding anomalies in ¥ and 8. Vertical arrows identify
interference structure in TaS,.

and & would, during electronic mode locking,
assume their high field, saturated values.

Fig. 6 shows that an entirely different behavior
is observed for Y and & during mode locking in
TaS, and NbSe;. During the Shapiro step inter-
ference, ¥ and d both tend toward their zero
field, pinned values. This occurs for harmonic as
well as subharmonic electronic mode locking. The
effect is more dramatic for NbSe, (fig. 6b), for
which the electronic locking is approximately 75%
complete for the n =1 interference step. For both
TaS, and NbSe,, a rough scaling exists between
the degree of electronic mode lock (ie. A/h )
and the size of the anomaly in Y and & during
mode lock. During complete mode lock, it is thus
expected that ¥ and § achieve exactly their zero
bias values. We term the anomalies in ¥ and &
elastic mode locking, since here the velocity of
sound is locked to a value dictated only by
(d/d1)[{d8/ds)], assuming complete electronic
mode locking. Experiments performed on samples
which display complete electronic mode locking
would no doubt reveal ¥ or § vs E, structure
quite analogous to the devil’s staircase for the
electronic interference, presumably with an identi-
cal fractal dimension. The difficulty in performing
such experiments lies in the fact that £5(ac) is on

the order of several hundred microns (see fig. 3), a
rather restrictive length for elastic measurements.

3.2. Role of internal degrees of freedom

To describe elastic effects in CDW conductors,
one must clearly include the compressibility of the
lattice, if not that of the CDW as well. Simple
“rigid particle” models, such as eq. (2), are en-
tirely inadequate to describe elastic response.
Coppersmith and Varma [34] have proposed a
model where a rigid CDW interacts with a defor-
mable lattice. Although an anisotropy is obtained
in the velocity of sound for a moving CDW, the
effect is orders of magnitude smaller than the
observed changes in Y and 8 due to CDW depin-
ning in NbSe, and Ta$,. This suggests that the
changes in ¥ and & are also linked to internal
degrees of freedom of the CDW condensate. The
behavior of ¥ and 8 in dc fields alone has been
examined by Brll [35] in terms of an anelastic
relaxation model. When a distortion occurs, the
system is driven far from equilibrium, and the
relaxation back is associated with a characteristic
time constant 7. If 7=r(E, — E;) and is long
compared to the period of the elastic distortion
{i.e. the elastic resonance frequency), ¥ and § will
change with increasing £, > E;. The shapes of
the functions Y(E;) and §(E,. ) can be repro-
duced qualitatively by such a meodel, but their
relative magnitudes cannot. T may be associated
with the relaxation of sliding domain walls [32,
35]. The electronic studies of mode locking de-
scribed in section 2 indicate that CDW phase
coherence is enhanced dramatically during mode
locking. In terms of a domain wall relaxation
model, mode locking then either eliminates do-
main walls entirely, or drastically shortens their
relaxation time.

Elastic mode locking has been explicitly con-
sidered by Sherwin and Zettl [36] in a simple
many degree of freedom model which takes into
account interactions between the deformable CDW
and medes of the underlying lattice. The equa-
tions of motion, derived from a discretized sine-
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Gordon model with discretized lattice mass units,
are

md?r/dr® +yd(r,—x;)/dt + k(2r,— 1, - 1)

+QVsin[Q(r— x))] =£,(e), (7)
Md%x,/de? + Td(2x; - x,,, — x,_;)/d¢

+yd(x,—r)/dr + K(2x, - x4 — x, ;)

+QVsin [Q(x,~1,)] = E(1), (8)

where r, and x; are respectively the (laboratory
frame) positions of the jth CD'W mass and jth
lattice unit. y represents damping of the CDW
particles, @ = 2o /A with A the CDW wavelength,
V is the strength of the impurity pinning force,
and I' represents internal friction of the lattice. f;
represents the external force on the CDW {pro-
vided by the external electric field), and F; is the
mechanical force applied to the lattice, the re-
sponse to which determines ¥ and 8. Egs. (7) and
(8) describe an infinite set of coupled equations. A
reduced form of these equations has been solved
in the limit of combined ac and dc drive electric
fields to the CDW [36). It is found that Shapiro
step mode locking in the electronic response (also
predicted by eqs. (7} and (8)) is indeed associated
with mode locked solutions of Y and §, in striking
agreement with the behavior observed in fig. 6.
Hence, the mode locking of the elastic response
follows directly from a simple model where CDW
internal degrees of freedom are taken into account,
A model similar to Eqgs. (7) and (8) has been
independently proposed by Sneddon [37], but
solved only in the limit of finite E,_, with £, =0.

