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MODEL OF CHARGE DENSITY WAVE ELASTICITY

M.S. SHERWIN®* and A. ZETTL
Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA

We present a simple model of the elasticity of charge density wave conductors. The model is an extension of the
Frenkel-Kontorova model which introduces elasticity into the normally rigid sinusoidal potential. All of the anomalies in
Young’s modulus and internal friction observed experimentally as a function of dc and ac applied electric fields, including

those arising from ac-dc induced electronic mode locking, are qualitatively reproduced by this model.

Much theoretical work has been devoted in the
past few years to understanding the novel elec-
tronic properties of several classes of charge den-
sity wave (CDW) conductors, for example Ta$,,
NbSe,, (TaSe,),I and K,;MoO, [1]. These
materials undergo a phase transition from the
metallic to the CDW state at temperatures as high
as 265 K. In the CDW state, the electrical conduc-
tivity becomes field and frequency dependent, and
a host of related nonlinear phenomena are
exhibited. The unusual transport behavior is at-
tributed to the collective response of the macro-
scopic CDW, and various phenomenological
classical and quantum models have been suggested
to account for the electronic aspects of CDW
dynamics [1]. Recent experimental work by Brill
and Roark [2] and Mozurkewich et al. [3] has
shown that the elastic as well as the electronic
properties of the CDW crystal are sensitive to
applied electric fields. In particular, the Young’s
modulus (Y) and internal friction § of the crystal
are dramatically affected by CDW depinning in-
duced by applied dc electric fields E, . exceeding
the threshold electric field E;. Very recent experi-
ments [4], show striking anomalies in Y and &
when the CDW is excited by combined dc and ac
electric fields, i.e. for E=E, + E, cos(wt).

Current theories of CDW transport fail to
account for the elastic properties of CDW’s. We
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present here a classical phenomenological model
which reproduces qualitatively all of the observed
elastic anomalies of CDW conductors, including
those arising from coupled ac and dc fields.

First we give a brief review of relevant sliding
CDW phenomenology. When a dc electric field
Es.> Ep is applied to a CDW crystal, the dc
conductivity becomes field dependent, with the
(dc) differential conductivity increasing smoothly.
The current carried by the CDW is time depen-
dent, with a coherent component called the
narrow band noise (NBN) with fundamental fre-
quency directly proportional to the CDW current
(and hence to CDW drift velocity), and a broad
band component with a 1/f like spectrum in the
0-100 kHz range. If large ac and dc electric fields
are applied simultaneously to a CDW crystal, one
observes interference effects (analogous to the
Shapiro steps observed in Josephson junctions)
between the NBN and the external ac field [5]. On
such a step, the NBN frequency, and hence the
CDW velocity, lock to the frequency of the exter-
nal ac field over a finite range of dc bias, causing a
dramatic increase in the differential resistance
dv/dr.

Many CDW crystals (such as NbSe; and TaS,)
are thin, flexible fibers, and the elastic constants
are thus most conveniently measured by exciting a
flexural resonance and measuring the resonant
frequency w, and “Q” of the mechanical response.
Y and § are determined directly from w, and Q.
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Original studies on Ta$S, by Brill and Roark [2]
showed that, for dc fields E, > E;, Y decreases
smoothly and & increases rapidly and saturates.

In more recent experiments by Bourne, Sherwin
and Zettl [4], ¥ and & were measured in the
presence of ac fields alone and also in the presence
of combined ac and dc fields. For ac fields only, ¥
was found to decrease even for small ac ampli-
tudes E, < E;. For combined ac and dc electric
fields Shapiro steps in the electronic response were
found to coincide with sharp anomalies in the
elastic constants (fig. 3b). This is a very important
result. If ¥ and & were simply functions of aver-
age CDW velocity [2], then one would expect that
when the CDW is electronically mode locked on a
Shapiro step (and hence its drift velocity is con-
stant) Y and 6 would simply remain constant over
the locked range of E,. Instead, during mode
locking, Y and 8 are observed to tend to their low
field values.

A number of models have been proposed for
the electronic properties of CDW conductors. The
simplest of these i1s a “rigid particle” model first
introduced by Griiner, Zawadowski and Chaikin
[6] (GZC). In this highly oversimplified descrip-
tion, the CDW is represented by a single rigid
particle in a rigid periodic potential. The equa-
tions of motion are isomorphic to those of the
driven damped pendulum model or the resistively
shunted Josephson junction in the RSJ approxi-
mation. This model exhibits a threshold field, nar-
row band noise for E . > E and Shapiro steps for
combined ac and dc electric fields. A most im-
portant failure of the GZC model is that it
predicts a divergence in the dc differential conduc-
tivity near threshold which is not observed experi-
mentally. The model says nothing about the elas-
ticity of the CDW or lattice, since all entities are
assumed rigid.

