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Assembling inorganic nanomaterials on graphene1–3 is of inter-
est in the development of nanodevices and nanocomposite
materials, and the ability to align such inorganic nanomaterials
on the graphene surface is expected to lead to improved func-
tionalities4, as has previously been demonstrated with organic
nanomaterials epitaxially aligned on graphitic surfaces5–10.
However, because graphene is chemically inert, it is difficult
to precisely assemble inorganic nanomaterials on pristine gra-
phene2,11–16. Previous techniques2,3 based on dangling bonds of
damaged graphene11,17–20, intermediate seed materials11,15,16,21,22

and vapour-phase deposition at high temperature12–14,23–25 have
only formed randomly oriented or poorly aligned inorganic
nanostructures. Here, we show that inorganic nanowires of
gold(I) cyanide can grow directly on pristine graphene, aligning
themselves with the zigzag lattice directions of the graphene.
The nanowires are synthesized through a self-organized
growth process in aqueous solution at room temperature,
which indicates that the inorganic material spontaneously
binds to the pristine graphene surface. First-principles calcu-
lations suggest that this assembly originates from lattice
matching and π interaction to gold atoms. Using the syn-
thesized nanowires as templates, we also fabricate nanostruc-
tures with controlled crystal orientations such as graphene
nanoribbons with zigzag-edged directions.

The nanowires were synthesized by incubating single-layered
graphene and solid gold simultaneously in an aqueous solution of
250 mM ammonium persulphate, (NH4)2S2O8, at room tempera-
ture for 17 h (Fig. 1a). Various types of gold precursor, such as
gold nanoparticles or gold microstructures, can be used in this reac-
tion depending on the experimental goal. The acidic solution of
ammonium persulphate oxidizes gold precursors to form nano-
wires. Graphene, as both a substrate and template for nanowire
growth, is floated on the reaction solution, thus providing a
surface on which the nucleation and growth of nanowires can
occur (Supplementary Methods and Supplementary Fig. 1).

During this incubation, the nanowires grow on the graphene sur-
faces along the specific lattice directions of the graphene. Typical
transmission electron microscopy (TEM) images of the graphene/
nanowire samples (Fig. 1b and Supplementary Fig. 2a,b) show hori-
zontally grown nanowires on the surfaces. Measurements obtained
using TEM and atomic force microscopy (AFM) indicate that the
nanowires are in the form of nanoribbons lying on the graphene
surfaces, with length, width and thickness of 94.7 ± 42.2 nm,
10.1 ± 5.0 nm and 3.29 ± 0.47 nm, respectively (Supplementary Fig. 3).

Interestingly, the synthesized nanowires are preferentially oriented
along three directions with rotations of 120° relative to one
another (Fig. 1b and Supplementary Fig. 2a–d). From the observed
symmetry of the nanowire axis directions, we expected the nano-
wires to have preferential growth directions that are related to the
underlying graphene lattice structures. Indeed, a selected area elec-
tron diffraction (SAED) pattern (inset in Fig. 1b) of the samples
clearly shows this epitaxial relationship between the nanowires
and graphene. The nanowire axis directions in Fig. 1b show good
orientational alignment to the second-order diffraction peaks—
(1–210) peaks—of graphene (circled in red). This alignment,
which is also confirmed statistically (Fig. 1d), indicates that the
nanowire directions coincide with the zigzag lattice directions of
the underlying graphene in real lattice space. In addition, the dif-
fraction peaks from the nanowires (circled in yellow) are aligned
to graphene’s (1–210) peaks in the SAED pattern. Together with
high-resolution TEM images and their Fourier transforms (Fig. 1c
and Supplementary Fig. 2e,f ), the SAED pattern shows that each
nanowire is single crystalline and that the crystal lattices of the
nanowires and graphene are rotationally aligned. An atomic-
resolution TEM image (Fig. 1e,f ) also directly confirms the nano-
wire alignment on the graphene, with the nanowire axis aligned
along the zigzag lattice direction of the graphene lattice.

This nanowire alignment enables us to easily visualize the crystal
directions and grain boundaries in polycrystalline graphene using
TEM or even scanning electron microscopy (SEM), as shown in
Fig. 1g,h. Because the nanowire axes directly represent the crystal
directions of the underlying graphene, tilt grain boundaries in the
graphene can be identified by changes in the nanowire axis direc-
tions (Fig. 1i). Previously, atomic-resolution imaging tools such as
TEM and scanning tunnelling microscopy (STM) have been used
to directly image the crystal directions and grain boundaries
of graphene26. However, these imaging processes often involve
special sample preparation or substrate requirements and can be
time-consuming. The present SEM-based imaging provides a
facile tool to monitor crystal directions and graphene grain bound-
aries (with a spatial resolution of ∼100 nm in Supplementary Fig. 4),
which is essential for studying the polycrystallinity of graphene and
its implications for various properties.