4. Breaking of the CDW coherence and transitions
to chaos

The long range phase coherence induced in
CDW conductors by the application of ac and dc
electric fields may be destroyed by a number of
mechanisms, for example strong impurities, or
non-uniform threshold fields arising from non-

uniform temperature distributions in the crystal.
Under such conditions there may result in a single
crystal several macroscopic regions, each fully and
independently phase velocity coherent. The inter-
faces between regions can be surprisingly sharp,
and the dynamics of such crystals may be
dramatically different from those associated with
*“unstressed” specimens previously described.

4.1. Effects of a temperature gradient

Although it was argued earlier that temperature
may not play an important role in describing
excitations of the CDW condensate, most CDW
transport properties are quite temperature depen-
dent. For example, in NbSe, and Ta$S;, E| tends
to increase at low temperatures, and diverge as the
CDW temperature is approached from below. The
ratio fopw/wy is also temperature dependent,
and reflects the number of carriers condensed in
the CDW state [9]. Jopw is the current carried by
the condensate. In general, then, the function
wn({y), with wy the intrinsic *washboard”
frequency for each domain (or local narrow band
noise frequency) is temperature dependent. The
synchronization and self-synchronization effects
discussed previously, and indeed the determina-
tion of £n(ac) itself, assumed isothermal condi-
tions for the CDW crystal, In the presence of an
applied temperature gradient, each CDW domain
(see fig. 2) might be associated with an indepen-
dent R, E, and wy(J,) [38]. An important
question is thus if macroscopic synchronization,
and hence macroscopic phase velocity coherence,
can be retained in the presence of a temperature
gradient.

Fig. 7 shows the effect of a uniform temperature
gradient on electronic mode locking in NbSe,. 4T
represents the total temperature difference across
the sample, with the {cold) end of the sample fixed
at T, = 47 K. With zero gradient, this high quality
crystal displays complete mode lock for the n=1
step, and several subharmonic steps as well. With
increasing AT, the Shapiro step spectrum breaks
up. For AT =28 K, for example, the n =1 “step”
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Fig. 7. Shapiro step spectrum of NbSe; for various values of
temperature differential AT applied across the length of the
crystal. The n =1 step is, for AT =0, located at 20 pA dc bias.
Increasing AT results in a break-up of the crystal into two
distinct macroscopic domains,

has three distinct plateaus; the first (at lowest 1.}
has h/h,, =040, the second has h/h . =1.0,
and the third has A/h_, =060. Since in this
temperature range in NbSe; 1wy (4 ) increases
with increasing temperature [9], the first plateau
correspends to mode locking of a “hot” macro-
scopic domain {corresponding to a synchroniza-
tion of many of the domains as shown in fig. 2).
The size of this domain is x, = 0.40y, where x is
the total sample volume. Similarly, the plateau
corresponds to mode locking of a “cold” macro-
scopic domain, of size x,= 0.60x. We note that
X+ Xy = X, indicating that the hot and cold do-
main volumes do not intersect. The middle plateau
(with A/k . = 1) corresponds to the hot and cold
domains synchronized together, and hence for
these values of V. and AT complete mode lock is
still possible for some value of I,.. However, for
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Fig. 8. Critical temperature differential AT as a function of
¥, for which a NbSe; crystal breaks from a single, macro-
scopically coherent domain, to two independently coherent
macroscopic domains. «w,, /27 = 10 MHz.

the trace corresponding to AT =39 K in fig. 6,
this is no longer the case; there the het and cold
macroscopic domains mode lock independently to
w,, (for different values of I, ), but never synchro-
nize to one another. This defines a critical AT
above which complete mode locking is no longer
possible for the entire crystal (but is still possible
for each of two independent macroscopic domains
of smaller volume). On the other hand, even for
AT exceeding this critical temperature, the hot and
cold domains can be forced to again synchronize,
by applying a sufficiently strong ac field [39].
Hence AT (critical) is V,, dependent.

Fig. 8 shows the critical AT needed to fully
“break” CDW coherence, as a function of V), in
NbSe;. This figure essentially determines the max-
imum £p(ac) as a function of AT and V: in the
1-domain region £p(ac),., =500 pum, the total
sample length, while in the 2-domain region
£p(ac) ., = 0.6(500 pm) = 300 pm, the size of the
cold domain. An interesting question is if more
than two macroscopic domains can form, for ex-
ample for very large values of AT. Most probably
this is the case, as can be inferred from narrow
band noise measurements on NbSe,, which have
shown three or more independent noise peaks in
the presence of large temperature gradients {40].