Many of the difficulties of the GZC model can
be remedied by including internal degrees of free-
dom for the CDW [7, 9, 10]. Such degrees of
freedom may be introduced by considering the
CDW as composed of harmonically coupled dis-
crete particles in a rigid potential, and the equa-

tions of motion resemble those of the Frenkel-
Kontorova model [8), or the discretized sine-
Gordon equation. These models are an improve-
ment over GZC, and exhibit no divergence of the
differential conductivity at threshold in the ther-
modynamic limit [9]. However, in these models
lattice elasticity is again absent, since the potential
in which the CDW moves is considered rigid.

In the first attempt to calculate the elastic prop-
erties of CDW crystals, Coppersmith and Varma
considered a rigid CDW sliding through a defor-
mable lattice [10]. Although an anisotropy was
predicted for the velocity of sound, the effects are
orders of magnitude smaller than the experimen-
tally observed changes in ¥ and & due to CDW
depinning.

We present a classical model in which the CDW
and the lattice are treated as coupled elastic media.
This model is an extension of the Frenkel—
Kontorova model, and we have incorporated elas-
ticity into the sinusoidal potential {and hence the
underlying lattice) by discretizing it into rigid
units of mass M coupled harmonically by springs
with spring constant K. The CDW is represented
by discrete particles of mass m coupled harmoni-
cally to nearest neighbors by a spring constant «.
The mechanical analog of this model is shown
schematically in fig. 1. This model can describe
both commensurate and incommensurate cases,
where in the former case the wavelength of the
sinusoidal potential is equal to the equilibrium
spacing of the particles in the lattice and CDW.
The potential energy function for this system,
assuming only nearest neighbor interactions, is

V= Z{x/2(r}—:}_l)2 + K/Z(ch-—xj-_l)2
+V(l—cos[Q(r}—xJ-)])}, (1)

where r, and x; are respectively the (laboratory
frame) positions of the jth CDW mass and jth
lattice unit, ¥ is the strength of the pinning poten-
tial and Q =2x/A with A the CDW wavelength.
Applying Lagrange’s equations, and adding inter-
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Fig. 1. Mechanical analag of our model, (a) for the infinite case and (b} showing the boundary conditions applied to reduce it to egs.
{#) and (5). The break in the CDW springs in (b) signifies that they respond only to ac excitations, thus allowing the CDW to slide. ¥
and § are determined from the resonant frequency and amplitude of the response of x to the mechanical force F.

nal friction and forcing we derive the following
equations of motion:

md?r/de* +yd(r,—x;)/di+ k{2r,— 1 1)
+QVsin [Q(r,—x;)| = (1), (2)
Ma%x,/de2 + Td(2x;— x,_y = x;,1)/d¢
+yd{x,—r)/dt
+K(2x;,—x; 1 = x;,)

+QVsin[Q(x,— )| = E(1), 3)

where I' is the internal friction of the lattice, and

¥ is a frictional coupling between the CDW and
lattice. f is the force applied to the CDW by
external electric fields and F; the mechanical forces
applied to the lattice units. In the limit K - oo,
egs. (2) and (3) reduce to the discretized sine-
Gordon equation [11].

These equations are analytically intractable, ex-
cept if one considers small amplitude excitations
and linearizes them [12]. We reduce the infinite set
of egs. (2) and (3) to the smallest set of equations
that retain the essential physics of an elastic CDW
interacting with an elastic lattice. This is accom-
plished by applying boundary conditions sche-
matically illustrated in fig. 1b. The lattice is
reduced to a single particle with its nearest
neighbors nailed to the laboratory frame. The
CDW is represented by a particle whose nearest
neighbors are nailed to the CDW center of mass
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frame. The resulting equations of motion are

m* d%r/dt? + yod{(r—x)/dt
+ker+ eEpsin[2ke(r - x)]
=e¢[E; + E, cos{wr)], (4)
Md%x/de? + Tdx/dt + yed(x—r)/dt+ K x
+eE,sin [2kp(x — )] = Feos(w,t),  (5)

where r and x are respectively the positions of the
CDW center of mass and lattice. m* is the total
CDW effective mass, M, the lattice mass, y- and
I'} respectively the total CDW damping and inter-
nal lattice friction, and k. the Fermi wavevector.
k- and K[ parameterize respectively the total
elasticity of the CDW and underlying lattice, and
Fcos(w, 1) is the mechanical force applied to the
lattice. In order to allow the CDW to slide con-
tinuously through the lattice and retaining the
periodicity of the pinning potential, we impose the
restriction that k. responds only to ac excitations.

We have solved eqs. (4) and (5) for a variety of
dc and ac drives on an analog electronic computer
built in our laboratory, keeping the mechanical
force in eq. (5) small. The Young's modulus and
internal friction are derived from the resonant
frequency and amplitude of the response of x at
w.: at the mechanical resonance, ¥ & (w,)?, and
8 « (1 /amplitude(e,)).