We identified the nanowire material as gold(I) cyanide27 (AuCN)
based on our elemental analysis and atomic structure characteriz-
ations. Elemental analyses including energy-dispersive X-ray spec-
troscopy (EDX) and electron energy loss spectroscopy (EELS)
(Supplementary Figs 5 and 6) confirm the presence of Au and N,
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Figure 1 | Directional growth of inorganic nanowires on graphene. a, Schematic of the process. An aqueous-phase reaction at room temperature results in
nanowires whose axes are parallel to the zigzag lattice directions of pristine graphene. b, TEM image of the synthesized nanowires on graphene. Scale bar,
100 nm. Inset: SAED pattern of the nanowire–graphene sample. The nanowire axes are aligned to the zigzag lattice directions (the (1–210) directions) of
graphene. c, High-resolution TEM image of the nanowires. Scale bar, 5 nm. d, Histogram of the angular distributions of the nanowire axes in b. e, Atomic-
resolution TEM image of a nanowire on graphene. Scale bar, 3 nm. f, Enlarged view of box in e. Low-pass filtering (cutoff: four pixels) is applied to remove
high-frequency noise. The directional alignment of the nanowire axis with the graphene zigzag lattice direction is clearly observed. Scale bar, 0.5 nm.
g–i, Using the nanowires to image the crystal directions and domain boundaries of polycrystalline graphene. The same specimen area is imaged with
TEM (g) and SEM (h). The graphene lattice directions can be identified using the nanowire axis directions. Scale bar, 100 nm. In i, the SEM image (h) is
shown with an overlay of the pseudo-lattice structures of graphene. The red and blue colour maps represent different domains with relatively tilted
lattice directions.
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as well as non-graphene C (and a trace amount of H) between all
potential constituent elements from the precursor solution
(Supplementary Section ‘Elemental analysis’). Atomic-resolution
TEM imaging (Fig. 2a and Supplementary Fig. 7) and SAED from
multiple imaging axes (Fig. 2d,e and Supplementary Fig. 8) allow
us to precisely determine the crystal structure. The atomic-resol-
ution TEM images including Fig. 2a directly show unique atomic
structures with two orthogonal lattice spacings of 5.08 ± 0.01 Å
(d1) and 3.00 ± 0.12 Å (d2), which correspond to AuCN’s hexagonal
crystal27 (5.091 Å and 2.937 Å). Indeed, AuCN is the sole material
candidate that satisfies the observed crystal symmetry and lattice
spacings of all the reported inorganic compounds composed of
the possible constituent elements (Au, N, C and/or H) classified
from the spectroscopic elemental analysis. We further confirmed
that the post-simulated TEM image (Fig. 2c) of an AuCN crystal
(Fig. 2b) reproduces the unique crystal patterns observed in the
experimental TEM images. Most importantly, SAED with multiple
imaging axes confirms that the nanowire crystal is AuCN. Owing to
the nature of the alignment between the nanowires and graphene,
SAED patterns from nanowires with no specimen tilting only
display the specific d-spacing (5.08 Å) and its high-order peaks
from a [100] zone axis (Fig. 2d and Supplementary Fig. 8a).
Tilting multiple nanowires within the field of view allows us to
investigate a set of SAED peaks from various zone axes and to pre-
cisely obtain three-dimensional structural information (Fig. 2e and
Supplementary Fig. 8b). All the d-spacings measured from the
SAED patterns of the nanowires coincide well with those of
AuCN (Supplementary Fig. 8c).

The crystal structure also reveals the alignment mechanism
between the nanowires and graphene. Because it is well known
that lattice matching between two materials causes heteroepitaxial
alignment13,14,24, we compared the in-plane atomic configurations
of the nanowires and graphene (Fig. 3a). Along the nanowire axis
directions, the unit cell size (d1) of AuCN (5.08 ± 0.01 Å) coincides
well with the length of two carbon hexagons (4.92 Å) along the gra-
phene zigzag directions (lattice mismatch = 3.3 ± 0.2%). In the
nanowire width directions, the unit cell sizes (6d2) of AuCN
(18.00 ± 0.72 Å) and graphene (19.17 Å) are also matched (lattice
mismatch = 6.1 ± 3.8%). Note that the epitaxial alignment of inor-
ganic materials on graphene is successful with a lattice mismatch
of ∼2.9% (Bi2Se3 on graphene13), and is possible even with a
lattice mismatch of ∼28% (MoS2 on graphene24). Thus, in-plane
lattice matching is mainly responsible for the epitaxial alignment
between the AuCN nanowires and graphene.