42, Switching and phase slip centers

Switching refers to sharp jumps in the 7-V
characteristics of CDW conductors; it occurs for
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both voltage driven and current driven situations.
Often switching occurs at Ey, and it then corre-
sponds to the onset of CDW conduction [41].
Although switching is observed in “nominally
pure” materials, it can be induced by chemical
doping or irradiation [42], and hence appears to
be a (temperature dependent) strong impurity
effect. Crystals which display switching also dis-
play transport properties quite different from those
associated with those of nonswitching crystals {of
the same material). For example, in NbSe, switch-
ing is associated with hysteresis [41], negative dif-
ferential resistance [43], bistability and strong 1 /f
noise [43], inductive ac response [44], multiple
sublevel states [45], and chaos {46]. All these effects
are absent in nonswitching samples of NbSe,.

Recent experiments [47) have demonstrated that
switching is associated with a break-up of the
CDW condensate into macroscopic regions with
independent threshold fields £ and independent
CDW phase velocities. The interface between these
regions corresponds to spatially localized phase
slip centers, where the CDW amplitude undergoes
successive fluctuations and across which CDW
phase coherence is broken. It appears that the
CDW dynamics at the phase slip centers them-
selves may play an important role in the overall
dynamics of the CDW condensate.

In the presence of combined ac and dc electric
fields, complete mode locking may occur in the
switching regime of NbSe,, as demonstrated in fig.
9. In this I-V representation, the Shapiro steps
are the (relatively wide) “horizontal” steps; the
sharper vertical steps represent transitions to
higher order (harmonic) steps. In switching sam-
ples, the harmonically locked regions thus fill up
practically all of £ space, in contrast to the large
gaps between harmonically mode locked regions
observed in the non-switching crystal of fig. 1.
Although not apparent from fig. 9, between the

.mode locked harmonic steps there exist sub-
harmonic steps. This structure may be analyzed
using the methods outlined in section 2.2. Fig. 10
shows the fractal dimension 4 as a function of ¥,
for a switching sample of NbSe,, determined from

] I I T T I I T
NhSes W/ 217 < ISMHZ

SAMPLE CURRENT

BIAS VOLTAGE (mV}

Fig. 9. Shapiro steps in switching regime of NbSe;. The sam-
ple is voliage driven; the Shapiro steps are the wide “horizon-
tal” steps which appear for V> 7 mV. The traces for forward
and reverse bias sweep have been offset vertically for clarity.
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Fig. 10. Fractal dimension 4 for subharmonic Shapiro step
structure of NbSe, in switching regime. At high values of ¥,
d tends toward d = 0.85.

eq. (6) using the first two gaps. Quite analogous to
the behavior of fig. 5, 4 increases with increasing
V.., and appears to saturate at high V,.. In con-
trast to fig. 5, however, here, for the switching
crystal, the limiting value of 4 appears to be
d = 0.85, rather than 1.0. This difference may have
relevance to the chaotic response of NbSe;, ob-
served only in the switching regime.

4.3. Chaotic response and noisy precursors

As discussed previously, on mode locked
Shapiro steps the CDW drift velocity becomes
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step, a peried doubling route 10 chaos is observed. b) Frequency
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locked to the external ac drive frequency w,,. In
addition, phase velocity fluctuations are sup-
pressed, as evidenced by the absence of broad
band noise on mode locked Shapiro steps. In the
switching regime, there exist on the mode locked
steps well defined transitions to chaos. Fig. 11a
shows schematically the dc and ac response of
switching NbSe, on mode locked steps. The heavy
lines represent the dc 7-V characteristics for for-
ward and reverse bias sweep; the wvertical
“windows” represent the nature of the ac response
for that particular range of dc bias voltage. Note
that this is a voltage driven experiment. At the
start of each Shapiro step, the response is periodic
with period one. Increasing V. leads, on each
step, to a period doubling route to chaos. The

actual ac response is indicated in fig. 11b for four
different values of V.. The higher harmonics ap-
parent in (1} (period one) result from the nonlinear
ac CDW response to a sinusoidal drive.

The chaotic response may be interpreted as an
example of universal instability in phase locking
for a driven nonlinear system characterized by an
intrinsic limit cycle, such as the instabilities asso-
ciated with the circle map. In the circle map, eq.
(5), & is a modulo 1 variable; thus changing £ to
£+, with / an integer, will not change eq. (5).
The pattern of bifurcations to chaos will thus
repeat itself as £ is increased monotonically, con-
sistent with behavior observed in fig. 11a.