The results of our simulation with E_=0 are
presented in Fig. 2a. The parameters used are (in
relative units) eEr=0.76 X 1073, 2kp=6.28 X
104, k=285, K; =294, yc=95%x1072, I} =
1073, m*=4x10"1, M, =2Xx 1075, and /27
= 200. Fig. 2a shows that for E, < E;, ¥ and &
are only weakly field dependent. For E; > E|,Y
saturates at a value smaller than for the pinned
state, and § saturates at a value larger than for the
pinned state. These findings are consistent with
experimental results displayed in fig. 2b. Discon-
tinuous changes in dV/d 1, Y and & are evident in
fig. 2a as E crosses E . Such divergences near
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Fig. 2. ¥, 8 and d¥/df as functions of dc bias for E,. =0 (a) as calculated from eqs. (4) and (5) and, (b) as measured in TaS, [4].
The insets show ¥, 8 and d¥/d[ as functions of ac amplitude for E,_ = 0 (a) as calculated from eqs. {4) and (5), and (b) as measured

in TaS, [4]
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threshold are endemic to finite size classical mod-
els (such as GZC, mentioned above), and this
suggests that egs. (4) and (3) cannot be applied to
Y and & for E_ close to E. We also note that the
model parameters we have chosen compro-
mise between those expected for a real CDW
crystal and those accessible to our analog com-
puter. In particular, the absolute size of the changes
in Y due to CDW depinning are sensitive to the
ratio k-/K . A more realistic (smaller) value of
this ratio would result in smaller elastic changes,
consistent with experimental findings.

We have also solved egs. (4) and (5) in the range
of finite E,_, with w/w, =20, The inset of fig. 2a
illustrates that, for E, =0, increasing £,. from
zero results in a smooth decrease in ¥, and, within
computational resolution, no detectable change in
& for very low E_ . These results are in agreement
with the experimental results for TaS, under simi-
lar conditions, shown in the inset of fig. 2b.

For finite £ and E,_, egs. (4) and (5} predict
complete Shapiro step electronic locking, as shown
in the dV/dT trace of fig. 3a. Also shown in the
figure are Y and 8, calculated for the same set of
drive parameters. It is clear that Shapiro step
interference in the electronic response corresponds
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Fig. 3. ¥, § and dV/dJ as functions of dc bias (a} as calcu-
lated from eqs. (4) and (5) with E, /E; =3, w/w =20, and

{b) as measured in NbSe, [4] with w/2% = 2MHz and E, /E;
= 3.8. The arrows identify interference structure.

in our model with striking anomalies in the elastic
constants. In the Shapiro step region, both ¥ and
4 tend to their respective values measured for
E,. =0, as observed experimentally in fig. 3b. We
also note the presence of harmonic and sub-
harmonic structure in the calculated ¥ and 8§, as
observed experimentally.

The behavior of the elastic constants in our
model has a simple interpretation. When E, =0
and E, < E, there is a strong restoring force
(with “spring constant” 2k zeE; > k) due to the
sinusoidal potential that forces (x —r) = 0. Thus
the mechanical force acting on x must compress
both springs k- and K;. When E > E; and the
CDW is sliding, the restoring force due to the
sinusoidal potential averages to zero (because
the narrow band noise frequency > w,), so a
force applied to x compresses only K;, and Y
drops from its pinned value. Lifting the constraint
x—r =0 also increases the internal friction be-
cause now the damping term in egs. (4) and (5)
Yed{x—r}/dr#0.

In the presence of both dc and ac fields, if the
CDW is mode-locked, there is again an approxi-
mate constraint: {d(r— x)/d¢) = constant if the
average is taken over 1 cycle of the ac drive. Since
w > w_, the constraint is effective against the
mechanical force and both k. and K| contribute
to Y during mode-locking. However, when the
CDW is unlocked the constraint vanishes and, as
for a dc depinning, ¥ decreases and 6 increases,
On careful examination, it is apparent from fig, 3b
that the constraint during mode-locking is not
perfectly effective, since ¥ and & do not return
completely to their £, = 0 values despite the elec-
tronic mode locking being “complete” [13],

In conclusion, we have presented the simplest
mode] that contains the essential features of a
pinned, elastic CDW interacting with an elastic
lattice, and all of the experimental results, with
the exception of behavior near threshold, are re-
produced. The divergences near £, will almost
certainly be remedied by the inclusion of more
degrees of freedom in the reduction from the
infinite set of eqs. (2) and (3).
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The interaction of the CDW with the lattice is
an area that requires further investigation. In fact,
the Frenkel-Kontorova model has been applied to
many condensed maiter systems, notably super-
ionic conductors, adsorbates on surfaces and 1-D
magnetism [14]. In all of these systems, the as-
sumption of a rigid potential is unrealistic. The
extension of the Frenkel-Kontorova, or dis-
cretized sine-Gordon equation to include an elas-
tic potential {15] is relevant to a wide variety of
systems.
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