We also confirmed that the AuCN nanowires are likely to form
directly on pristine surfaces of graphene, although other inorganic
materials preferentially attach to dangling bonds such as graphene
edges and defects2,11,13–17. First, the Raman spectra of graphene
before and after nanowire synthesis (Supplementary Fig. 9a,b)
maintain very low D peaks, indicating that the graphene is of high
quality and measurable defects are not introduced during the nano-
wire synthesis process. Second, atomic-resolution TEM imaging
directly shows the pristine state of the graphene underneath the
nanowires. We stripped a nanowire off (Supplementary Fig. 9c,d)
and observed a clean graphene lattice without any visible defects
(Supplementary Fig. 9e). Third, we synthesized nanowires on
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Figure 2 | Atomic-resolution TEM imaging and SAED of the nanowires. a, Atomic-resolution TEM image of the nanowire. The two lattice spacings along
(d1) and perpendicular (d2) to the nanowire axis direction are measured as 5.08 ± 0.01 Å and 3.00 ± 0.12 Å, respectively. A TEM image of a larger area is
provided in Supplementary Fig. 7. Scale bar, 0.5 nm. b, Crystal structure of AuCN. The yellow, green and grey spheres represent Au, N and C atoms,
respectively. Lattice spacings d1 and d2 obtained from the crystal structure are 5.091 Å and 2.937 Å, respectively. c, Simulated TEM image from the crystal
structure in b. The captured TEM image (a), crystal structure (b) and simulated TEM image (c) show good agreement. d,e, SAED patterns of a nanowire–
graphene sample under no tilt (d) and 20.6° tilt (e). Insets: Sample areas where the SAED patterns are measured. Scale bars (d,e), 100 nm.

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2015.36 LETTERS

NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 3

© 2015 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nnano.2015.36
http://www.nature.com/naturenanotechnology


sub-monolayer graphene samples consisting of domains that were
disconnected from each other. The sub-monolayer graphene,
when transferred onto amorphous carbon films of TEM grids, pro-
vides three different types of carbon surface for nanowire growth:
pristine graphene in the middle of the domains, graphene defects
at the edge of the domains, and amorphous carbon (from TEM
grids) outside the domains. During synthesis, no nanowire is
formed on amorphous carbon surfaces and the nanowire density
is uniform throughout the graphene domains and edges
(Supplementary Fig. 9f–h). These results imply that the nanowires
grow preferentially on pristine graphene surfaces (not on graphene
defects) and do not perturb the crystal structure of the graphene.
Moreover, the third experiment (Supplementary Fig. 9f–h) indicates
that graphene is a unique substrate promoting the formation of
uncommon inorganic crystals. As also shown by the synthesis of
new organic crystals on graphene5,7,8, this result suggests the possi-
bility of using graphene as a template for advanced nanostructuring
of inorganic materials.

The nanowire growth on pristine graphene suggests that the
interaction between the two materials is unusual for inorganic
materials. Owing to the chemical inertness of graphene, the only
way previously shown to synthesize inorganic structures directly
on pristine graphene has been vapour-phase deposition12–14,23–25,
which is mainly performed at high temperatures (400–900 °C).
However, the reaction in this study occurs in the aqueous phase at
room temperature, which suggests that the interaction between
the nanowires and pristine graphene provides a sufficient driving
force for assembly without high energy. Thus, we investigated the
interaction between the nanowires and graphene using first-
principles calculations (Supplementary Methods). In the optimized
atomic configuration (Fig. 3a,b), both AuCN’s hexagonal crystal
and graphene’s sp2 carbon structures remain intact, and their inter-
layer distance (3.29 Å) is almost the same as the interlayer distance
(3.31 Å) between Au(111) and graphene28. The parallel atomic