The period doubling route to chaos observed on
mode locked steps in NbSe, is in agreement with
the predictions of eq. (3), but only for certain
values of CDW damping and free oscillation
frequency. Essentially what is needed is under-
damped motion (similar to the requirement for
subharmonic interference), and analysis [46] of the
switching, hysteresis, and chaos in NbSe; leads to
values of 7573w and w, orders of magnitude smaller
than the corresponding values for NbSe; de-
termined outside the switching regime. Numerical
solutions [48] to eq. (3) also indicate chaos only in
a rather restricted frequency range given by
(wirdpw) ™! < W /WiTepw < WyTcpw,  although
chaotic response in NbSe, is observed over a
much wider frequency range,

In NbSe, a period doubling route to chaos, such
as that induced by sweeping V., also occurs if the
ac amplitude V, is increased monotonically.
Transitions between periodic and chaotic orbits
may also be induced by changes in the external
drive frequency «,,. Fig. 12 shows the type of
response generated in V, —w,, parameter space,
with associated boundaries between characteristic
responses. This portrait is actually a projection of
the response in (V. V,_, «, ) space onto the V.
plane. The projected response refers to the
“highest order” response, i.e. that corresponding
to the closest approach to chaos. For example, in
the area of fig. 12 identified as chaos, period one
orbits exist for some values of ¥, but for fixed
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Fig. 12. V,.-w,, projection of response spectrum in NbSe, of
switching regime. w,, /27 =5 MHz

V,. and w,, chaos is always possible by tuning V,,
to an appropriate value. A three dimensional rep-
resentation of the response in (V,, V., v, ) space
is exceedingly complicated.

Fig. 12 shows regions identified with “excess
noise” or “ noisy precursors”. These regions are of
particular interest. Fig, 13 shows an example of
the former. Here a single parameter, V., was
varied smoothly from 151.9 mV to 138.2 mV. The
upper trace shows a clear period two solution. As
V,. decreases, excess noise appears on the flanks
of the w, /2 peak. In addition, nearly symmetric
frequency structure sets in at 0 + §w and at @, —
8w, with 8w /27 = 3 MHz, apparently unrelated to
w,, /27 = 20 MHz. Further decreases in V,_ result
in a recovery of the pure period two solution, as
shown in the bottom trace of fig. 13.

A possibly related phenomenon, that of period
two with noisy precursors, is illustrated in fig. 14,
Here, w, and V, are again fixed, and V,_ is
mcreased smoothly. The top trace shows nearly
pure period one behavior, with slight evidence for
period two instability. With increasing V., sym-
metric peaks appear, which coalesce into the period
two, w, /2 peak. With further decreases in ¥V,
new “sideband” peaks suddenly appear, and move
apart with decreasing V.. The sequence of events

NbSe, T=19K  yo.=40mV, 20MHz

151.89mV=¥4c

iog (CURRENT)

o 5 10 15 20
FREQUENCY (MHz)

Fig. 13. Current response spectra for NbSe,, corresponding to
various values of dc bias. The pericd 2 response is here
associated with excess noise.
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Fig. 14. Current response spectra for NbSe,, corresponding to
various values of dc bias. The period 2 bifurcation is here
associated with a noisy precursor effect.

in fig. 14 is quite analogous to a noise induced
virtual Hopf phenomenon [49], where the noisy
precursor of a Hopf bifurcation continuously
changes into the precursor characteristic of a
period doubling bifurcation. Such virtual Hopf
phenomena have been predicted [50] for a Joseph-
son circuit, where the resistive shunt has some
inductive character. Similar behavior is in fact
predicted by eq. (3), if an additional noise term is
included [50]. It should be noted that the virtual
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Hopf phenomenon is not entirely consistent with
the noise-free one dimensional circle map, since
the virtual Hopf phenomenon requires a two di-
mensional mapping.

We thus find that, although the chaotic dy-
namics observed in NbSe; in the switching regime
can often be accounted for in terms of simple
equations of motion or mappings, the details of
the response point toward a more complicated
dynamics. This is most probably related to veloc-
ity-dependent parameters arising from phase slip
processes or internal degrees of freedom of the
CDW condensate. If models of coupled domains,
such as described in section 2, are consistent with
the details of the chaotic dynamics, remains to be
seen.

5. Conclusion

Charge density wave conductors display a rich
spectrum of electronic and elastic mode locking
when subjected to combined ac and dc electric
drive fields. For unstressed crystals, ac-induced
dynamic coherence lengths on the order of several
hundred microns can be achieved. This long range
coherence is broken by applied temperature gradi-
ents, or strong impurity induced phase slip centers
which result in switching. Switching crystals fur-
ther show a wide variety of chaotic response solu-
tions.

The mode locking experiments here discussed
show clearly that the CDW condensate cannot in
general be described by only a single phase coor-
dinate; intrinsic domain structure and internal
degrees of freedom (elasticity} of the CDW play
vital roles in the dynamics. It would be desirable
to derive models which incorporate such features
from a microscopic, rather than phenomenologi-
cal, basis.

Finally, the ease with which system parameters
in CDW materials may be externally manipulated,
makes such systems attractive candidates for de-
tailed studies of mode locking phencmena and
universal chaotic instabilities.
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