structure at the interface (Fig. 3b,d) suggests that Au atoms, whose
covalent radius (1.3 Å) is significantly larger than those of C and
N (0.7 Å), contribute predominantly to the interaction between
the nanowire and graphene. The major binding contribution of
Au atoms is also confirmed in the charge density difference
(Fig. 3d), where transferred electrons are localized only near Au
atoms. However, the interaction between graphene and Au atoms
in AuCN has unique characteristics that differ from the common
physical interaction between graphene and Au(111). The calculated
binding energy of AuCN on graphene is 181 meV/Au, significantly
greater than the 80 meV/Au for the binding energy between Au
(111) and graphene via electrostatic interaction28. The charge
density difference (Fig. 3d) shows that the π orbitals of graphene
donate electrons to Au atoms in AuCN. These characteristics
support the notion that the nanowire– graphene interaction is
mainly attributed to electron transfer between a transition metal
(Au) and cyclic π systems. This type of interaction, previously
studied in organometallic chemistry, differs from the relatively
weak physisorption2,14,28 (either electrostatic or van der Waals inter-
action) that is commonly observed at interfaces between inorganic
crystals and graphene. We note that the organometallic π interaction
with graphene has been found with only a few inorganic materials29,
which are not even crystals but molecules. The unique π interaction
is presumably responsible for the spontaneous binding between the
nanowires and graphene, and it also offers the possibility of synthe-
sizing various inorganic materials on pristine graphene without
disturbing sp2 carbon networks2,29.

The as-prepared nanowires allowed us to fabricate nanostruc-
tures with controlled crystallographic orientations (Fig. 4a). First,
graphene nanoribbons with zigzag-edged directions (which can be
important components in spintronic devices30) were fabricated
using the synthesized nanowires as an etching mask. The nano-
wire-covered graphene was selectively protected from O2 plasma
etching (Fig. 4b), and the nanowires were then removed with a
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NaOH solution without damaging the graphene (Fig. 4c and
Supplementary Fig. 10). Because the nanowires are conformally
attached on the graphene and their widths can be controlled to
within less than 10 nm, the present method readily enables us to
fabricate graphene nanoribbons with sub-10 nm widths. The
AFM image in Fig. 4d and its height profiles (Fig. 4e,f ) indicate
that the widths of the fabricated graphene nanoribbons are near
10 nm, with the tip-size effect taken into account. In addition, the
thickness of the fabricated graphene nanoribbon is ∼1 nm, which
is consistent with the reported thickness31 of single-layered gra-
phene on SiO2. The Raman spectrum (Fig. 4g) also indicates that
the graphene nanoribbons are fabricated successfully. The intensity
ratio of the D and G bands (ID/IG), a common measure to evaluate
the quality of carbon materials, is ∼0.67, which is advanced for gra-
phene nanoribbons produced by top-down fabrication. Overall, the
AFM and Raman data indicate that the fabricated graphene nano-
ribbons are of reasonable quality (in particular the edge smoothness)
compared to previously available graphene nanoribbons31. The

crucial point in this fabrication process is that the directional align-
ment of the nanowires allows us to selectively fabricate graphene
nanoribbons in zigzag-edged directions. Note that it has been diffi-
cult to fabricate graphene nanoribbons with zigzag-edged directions
and only a few previous studies32 have achieved it so far.

As the second example of crystallographically aligned nanostruc-
tures we fabricated gold nanoparticle chains aligned to the crystal
directions of graphene substrates by decomposing the nanowires
to gold nanoparticles (Fig. 4a). The electron beam in TEM was
used to decompose the synthesized nanowires on graphene
(Supplementary Movie 1 and Fig. 4h). Gold nanoparticles (dark
dots) grow near the nanowire and finally replace the entire nanowire
(Supplementary Fig. 11). The application of heat (200 °C, 30 min)
can also decompose the nanowires to gold nanoparticles
(Fig. 4i,j). Because the nanowire arrangement determines the pos-
ition of the gold nanoparticle, the gold nanoparticle chains are natu-
rally aligned along the zigzag lattice directions of the graphene
substrate (Fig. 4k,l). These gold nanoparticle chains are in the
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optimal dimension for near-field plasmon coupling33, which can
propagate and/or enhance the electromagnetic waves of applied
light along the chain axes. Thus, light with a particular wavelength
and polarization will interact strongly along specific crystal direc-
tions of the graphene. This phenomenon suggests potential appli-
cations in optical measurements of graphene crystal directions
and plasmonic sensing platforms.

In summary, we have presented the self-organized growth of
inorganic AuCN nanowires that are readily aligned to the zigzag
lattice directions of single-layered pristine graphene. This direct
alignment can be utilized to extract and control crystallographic
information about nanostructures, thus enabling us to fabricate gra-
phene nanoribbons with zigzag-edged directions. The synthetic
method we have introduced demonstrates the possibility of using
graphene as a template for advanced classes of inorganic nano-
materials, even with wet chemistry. Furthermore, the unique inter-
action found in this study may provide a new direction for the
fabrication of graphene–inorganic heterostructures with intrinsic
interface properties.

Received 14 May 2014; accepted 9 February 2015;
published online 23 March 2015
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